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Abstract

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinear-
ities

utt −M
(
‖∇u‖2)4 u+ |ut|p(x)−2 ut = |u|q(x)−2 u.

We proved the blow up of solutions in finite time by using modified energy functional method.
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1. Introduction

In this article, we investigate the following Kirchhoff-type equation with variable exponent non-
linearities  utt −M

(
‖∇u‖2)4 u+ |ut|p(x)−2 ut = |u|q(x)−2 u, (x, t) ∈ Ω× (0, T ) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded domain with smooth boundary ∂Ω in Rn (n ≥ 1) and M (s) = α + βsγ,
α, β ≥ 0, γ ≥ 1. The variable exponents p (.) and q (.) are given as measurable functions on Ω
satisfying

2 ≤ p− ≤ p (x) ≤ p+ < q− ≤ q (x) ≤ q+ ≤ q∗ (1.2)
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where

p− = ess inf p (x)
x∈Ω

, p+ = ess sup p (x)
x∈Ω

,

q− = ess inf q (x)
x∈Ω

, q+ = ess sup q (x)
x∈Ω

,

and

q∗ =

{
∞, if n = 1, 2,

2n
n−2

, if n ≥ 3.

This type of problems is a generalization of a model introduced by Kirchhoff [5].
The following Kirchhoff type equation

utt −M
(
‖∇u‖2)4 u+ g (ut) = f (u) , (1.3)

have been discussed by many authors. For g (ut) = ut, the global existence and nonexistence results
can be found in [12, 16]; for g (ut) = |ut|p ut, p > 0, the main results of existence and nonexistence
are in [1, 9].

When M (s) ≡ 1, (1.3) becomes the classical wave equation

utt −4u+ g (ut) = f (u) .

In [4, 7, 8, 10, 15], the authors studied existence and blow up of solutions.
Recently, In [11], Messaoudi et al. studied local existence and blow up of the solutions for the

following wave equation with variable exponent nonlinearities

utt −4u+ |ut|p(x)−2 ut = |u|q(x)−2 u.

Motivated by the above studies, in this paper, we consider the blow up of the solution (1.1) under
some conditions.

The outline of this paper is as follows. In section 2, we state some results about the variable
exponent Lebesgue and Sobolev spaces Lp(x) (Ω) and W 1,p(x) (Ω) . In section 3, the blow up results
will be proved.

2. Preliminaries

In this part, we state some results about the variable exponent Lebesgue and Sobolev spaces
Lp(x) (Ω) and W 1,p(x) (Ω) (see [2, 3, 6, 14]). Also, ‖ · ‖ and ‖ · ‖p denote the usual L2(Ω) norm and
Lp(Ω) norm, respectively.

Let p : Ω→ [1,∞] be a measurable function, where Ω is a bounded domain of Rn. We define the
variable exponent Lebesgue space by

Lp(x) (Ω) =
{
u : Ω→ R, u is measurable and ρp(.) (λu) <∞, for some λ > 0

}
where

ρp(.) (u) =

∫
Ω

|u|p(x) dx.

Also endowed with the Luxemburg norm

‖u‖p(x) = inf

λ > 0 :

∫
Ω

∣∣∣u
λ

∣∣∣p(x)

dx ≤ 1

 ,
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Lp(x) (Ω) is a Banach space.
The variable exponent Sobolev space W 1,p(x) (Ω) is defined by

W 1,p(x) (Ω) =
{
u ∈ Lp(x) (Ω) : ∇u exists and |∇u| ∈ Lp(x) (Ω)

}
.

Variable exponent Sobolev space is a Banach space with respect to the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x) .

The space W
1,p(x)
0 (Ω) is defined as the closure of C∞0 (Ω) in W 1,p(x) (Ω) with respect to the norm

‖u‖1,p(x) . For u ∈ W 1,p(x)
0 (Ω) , we can define an equivalent norm

‖u‖1,p(x) = ‖∇u‖p(x) .

Let the variable exponents p (.) and q (.) satisfy the log-Hölder continuity condition:

|p (x)− p (y)| ≤ A

log 1
|x−y|

, for all x, y ∈ Ω with |x− y| < δ, (2.1)

where A > 0 and 0 < δ < 1.

Lemma 2.1. (Poincare inequality) Let Ω be a bounded domain of Rn and p (.) satisfies log-Hölder
condition, then

‖u‖p(x) ≤ c ‖∇u‖p(x) , for all u ∈ W 1,p(x)
0 (Ω) ,

where c = c (p−, p+, |Ω|) > 0.

Lemma 2.2. Let p (.) ∈ C
(
Ω
)

and q : Ω→ [1,∞) be a measurable function and satisfy

essinf
x∈Ω

(p∗ (x)− q (x)) > 0.

Then the Sobolev embedding W
1,p(x)
0 (Ω) ↪→ Lq(x) (Ω) is continuous and compact. Where

p∗ (x) =

{
np−

n−p− , if p− < n

∞, if p− ≥ n.

Next, we state the local existence theorem of problem (1.1), that can be obtained by combining
arguments in [11, 13].

Theorem 2.3. (Local existence). Assume that (1.2) and (2.1) hold, and that (u0, u1) ∈ H1
0 (Ω) ×

L2 (Ω) , then there exists a unique solution u of (1.1) satisfying

u ∈ C
(
[0, T ) ;H1

0 (Ω)
)
, ut ∈ C

(
[0, T ) ;L2 (Ω)

)
∩ Lp(.) (Ω× (0, T )) .
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3. Blow up

In this part, we will proved the blow up of the solution for problem (1.1). Firstly, we give following
lemma:

Lemma 3.1. [11] If q : Ω→ [1,∞) is a measurable function and

2 ≤ q− ≤ q (x) ≤ q+ <
2n

n− 2
; n ≥ 3 (3.1)

holds. Then, we have following inequalities:
i)

ρ
s
q−

q(.) (u) ≤ c
(
‖∇u‖2 + ρq(.) (u)

)
, (3.2)

ii)

‖u‖sq− ≤ c
(
‖∇u‖2 + ‖u‖q

−

q−

)
, (3.3)

iii)

ρ
s
q−

q(.) (u) ≤ c
(
|H (t)|+ ‖ut‖2 + ρq(.) (u)

)
, (3.4)

iv)

‖u‖sq− ≤ c
(
|H (t)|+ ‖ut‖2 + ‖u‖q

−

q−

)
, (3.5)

v)

c ‖u‖q
−

q− ≤ ρq(.) (u) (3.6)

for any u ∈ H1
0 (Ω) and 2 ≤ s ≤ q−. Where c > 1 a positive constant and H (t) = −E (t) .

Now, we state and prove our main result:

Theorem 3.2. Let the assumptions of Theorem 3 be satisfied and assume that

E (0) < 0.

Then the solution (1.1) blows up in finite time.

Proof . Multiplying ut on two sides of the problem (1.1) and integrate over the domain Ω, we have

d

dt

1

2
‖ut‖2 +

1

2
‖∇u‖2 +

1

2 (γ + 1)
‖∇u‖2(γ+1) −

∫
Ω

1

q (x)
|u|q(x) dx

 = −
∫
Ω

1

p (x)
|ut|p(x) dx,

E ′ (t) = −
∫
Ω

|ut|p(x) dx, (3.7)

where

E (t) =
1

2
‖ut‖2 +

1

2
‖∇u‖2 +

1

2 (γ + 1)
‖∇u‖2(γ+1) −

∫
Ω

1

q (x)
|u|q(x) dx (3.8)
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Set
H (t) = −E (t)

then E (0) < 0 and (3.7) gives H (t) ≥ H (0) > 0. Also, by the definition H (t) , we have

H (t) = −1

2
‖ut‖2 − 1

2
‖∇u‖2 − 1

2 (γ + 1)
‖∇u‖2(γ+1) +

∫
Ω

1

q (x)
|u|q(x) dx

≤
∫
Ω

1

q (x)
|u|q(x) dx

≤ 1

q−
ρq(.) (u) . (3.9)

Define

Ψ (t) = H1−σ (t) + ε

∫
Ω

uutdx, (3.10)

where ε small to be chosen later and

0 < σ ≤ min

{
q− − p+

(p+ − 1) q−
,
q− − 2

2q−

}
. (3.11)

By taking a derivative of (3.10) and using Eq. (1.1), we obtain

Ψ′ (t) = (1− σ)H−σ (t)H ′ (t) + ε

∫
Ω

(
u2
t + uutt

)
dx

= (1− σ)H−σ (t)H ′ (t) + ε ‖ut‖2 − ε ‖∇u‖2

−ε ‖∇u‖2(γ+1) + ε

∫
Ω

|u|q(.) dx− ε
∫

Ω

uut |ut|p(.)−2 dx. (3.12)

By using the definition of the H (t) , it follows that

−εq− (1− ξ)H (t) =
εq− (1− ξ)

2
‖ut‖2 +

εq− (1− ξ)
2

‖∇u‖2

+
εq− (1− ξ)
2 (γ + 1)

‖∇u‖2(γ+1) − εq− (1− ξ)
∫
Ω

1

q (x)
|u|q(.) dx, (3.13)

where 0 < ξ < 1.
Add and subtract (3.13) into (3.12), we obtain

Ψ′ (t) ≥ (1− σ)H−σ (t)H ′ (t) + εq− (1− ξ)H (t)

+ε

(
q− (1− ξ)

2
+ 1

)
‖ut‖2 + ε

(
q− (1− ξ)

2
− 1

)
‖∇u‖2

+ε

(
q− (1− ξ)

2
− 1

)
‖∇u‖2(γ+1) + εξ

∫
Ω

|u|q(.) dx− ε
∫

Ω

uut |ut|p(.)−2 dx. (3.14)

Then, for ξ small enough, we get

Ψ′ (t) ≥ εβ
[
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1) + ρq(.) (u)

]
+ (1− σ)H−σ (t)H ′ (t)− ε

∫
Ω

uut |ut|p(.)−2 dx (3.15)
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where

β = min

{
q− (1− ξ) , εξ, q

− (1− ξ)
2

− 1,
q− (1− ξ)

2
+ 1

}
> 0

and

ρq(.) (u) =

∫
Ω

|u|q(.) dx.

In order to estimate the last term in (3.15), we make use of the following Young inequality

XY ≤ δkXk

k
+
δ−lY l

l
,

where X, Y ≥ 0, δ > 0, k, l ∈ R+ such that 1
k

+ 1
l

= 1. Consequently, applying the previous we have∫
Ω

u |ut|p(.)−1 dx ≤
∫
Ω

1

p (x)
δp(x) |u|p(x) dx+

∫
Ω

p (x)− 1

p (x)
δ−

p(x)
p(x)−1 |ut|p(x) dx

≤ 1

p−

∫
Ω

δp(x) |u|p(x) dx+
p+ − 1

p+

∫
Ω

δ−
p(x)
p(x)−1 |ut|p(x) dx (3.16)

where δ is constant depending on the time t and specified later. Inserting estimate (3.16) into (3.15),
we get

Ψ′ (t) ≥ εβ
[
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1) + ρq(.) (u)

]
+ (1− σ)H−σ (t)H ′ (t)− ε 1

p−

∫
Ω

δp(x) |u|p(x) dx

−εp
+ − 1

p+

∫
Ω

δ−
p(x)
p(x)−1 |ut|p(x) dx (3.17)

Therefore, by taking δ so that δ−
p(x)
p(x)−1 = kH−σ (t) , where k > 0 is specified later, we obtain

Ψ′ (t) ≥ εβ
[
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1) + ρq(.) (u)

]
+ (1− σ)H−σ (t)H ′ (t)− ε 1

p−

∫
Ω

k1−p(x)Hσ(p(x)−1) (t) |u|p(x) dx

−εp
+ − 1

p+

∫
Ω

kH−σ (t) |ut|p(x) dx

≥ εβ
[
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1) + ρq(.) (u)

]
+ (1− σ)H−σ (t)H ′ (t)− εk

1−p−

p−
Hσ(p+−1) (t)

∫
Ω

|u|p(x) dx

−ε
(
p+ − 1

p+

)
kH−σ (t)

∫
Ω

|ut|p(x) dx

≥ εβ
[
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1) + ρq(.) (u)

]
+

[
(1− σ)− ε

(
p+ − 1

p+

)
k

]
H−σ (t)H ′ (t)− εk

1−p−

p−
Hσ(p+−1) (t)

∫
Ω

|u|p(x) dx. (3.18)
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By using (3.6) and (3.9), we get

Hσ(p+−1) (t)

∫
Ω

|u|p(x) dx ≤ Hσ(p+−1) (t)

∫
Ω−

|u|p
−
dx+

∫
Ω+

|u|p
+

dx



≤ Hσ(p+−1) (t) c


∫

Ω−

|u|q
−
dx


p−

q−

+

∫
Ω+

|u|q
−
dx


p+

q−


= Hσ(p+−1) (t) c

[
‖u‖p

−

q− + ‖u‖p
+

q−

]
≤ c

(
1

q−
ρq(.) (u)

)σ(p+−1) [(
ρq(.) (u)

) p−
q− +

(
ρq(.) (u)

) p+
q−

]
= c1

[(
ρq(.) (u)

) p−
q− +σ(p+−1)

+
(
ρq(.) (u)

) p+
q− +σ(p+−1)

]
(3.19)

where Ω− = {x ∈ Ω : |u| < 1} and Ω+ = {x ∈ Ω : |u| ≥ 1}.
We then use Lemma 4 and (3.11), for

s = p− + σq−
(
p+ − 1

)
≤ q−

and
s = p+ + σq−

(
p+ − 1

)
≤ q−,

to deduce, from (3.19),

Hσ(p+−1) (t)

∫
Ω

|u|p(x) dx ≤ c1

[
‖∇u‖2 + ρq(.) (u)

]
. (3.20)

Thus, inserting estimate (3.20) into (3.18), we have

Ψ′ (t) ≥ ε

(
β − k1−p−

p−
c1

)[
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1) + ρq(.) (u)

]
+

[
(1− σ)− ε

(
p+ − 1

p+

)
k

]
H−σ (t)H ′ (t) . (3.21)

At this moment, choosing k large enough so that γ = β− k1−p
−

p−
c1 > 0, and picking ε small enough

such that (1− σ)− ε
(
p+−1
p+

)
k ≥ 0 and

Ψ (t) ≥ Ψ (0) = H1−σ (0) + ε

∫
Ω

u0u1dx > 0, ∀t ≥ 0. (3.22)

Consequently, (3.21) yields

Ψ′ (t) ≥ εγ
[
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1) + ρq(.) (u)

]
≥ εγ

[
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1) + ‖u‖q

−

q−

]
, (3.23)
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due to (3.6). Therefore we get

Ψ (t) ≥ Ψ (0) > 0, for all t ≥ 0.

On the other hand, applying Hölder inequality, we obtain∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ ‖u‖
1

1−σ ‖ut‖
1

1−σ

≤ C

(
‖u‖

1
1−σ
q− ‖ut‖

1
1−σ

)
.

Young inequality gives ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ C
(
‖u‖

µ
1−σ
q− + ‖ut‖

θ
1−σ

)
, (3.24)

for 1
µ

+ 1
θ

= 1. We take θ = 2 (1− σ) , to obtain µ
1−σ = 2

1−2σ
≤ q− by (3.11). Therefore, (3.24)

becomes ∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ C
(
‖ut‖2 + ‖u‖sq−

)
,

where 2
1−2σ

≤ q−. By using (3.5), we get∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ

≤ C
(
‖ut‖2 + ‖u‖q

−

q− +H (t)
)
.

Thus,

Ψ
1

1−σ (t) =

[
H1−σ (t) + ε

∫
Ω

uutdx

] 1
1−σ

≤ 2
σ

1−σ

(
H (t) + ε

1
1−σ

∣∣∣∣∫
Ω

uutdx

∣∣∣∣ 1
1−σ
)

≤ C
(
‖ut‖2 + ‖u‖q

−

q− +H (t)
)

≤ C
(
H (t) + ‖ut‖2 + ‖∇u‖2 + ‖∇u‖2(γ+1) + ‖u‖q

−

q−

)
(3.25)

where
(a+ b)p ≤ 2p−1 (ap + bp)

is used. By combining of (3.23) and (3.25), we arrive

Ψ′ (t) ≥ ξΨ
1

1−σ (t) , (3.26)

where ξ is a positive constant.
A simple integration of (3.26) over (0, t) yields Ψ

σ
1−σ (t) ≥ 1

Ψ
− σ

1−σ (0)− ξσt
1−σ

, which implies that the

solution blows up in a finite time T ∗, with

T ∗ ≤ 1− σ
ξσΨ

σ
1−σ (0)

.

This completes the proof of the theorem. �
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