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In this article, in reference to the modified couple stress theory and Euler-Bernoulli beam 

theory, the free lateral vibration response of a micro-beam carrying a moveable attached 

mass is investigated. This is a decent model for biological and biomedical applications 

beneficial to the early-stage diagnosis of diseases and malfunctions of human body organs 

and enzymes. The micro-cantilever beam is composed of functionally graded materials 

(FGMs). The material properties are supposed to show variations through-thickness of the 

beam in consonance to the power of law. Rayleigh-Ritz method is applied in order to 

explore the natural frequencies of the first three vibration modes. In order to manifest the 

accuracy of the proposed method, the results are established and juxtaposed with 

technical literature. Influences of the material length-scale parameter that captures the 

size-dependency, ratio of the mass of the beam to the mass of the attached mass and power 

index of the graded material consequent to the vibrational behavior of the system are 

contemplated. This technical research denotes the value of the material gradation besides 

to the inertia of an attached mass in the dynamic behavior of the bio-micro-systems. As a 

result, the adoption of suitable power index, mass ratio and position of the attached mass 

lead to the superior design of bio-micro-systems persuading early-stage diagnostics.  

1. Introduction 

Functionally graded materials (FGMs) can be 
interpreted as non-homogeneous graded 
composites consisted of a mixture of two 
different materials, usually a metal and a non-
metal phase. They dominate the desired 
continuous variation of mechanical properties as 
a function of position, in accordance with a 
certain direction(s). These types of materials are 
constructed in order to exploit the specific 
benefits of both constituents. Recently, FGMs are 
widely applied in micro-structures such as thin 
films in the form of shape memory alloys, micro-
electro-mechanical-systems (MEMS), nano-
electro-mechanical-systems (NEMS) and atomic 
force microscopes (AFMs)[1]. 

By the compelling improvements contributing 
to micro-technology, consisted of concepts, 
modeling, design, and fabrication, a micro-
cantilever beam that has the dimensions at the 
order of micron has been widely applied. The 
applications chiefly include atomic force 

microscopes (AFMs), micro and nano-electro-
mechanical systems (MEMS, NEMS). Micro-
electro-mechanical Systems mainly arranged by 
miniaturized electro-mechanical and mechanical 
elements. In the mentioned technology, the 
elements are being engendered applying the 
microfabrication techniques. Micro-sensors and 
micro-actuators are among the most beneficial 
and pragmatic elements of MEMS [2]. As the 
structure is scaled down, the size effect 
phenomena influence the dynamic responses 
directly. It is experimentally illustrated that the 
size-dependency of microstructures could not be 
captured by the classical elasticity theory, 
consequently non-classical elasticity theories 
emerge. The modified couple stress theory as one 
of these non-classical theories, contemplating the 
rotational characteristics that exert the rotational 
energy terms into the formulations of energy. By 
applying a single material length scale parameter, 
symmetric part of the curvature tensor, it 
becomes correlated to the couple stress tensor; 
further this correlation makes the modified 
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couple stress theory as one of the most prevalent 
non-classical theories for investigation of the 
micro-structures. Several researchers have 
inspected the static and dynamic behavior of FGM 
beams and plates. Babaei and Yang 
[3]accomplished research related to vibration 
analysis of rotating rods with applications in 
MEMS-gyroscopes. They have proposed a novel 
modified coupled displacement fields optimizing 
the design of micro-systems in the industry of 
automotive. Babaei and Ahmadi [4] reported 
dynamic characteristics of a non-uniform and 
non-homogenous micro-model of a Timoshenko 
beam pursuant to the modified couple stress 
theory (MCST). For the first time, Babaei and 
Rahmani [5] considered the capricious model of 
the non-classical length-scale parameter. 
Moreover, variations impact over dynamic-
vibration behavior is revealed as well. Babaei et 
al. [6] explored the thermal stress effect over the 
dynamic characteristics of MEMS. They 
deliberated various slenderness ratios in order to 
cover a wide range of applications. Babaei [7] 
proposed an optimized model of MEMS-
gyroscope based on his novel modified coupled 
displacement kinematic field. He presents 
perceptible and chaotic patterns of the gyroscope 
that ameliorates the efficiency of navigation 
systems mostly applied in advanced cars and 
airplanes.  Chen et al. [8] proposed a new method 
for free vibration of generally laminated beams 
based on the state-space-based differential 
quadrature method. Xiang and Yang [9] inspected 
free and forced vibration of a laminated FG beam 
of variable thickness with thermal initial stresses. 
The effect of diverse boundary conditions was 
inquired and the beam was presumed to be 
subjected to one-dimensional steady heat 
conduction in the thickness direction before 
undergoing any dynamic deformation. Elastic 
behavior of FGM ultra-thin films is surveyed by 
Lü et al. [[10]. They proposed a generalized 
theory pondered the surface effects in order to 
capture the size-dependency of the structure’s 
responses. Amar et al. [11] examined the free 
vibration analysis of the Euler-Bernoulli beam 
applying the modified couple stress theory. 
Pradhan and Chakraverty [12] did research on 
free vibration analysis of Timoshenko and Euler 
beams. They used functionally graded materials 
for modeling their systems and applied the 
Rayleigh-Ritz method for solution procedure. 
Aghazadeh et al. [13]  investigated the free 
vibration and static behavior of small scale FG 
micro-beams using dissimilar beam theories and 
the modified couple stress theory. Additionally, 
they assumed the varying length scale parameter 
and its effects consequent to the tip deflection 
and frequency characteristics. Jafari et al. [14] 
inquired about the bending and vibration 

analysis of delaminated micro-beams regarding 
the modified couple stress theory. They utilized 
the presumed modes method for analysis. Ansari 
et al. [15] inspected on the free vibration 
behavior of FG micro-beams applying the strain 
gradient theory and the Timoshenko beam 
theory. They attempted to simulate a model 
including the thick micro-beams theories. The 
paper which reported the size-dependent 
behavior of the FG Euler-Bernoulli micro-
cantilever beam, using the modified couples 
stress theory is accomplished by Asghari et al. 
[16]. Ansari et al. [17] carried out research 
concerning buckling and vibrations of micro-
plates employing the strain gradient theory. 
Babaei et al. [18] proposed a micro-beam model 
considering variations of both temperature and 
material gradation based on modified couple 
stress and the Euler-Bernoulli beam theories. 
Shafiei et al. [19] conducted research about size-
dependent vibration analysis of non-uniform FG 
micro-beam. They have assumed Euler-Bernoulli 
and Timoshenko beam theories for deriving the 
formulas. Ansari et al. [20] inquired the vibration 
of postbuckle piezoelectric micro-beams 
applying non-local theory. Farajpour et al. [21] 
investigated the nonlinear behavior of nano-
tubes conveying nanofluid with both subcritical 
and supercritical regimes. They presented the 
model established based on strain gradient 
theory. Mohammadimehr et al. [22] reported 
Size-dependent Effects on the Vibration Behavior 
of a Timoshenko Microbeam subjected to Pre-
stress Loading based on DQM. Arabghahestani 
and Karimian [23] developed the previous 
research with considerations of uniform liquid 
argon flow. Fang et al. [24] represented a size-
dependent vibration analysis of rotating small-
scaled beam. They exployed the modified couple 
stress theory in order to devisethe formulations 
along with smooth variations of the mechanical 
properties. Khaniki and Rajasekaran [25] carried 
out a research  regarding to vibrational behavior 
of bi-directional non-uniform beams based on 
MCST. Jia et al. [26] explored mechanical buckling 
behavior of small-scaled beams based on MCST 
under thermal and electrical loads. Their model is 
supposed to be functionally graded. 

In this paper, a functionally graded micro-
scale Euler-Bernoulli beam model is proposed for 
the size-dependent free vibration analysis. This 
model is presented as a biomedical and biological 
laboratory set-up to help diagnosis of diseases 
and detecting body and enzyme malfunctions. It 
is noteworthy to mention that the said attached 
mass (proof mass) represents blood or enzyme 
samples. In order to extend the research available 
in the literature, the present analysis includes 
investigation of the influences of inertia 
generated as a result of the oscillation of the 
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attached mass and varying position of the mass 
consequent to frequencies of the micro-
cantilever beam. The kinetic and strain energy 
are derived from employing the modified couple 
stress theory. Due to the usage of the Rayleigh-
Ritz method, applying variational approaches is 
not required. The influences of the volume 
fraction profiles of the constituents and gradient 
index (power index) upon the natural 
frequencies of the micro-cantilever beam are 
reported. 

2. Functionally Graded Material 

A functionally graded micro-beam is 
illustrated in Figure 1, where length is 𝐿, width is 
𝑏 and thickness is ℎ . The Cartesian coordinates 
are defined as 𝑥 = 𝑥1, 𝑦 = 𝑥2, 𝑧 = 𝑥3 in 
correspondence to the length, width and 
thickness directions. The FG micro-beam is 
formed by Steel (a metal constituent) and 
Alumina (a non-metal constituent). It is 
postulated that the effective mechanical 
properties vary through the thickness direction 
(𝑥3).  

Pursuant to the rule of mixtures, the effective 
properties (𝑃) can be computed as follows: 

 𝑃 = 𝑃𝑎𝑉𝑎 + 𝑃𝑠𝑉𝑠 
(1) 

where 𝑃𝑎 and 𝑃𝑠 represent the effective 
mechanical properties, 𝑉𝑎  and 𝑉𝑠  are the volume 
fractions of alumina and steel phases. The 
Volume fractions are constrained by the 
following equation: 

𝑉𝑎 + 𝑉𝑠 = 1          
(2) 

It is postulated that the effective material 
properties of the FG micro-beam are numerically 
interpreted by a power-law. The volume fraction 
of the alumina is defined as Wakashima [46]: 

𝑉𝑎 = (
𝑧

ℎ
+

1

2
)𝑘  (3) 

where 𝑘 is the power-law exponent, which 
computes the material variation contour in 
conformity with thickness direction. 

Applying Eqs. (1), (2), and (3), the effective 
material properties of the FG micro-beam take 
the form below: 

 
 
 
 
 

 
Fig 1. Schematic of the FGM beam. 

𝑃(z) = (𝑃𝑎 − 𝑃𝑠) (
z

ℎ
+

1

2
)

𝑘

+ 𝑃𝑠     (4) 

Similarly, Young’s modulus, shear modulus 
and density of the micro-structure structure can 
be expressed as follows: 

𝐸(𝑧) = (𝐸𝑎 − 𝐸𝑠) (
𝑧

ℎ
+

1

2
)

𝑘

+ 𝐸𝑠 (5) 

𝐺(𝑧) = (𝐺𝑎 − 𝐺𝑠) (
𝑧

ℎ
+

1

2
)

𝑘

+ 𝐺𝑠      
(6) 

𝜌(𝑧) = (𝜌𝑎 − 𝜌𝑠) (
𝑧

ℎ
+

1

2
)

𝑘

+ 𝜌𝑠  (7) 

 

3. Mathematical Formulation 

 Modified Couple Stress Theory 

Pursuant to the modified couple stress theory 
developed by Yang et al. [47], the total strain 
energy of a loaded beam is obtained as follows: 

𝑈𝑠 =
1

2
∫(𝜎𝑖𝑗 : 𝜀𝑖𝑗 + 𝑚𝑖𝑗 : 𝜒𝑖𝑗) 𝑑𝑉

𝑉

 (8) 

In Eq. (8), 𝜎𝑖𝑗 designates the Cauchy stress, 
tensor 𝜀𝑖𝑗  is the Cauchy strain tensor, 𝑚𝑖𝑗  
represents the deviatoric part of the couple stress 
tensor and χ𝑖𝑗  stands for the symmetric curvature 
tensor. The tensors 𝜀𝑖𝑗  and χ𝑖𝑗  are defined by Eqs. 
(9), (10). 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)            

(9) 

𝜒𝑖𝑗 =
1

2
(𝑒𝑖𝑝𝑞𝜀𝑞𝑗,𝑝 + 𝑒𝑗𝑝𝑞𝜀𝑞𝑖,𝑝) (10) 

𝑢𝑖  in Eq. (9) shows the displacement vector; 𝑒𝑖𝑝𝑞 
in Eq. (10) denotes00000000 the alternating 
tensor and comma stand for differentiation. 
Constitutive relations in reference to the Cauchy 
stress tensor and the deviatoric part of the couple 
stress tensor is to be written in the following 
form: 

𝜎𝑖𝑗 = 2𝐺𝜀𝑖𝑗 + 𝜆𝛿𝑖𝑗𝜀𝑘𝑘      
(11) 

𝑚𝑖𝑗 = 2𝐺𝑙2𝜒𝑖𝑗    
(12) 

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
 

(13) 

where 𝜆 and 𝐺 are classical Lame parameters. 
Moreover, 𝜈 is the Poisson’s ratio, 𝐸 is Young’s 
modulus and 𝐺 is shear modulus. 

𝑙 in Eq. (12) is the material length scale 
parameter. Employing this non-classical 
parameter captures the size-dependency of the 
structure.      



A. Rahmani, A. Babaei, S. Faroughi / Mechanics of Advanced Composite Structures 7 (2020) 49 – 58 

52 

 Euler-Bernoulli beam theory (EBT) 

The general displacement components in a 
Cartesian coordinate, applying EBT can be 
expressed as below: 

𝑢1(𝑥, 𝑧, 𝑡) = −𝑧
𝜕𝑤

𝜕𝑥
      (14) 

𝑢2(𝑥, 𝑧, 𝑡) = 0  (15) 

𝑢3(𝑥, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡)                    (16) 

In consonance to Eqs. (14)-(16) the elements 
of 𝜀𝑖𝑗 , χ𝑖𝑗 , σ𝑖𝑗 and m𝑖𝑗 are computed as follows: 

𝜀11 = −𝑧
𝜕2𝑤

𝜕𝑥2              (17) 

𝜒12 = 𝜒21 = −
1

2

𝜕2𝑤

𝜕𝑥2          (18) 

𝜎11 = −𝐸𝑧
𝜕2𝑤

𝜕𝑥2                 (19) 

𝑚12 = 𝑚21 = −𝐺𝑙2
𝜕2𝑤

𝜕𝑥2
     (20) 

Substitution of Eqs. (17)-(20) into the Eq. (8), 
shows the strain energy of the Euler-Bernoulli 
beam: 

𝑈𝑠

=
1

2
∫ ∫[(

𝜕2𝑤

𝜕𝑥2
)

2

(
𝐸(𝑧)𝑧2

+
1

2
𝐺(𝑧)𝑙2

)]𝑑𝐴𝑑𝑥
𝐴

𝐿

0

 
(21) 

The kinetic energy of the Euler- Bernoulli 
beam carrying an attached mass can be expressed 
as follows: 

𝑇 =
1

2
∫ 𝜌(𝑧)𝐴 (

𝜕𝑤

𝜕𝑡
)

2𝐿

0
𝑑𝑥 +

1

2
𝑀 (

𝜕𝑤(𝐿,𝑡)

𝜕𝑡
)

2

       

(22) 

4. Solution Procedure 

 Approximation Method  

One of the most applied methods to solve the 
partial differential governing equations of 
continuous systems is approximate methods. 
Rayleigh-Ritz's approach as one of such methods 
is an extension of Rayleigh’s energy method that 
can be used only for computing the fundamental 
frequency; however, Rayleigh-Ritz method can 
be employed to find all the frequencies. 
According to this method for a conservative 
system, the maximum potential and kinetic 
energies are equal which is accompanied by the 
fact that natural modes execute harmonic 
motions. Consequently, with defining 𝜔 as the 
frequency of the system, the maximum energy 
terms are as follows: 

𝑇𝑚𝑎𝑥 =
1

2
𝜔2 (∫ 𝐼11

𝐿

0
𝑊2 𝑑𝑥 +

𝑀𝑊2(𝐿))             
(23) 

𝑈𝑚𝑎𝑥 =
1

2
∫ (𝑆11 + 𝑆22)

𝐿

0
(

𝑑2𝑊

𝑑𝑥2 )2𝑑𝑥       
(24) 

In which, the coefficients are: 

𝐼11 = ∫ 𝜌(𝑧)𝑑𝐴
𝐴

        
(25) 

𝑆11 = ∫ 𝐺(𝑧) 𝑙2𝑑𝐴
𝐴

    
(26) 

𝑆22 = ∫𝐸(𝑧)𝑧2𝑑𝐴    
𝐴

 
(27) 

By separating lateral displacement (𝑤(𝑥, 𝑡) =
𝑊(𝑥)𝑇(𝑡)), Rayleigh’s quotient (square of the 
frequency) (𝑅[𝑊(𝑥)]) easily can be defined as 
follows: (𝑊(𝑥) is the amplitude). 

𝑅[𝑊(𝑥)] = 𝜔𝑛
2

=
∫ (𝑆11+𝑆22)

𝐿
0 (

𝑑2𝑊

𝑑𝑥2 )2𝑑𝑥

∫ 𝐼11
𝐿

0 𝑊2𝑑𝑥+𝑀𝑊2(𝐿)
   (28) 

 Rayleigh-Ritz method 

Rayleigh-Ritz method is applied in order to 
appraised frequencies of different modes of 
vibration. In this method, the actual frequency for 
each mode is smaller than the appraised one. The 
method consists of selecting a trial family of 
admissible functions satisfying the homogenous 
and geometric boundary conditions and 
constructing a linear combination for mode 
shape functions as follows: 

𝑤𝑛 = ∑ 𝑎𝑖𝑢𝑖                                           

𝑛

𝑖=1

    (29) 

where the 𝑢𝑖  are known functions and 𝑎𝑖  are the 
unknown coefficients to be computed. For each 
mode, the mode shape function is substituted in 
Rayleigh’s quotient so as to render the quotient 
stationary, which means that it is required to 
minimize the estimate. This minimization is done 
with respect to the unknown coefficients.  

𝜕𝑅(𝑊𝑛)

𝜕𝑎𝑖

= 0       
(30) 

Manifesting some mathematical operations 
leads to the Galerkin’s equations: 

∑(𝐾𝑖𝑗 − 𝜔𝑛
2𝑚𝑖𝑗)𝑎𝑖 = 0,                   

𝑛

𝑖=1

 

𝑟 = 1,2, … , 𝑛   

(31) 

where stiffness and mass matrices are defined as 
follows: 
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𝐾𝑖𝑗

= ∫ (𝑆11 + 𝑆22)
𝑑2𝑢𝑖

𝑑𝑥2

𝐿

0

𝑑2𝑢𝑗

𝑑𝑥2
𝑑𝑥              (32) 

𝑚𝑖𝑗 = ∫ 𝐼11

𝐿

0

𝑢𝑖𝑢𝑗  𝑑𝑥 + 𝑀 𝑢𝑖(𝐿) 𝑢𝑗(𝐿)     (33) 

The trial functions satisfying the homogenous 
boundary conditions are supposed to be 
polynomial functions.  

𝑢𝑖 = (
𝑥

𝐿
)

𝑖+1

     , 𝑖

= 1,2, …                                     

(34) 

Exerting the above functions in the quotient 
and solving the frequency equation calculated 
from the Galerkin’s equations will result in the 
frequencies of the system.    

5. Numerical Results and Discussion 

The functionally graded micro-cantilever 
beam inspected in this paper is a mixture of steel 
and alumina (aluminium oxide), at which its 
properties vary through the thickness according 
to a power-law. The lower surface is pure metal, 
and the upper surface is pure alumina. The 
mechanical properties of the two constituents are 
expressed in Table 1. The beam length is 𝐿 =
10,000 micrometers and its width is 𝐿 =
1,000 micrometers.  

Applying the following relation �̂� =
𝜔𝐿2√𝜌𝑎𝐴 𝐸𝑎𝐼⁄ , where 𝐼 = 𝑏ℎ3 12⁄  is the second 
moment of inertia of the beam, and 𝐴 is the area 
of the cross-section; the non-dimensional 
frequency is obtained. In accordance with 
experimental tests reported by Lame, the 
material length scale parameter (𝑙) is taken 15 
micrometers. For verification, the results are 
compared with those of technical references. 

In Table 2, by neglecting the material length 
scale parameter (𝑙 = 0), for the modified couple 
stress theory and assuming the mass ratio and 
power index, both equal to zero (𝑅, 𝑘 = 0), 

comparison with a technical report is done, 
leading to a good level of accuracy. 

Pursuant to Table 2. It can be observed that 
current results are verified by technical 
literature. By accounting and neglecting the 
material length-scale parameter and putting the 
power index equal to zero, the results are 
verified. In Tables 3-5 non-dimensional 
frequency of a micro-cantilever Euler-Bernoulli 
beam, carrying an attached mass, and using the 
modified couple stress theory for dissimilar 
values of power indices are displayed. 

The results are reported based on the varying 
mass ratio of the system (ratio of the mass of the 
attached mass to the mass of the beam), in which, 
numerical results for the first mode are portrayed 
in Table 3, the second mode in Table 4, and the 
third mode in Table 5. Regularly the change in the 
values of non-dimensional frequencies is 
expected by the growth of the power index. 
Tables 3, 4 and 5 reveal the fact that through 
increasing the power index, non-dimensional 
frequency decreases and this is observable for 
dissimilar values of power index (𝐾 =
0.0. ,0.1,0.2,0.5,1,2,5,10). The second point that is 
detectable from Tables 3, 4 and 5 is the influence 
of mass ratio. As the attached mass is heavier, the 
non-dimensional frequency decreases and this 
decrement becomes more intense in higher 
modes of vibration. 

Table 1. Mechanical properties 

Property Steel Alumina 

𝜌 (Kg m3⁄ ) 7800 3960 

𝐸(GPa) 210 390 

Table 2. Comparison of the non-dimensional frequencies 

R Rao MCST (𝑙 = 0) MCST (𝑙 ≠ 0) 
0.01 3.4299 3.4477 3.6305 
0.1 2.9687 2.9678 3.1252 
1 1.5575 1.5573 1.6399 
10 0.5417 0.5414 0.5701 
100 0.1731 0.1730 0.1822 

 

Table 3. Non-dimensional natural frequencies of a micro-cantilever beam. (First Mode) 

0 𝐾 = 0.0 𝐾 = 0.1 𝐾 = 0.2 𝐾 = 0.5 𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 10 
0 3.7025 3.4546 3.2715 2.9314 2.6628 2.4457 2.2419 2.1285 
0.01 3.6305 3.3928 3.2165 2.8880 2.6276 2.4165 2.2174 2.1063 
0.1 3.1252 2.9508 2.8187 2.5666 2.3618 2.1924 2.0276 1.9320 
1 1.6399 1.5828 1.5379 1.4491 1.3743 1.3107 1.2419 1.1955 
3 1.0139 0.9837 0.9599 0.9127 0.8732 0.8397 0.8021 0.7749 
5 0.7971 0.7743 0.7563 0.7207 0.6910 0.6660 0.6374 0.6164 
7.5 0.6558 0.6374 0.6230 0.5943 0.5705 0.5504 0.5274 0.5103 
10 0.5701 0.5543 0.5419 0.5173 0.4968 0.4796 0.4599 0.4451 
30 0.3317 0.3227 0.3157 0.3017 0.2901 0.2804 0.2692 0.2607 
50 0.2573 0.2504 0.2450 0.2342 0.2253 0.2178 0.2091 0.2025 
100 0.1822 0.1773 0.1735 0.1659 0.1596 0.1543 0.1482 0.1435 
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Table 4. Non-dimensional natural frequencies of a micro-cantilever beam. (Second Mode) 

𝑅 𝐾 = 0.0 𝐾 = 0.1 𝐾 = 0.2 𝐾 = 0.5 𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 10 
0 23.2030 21.6499 20.5018 18.3709 16.6873 15.3271 14.0494 13.3393 
0.01 22.7665 21.2738 20.1670 18.1058 16.4717 15.1478 13.8993 13.2021 
0.1 20.3822 19.1507 18.2307 16.5018 15.1178 13.9868 12.9016 12.2811 
1 17.1118 16.0291 15.2276 13.7378 12.5600 11.6081 10.7040 10.1897 
3 16.5534 15.4703 14.6694 13.1827 12.0087 11.0607 10.1666 9.6647 
5 16.4297 15.3455 14.5439 13.0561 11.8810 10.9322 10.0386 9.5389 
7.5 16.3662 15.2813 14.4792 12.9905 11.8147 10.8651 9.9716 9.4728 
10 16.3341 15.2487 14.4464 12.9571 11.7809 10.8308 9.9372 9.4390 
30 16.2689 15.1826 14.3797 12.8892 11.7118 10.7607 9.8669 9.3695 
50 16.2557 15.1692 14.3661 12.8754 11.6978 10.7464 9.8525 9.3554 
100 16.2458 15.1592 14.3560 12.8651 11.6872 10.7356 9.8417 9.3447 

Table 5. Non-dimensional natural frequencies of a micro-cantilever beam. (Third Mode) 

𝑅 𝐾 = 0.0 𝐾 = 0.1 𝐾 = 0.2 𝐾 = 0.5 𝐾 = 1 𝐾 = 2 𝐾 = 5 𝐾 = 10 
0 64.9690 60.6203 57.4058 51.4390 46.7250 42.9163 39.3389 37.3505 
0.01 63.7820 59.5952 56.4918 50.7133 46.1332 42.4232 38.9253 36.9724 
0.1 58.4624 54.7989 52.0761 46.9892 42.9419 39.6513 36.5167 34.7387 
1 53.5948 50.0818 47.4841 42.6610 38.8512 35.7739 32.8721 31.2447 
3 52.9576 49.4404 46.8403 42.0139 38.2018 35.1226 32.2264 30.6111 
5 52.8224 49.3036 46.7024 41.8741 38.0602 34.9793 32.0831 30.4699 
7.5 52.7538 49.2341 46.6323 41.8028 37.9878 34.9059 32.0095 30.3973 
10 52.7192 49.1990 46.5969 41.7668 37.9512 34.8687 31.9722 30.3604 
30 52.6496 49.1283 46.5255 41.6941 37.8771 34.7934 31.8965 30.2858 
50 52.6356 49.1141 46.5111 41.6794 37.8622 34.7782 31.8812 30.2707 
100 52.6250 49.1034 46.5003 41.6684 37.8510 34.7668 31.8697 30.2593 

 

In Table 6, numerical results for the non-
dimensional frequency of the FG micro-beam 
with respect to the varying position of the 
attached mass are depicted. Effect of the relative 
position of the attached mass and the mass ratio 
for the first, second and third modes of vibrations 
are presented.  𝑥𝑎𝑚/𝐿 refers to the position of the 
attached mass with respect to the beam length. 
The power index is supposed to be zero (𝑘 = 0).  

Tables 7 and 8 exhibits the same results for 
𝑘 = 1 and 𝑘 = 10.  pursuant to Tables 6, 7, and 8; 
regardless of the mass ratio, the frequency 
decreases as the mass reaches the free end of the 
beam. Furthermore, increment in mass ratio 
makes the system to vibrate with less frequency.  

Figure 2 persuades the variation of non-
dimensional frequencies of the first mode of 
vibration with respect to different mass ratios, in 
which three power index values are adopted (𝑘 =
0, 1, 10). The variations are such that besides the 
decrement of frequencies with increment in mass 
ratios, the gradient of the changes is gentle, 
means that until reaching the ratio 𝑅 = 10, a 
sharp decrement can be observed, however, for 
larger ratios, the gradient is not as intense as 
before. Eventually, for ratios over 50, the 
decrement and change could be neglected; better 
means that the dynamical behavior of the system 
is independent of inertia of the attached mass. In 
addition, it can be readily observed that for other 
values of power index, the above inferences are 
derived. 

The variations of non-dimensional 
frequencies of the first mode of vibration with 

respect to power index and for six different mass 
ratios are portrayed in Fig. 3. Based on this figure, 
increment in power index leads to decrement in 
the frequencies, when the mass ratio is smaller 
than 1 (𝑅 < 1), for the intervals 0 < 𝑘 < 2, 
significant changes take place, while for 𝑘 > 2, 
the dependency of the frequencies is going to 
diminish and smooth variations will be 
experienced. The effects of the mass ratios 
appear in the way that for ratios larger than one. 
The variation profile corresponds to a straight 
line, which means that if a heavy mass in 
comparison to the beam is attached, the system 
will vibrate regardless of the magnitude of the 
power index and the frequencies are such small 
that it does not matter whether power index is 
0.1 or 10. So, the substantial effects of the mass 
ratios are again observed. 

Figure 4 indicates the variations of the non-
dimensional frequency with respect to the mass 
ratio, and assuming 𝑘 = 0, it is accompanied by 
the consideration of four different positions of 
the attached mass as well. 

 
Fig 2. Variation of the frequency with the mass ratio for 

different power indices  
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Table 6. Non-dimensional natural frequencies of a micro-cantilever beam with respect to relative attached mass position. (k=0) 

𝑅 Mode No. Xam/L=0.25 Xam/L=0.5 Xam/L=0.75 Xam/L=1 

0.01 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

3.7018 
23.1223 
64.2982 

3.6940 
22.9711 
64.9686 

3.6708 
23.1946 
64.5392 

3.6305 
22.7665 
63.7820 

0.1 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

3.6955 
22.4114 
59.2055 

3.6195 
21.2194 
64.9649 

3.4183 
23.1299 
61.3967 

3.1252 
20.3822 
58.4624 

1 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

3.6326 
17.1691 
43.6551 

3.0446 
14.9890 
64.9524 

2.2386 
22.8754 
52.2481 

1.6399 
17.1118 
53.5948 

3 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

3.4949 

12.3594 
39.3497 

2.3508 
12.4169 
64.9477 

1.4856 
22.7620 
49.4167 

1.0139 
16.5534 
52.9576 

5 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

3.3621 

10.3784 
38.3757 

1.9793 
11.6906 
64.9464 

1.1896 
22.7293 
48.7006 

0.7971 
16.4297 
52.8224 

7.5 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

3.2055 

9.0824 
37.8793 

1.6936 
11.2899 
64.9457 

0.9884 
22.7111 
48.3187 

0.6558 
16.3662 
52.7538 

10 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

3.0610 

8.3278 
37.6293 

1.5038 
11.0793 
64.9453 

0.8636 
22.7015 
48.1212 

0.5701 
16.3341 
52.7192 

30 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.2835 
6.5903 

37.1270 

0.9156 
10.6364 
64.9445 

0.5079 
22.6810 
47.7128 

0.3317 
16.2689 
52.6496 

50 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.8809 
6.2255 

37.0262 

0.7172 
10.5442 
64.9444 

0.3949 
22.6767 
47.6288 

0.2573 
16.2557 
52.6356 

100 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.3941 
5.9591 

36.9506 

0.5115 
10.4743 
64.9443 

0.2800 
22.6734 
47.5654 

0.1822 
16.2458 
52.6250 

 
Fig 3. Variation of the frequency with material 

graduation for different mass ratios 
 

 
Fig 4. Variation of the frequency with mass ration for 

different relative positions  k = 0 

Confirming the results are discussed in Fig. 2, 
it can be concluded that as the attached mass 
approaches the free end, the decrements of 
natural frequencies are sharper and more 
substantial-frequency drops are seen.  

Consequently, it is concluded that the inertia 
influence of the attached mass for vibration 
diminishes, as the mass gets closer to the 
clamped end. This inference can be estimated 
from Fig. 5, too. This Figure reveals the non-
dimensional changes with the location of the 
attached mass. It is clear that as the attached 
mass approaches the free end, the system 
vibrates with smaller frequencies and as the 
power index is assumed larger number, the 
effects of the attached mass and its relative 
position are going to be diminished. 

 

 
Fig 5. Variation of the frequency with the attached mass 

location for different power indices 
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Table 7. Non-dimensional natural frequencies of a micro-cantilever beam with respect to relative attached mass position. (k=1) 

𝑅 Mode No. Xam/L=0.25 Xam/L=0.5 Xam/L=0.75 Xam/L=1 

0.01 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.6624 
16.6482 
46.3983 

2.6586 
16.5743 
46.7247 

2.6474 
16.6832 
46.5153 

2.6276 
16.4717 
46.1332 

0.1 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.6594 
16.3011 
43.7769 

2.6222 
15.6735 
46.7228 

2.5199 
16.6503 
44.8799 

2.3618 
15.1178 
42.9419 

1 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.6289 
13.4439 
33.1855 

2.3181 
11.6452 
46.7146 

1.8083 
38.6579 
16.4889 

1.3743 
12.5600 
38.8512 

3 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.5616 
10.1257 
29.1175 

1.8894 
9.4802 

46.7106 

1.2540 
16.3947 
36.1089 

0.8732 
12.0087 
38.2018 

5 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.4956 
8.5457 

28.1108 

1.6305 
8.7943 

46.7094 

1.0174 
16.3641 
35.4038 

0.6910 
11.8810 
38.0602 

7.5 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.4156 
7.4384 

27.5886 

1.4182 
8.3993 

46.7087 

0.8516 
16.3463 
35.0168 

0.5705 
11.8147 
37.9878 

10 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.3389 
6.7605 

27.3238 

1.2713 
8.1868 

46.7083 

0.7471 
16.3366 
34.8137 

0.4968 
11.7809 
37.9512 

30 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.8650 
5.0582 

26.7890 

0.7918 
7.7287 

46.7075 

0.4431 
16.3156 
34.3869 

0.2901 
11.7118 
37.8771 

50 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.5759 
4.6677 

26.6815 

0.6235 
7.6316 

46.7073 

0.3451 
16.3111 
34.2981 

0.2253 
11.6978 
37.8622 

100 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.1941 
4.3778 

26.6008 

0.4464 
7.5574 

46.7072 

0.2451 
16.3076 
34.2306 

0.1596 
11.6872 
37.8510 

6. Conclusions 

In the present study, free lateral vibration 
analysis of the bio-micro-FG beam that carries a 
movably attached mass is established. Non-
classical constitutive terms are applied in order 
to strain density function. In the absence of the 
attached mass; the new model which is based on 
the modified couple stress theory, predicts the 
frequencies a bit smaller than the classical theory 
(for example for a classical model with𝑅 = 0.01, 
�̂� = 3.4477, meanwhile applying the non-
classical effect frequency is 3.6305); meanwhile, 
the attached mass remarkably decreases the 
frequency of the system. In detail, when the 
attached mass reaches 10 times the mass of the 
system solely, the frequency decreases close to 
80%. Furthermore ,through passing the 
mentioned 𝑅value (𝑅 = 10), behavior of the 
entire system is almost independent and 
vibrations are on the wane regime. Results show 
that the material length scale parameter, power 
index and relative position of the attached mass 
play a major role in the dynamic behavior of FG 

bio-micro-structures and the presence of an 
attached mass demonstrates the structural 
damping effect in the system, exerting direct and 
explicit influence on vibrational behavior. This 
effect caused by the attached mass is dependent 
on the position of the mass along the length of the 
beam as well. Consequently, it can be realized 
that a decent and efficient biological laboratory 
set-up can be devised employed a proper power-
law index, and a decent relative position of the 
attached mass. To put it simple, the material type 
of bio-sensor and location of the blood/enzyme 
sample are amongst the crucial factors through 
the analysis and application of such novel bio-
micro-systems. Finally, it is essential to mention 
that using the proposed model, rapid 
disease/malfunction detection (diagnosis), is 
affordable. Addressing key factors of material 
profile variations and geometrical placement of 
the sample decent non-classical theorems will 
lead to eye-catching achievements in clinical 
diagnostics and biological sciences. 
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Table 8. Non-dimensional natural frequencies of a micro-cantilever beam with respect to relative attached mass position. (k=10)  
𝑅 Mode No. Xam/L=0.25 Xam/L=0.5 Xam/L=0.75 Xam/L=1 

0.01 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.1283 
13.3146 
37.1439 

2.1259 
13.2678 
37.3503 

2.1188 
13.3367 
37.2178 

2.1063 
13.2021 
36.9724 

0.1 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.1264 
13.0950 
35.4455 

2.1029 
12.6840 
37.3491 

2.0369 
13.3155 
36.1524 

1.9320 
12.2811 
34.7387 

1 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.1071 
11.1985 
27.4987 

1.9031 
9.7382 

37.3431 

1.5354 
13.1988 
31.4744 

1.1955 
10.1897 
31.2447 

3 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.0646 
8.7042 

23.7861 

1.5985 
7.8932 

37.3396 

1.0965 
13.1193 
29.2048 

0.7749 
9.6647 

30.6111 

5 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

2.0226 
7.4017 

22.7987 

1.4013 
7.2619 

37.3384 

0.8982 
13.0913 
28.5349 

0.6164 
9.5389 

30.4699 

7.5 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.9711 
6.4471 

22.2776 

1.2327 
6.8867 

37.3377 

0.7561 
13.0745 
28.1591 

0.5103 
9.4728 

30.3973 

10 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.9211 
5.8446 

22.0115 

1.1126 
6.6811 

37.3374 

0.6653 
13.0652 
27.9595 

0.4451 
9.4390 

30.3604 

30 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.5905 
4.2475 

21.4717 

0.7049 
6.2291 

37.3366 

0.3972 
13.0445 
27.5347 

0.2607 
9.3695 

30.2858 

50 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.3683 
3.8567 

21.3628 

0.5573 
6.1317 

37.3364 

0.3099 
13.0400 
27.4454 

0.2025 
9.3554 

30.2707 

100 
𝑛 = 1 
𝑛 = 2 
𝑛 = 3 

1.0546 
3.5606 

21.2811 

0.4003 
6.0571 

37.3363 

0.2203 
13.0365 
27.3773 

0.1435 
9.3447 

30.2593 
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