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fluid due to an impulsively stretching surface under the influence of a transverse magnetic 
field, which is an important physical phenomena in engineering applications. The study 
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highly nonlinear partial differential equations. The method of solution Spectral quasi-
linearization methods(SQLM) seeks to linearised the original system of PDEs using the 
Newton-Raphson based quasilinearization method (QLM). The numerical results for the 
surface shear stress are compared with those of the analytical approach results, and they are 
found to be in good agreement. The flow controlling parameters are found to have a profound 
effect on the resulting flow profiles. It is observed that there is a smooth transition from the 
small time solution to the large time solution. The magnetic field significantly affects the flow 
field and skin friction coefficient. Indeed, skin friction coefficient is found to decrease rapidly, 
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1. Introduction 

The problem of unsteady convective mass and heat 

transfer has long been a major subject in the heat 

transfer theory because of its great importance from 

both a theoretical and practical viewpoint. In fact there 

is no actual flow situation, natural or artificial, which 

does not involve some unsteadiness and examples of 

unsteady convective flows are very numerous (see 

[1]). These flows are frequently encountered in 

technological and environmental situations, such as, 

energy conservation processes, buildings and 

structures, the processing of materials, geophysical 

and biological flows, and the spread of pollutants and 

fires as well as many others. In the broad class of fluid 
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and heat transfer problems there are two main 

categories of truly unsteady problems, namely linear 

and nonlinear problems. However, most viscous flow 

problems fall into the second class, which are, of 

course, more difficult to analyze and model. On the 

other hand, since most of the fundamental concepts 

which can be described by linear theory are now fairly 

well understood, the greatest challenges today are in 

nonlinear situations. Hence, our attention in this paper 

is focused on unsteady nonlinear MHD convective 

boundary layer flow problem of Casson fluid over an 

impulsively stretching surface. The flow and heat 

transfer problem in the boundary-layer induced by a 

continuously moving or stretching surface is important 

in many manufacturing processes. In industry for 
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instance, polymer sheets and filaments are 

manufactured by continuous extrusion of the polymer 

from a die to a wind up roller which is located at finite 

distant way Chiam [2]. During many mechanical 

forming processes, such as extrusion, melt-spinning, 

etc., the extruded material issues through a slot or die. 

The ambient fluid condition is stagnant but a fluid flow 

is induced close to the material being extruded, due to 

the moving surface. In regions away from the slot or die 

the fluid flow may be considered to be of a boundary-

layer type, although this is not true in the vicinity of the 

slot or die. Similar situations prevail during the 

manufacture of plastic and rubber sheets where it is 

often necessary to blow a gaseous medium through the 

material which is not, as yet, solid, and where the 

stretching force may be varying with time (see [3]).  

Another typical example of industrial application 

that belongs to the class of boundary-layer flow 

problems due to moving surfaces is the cooling of a 

large metallic plate in a bath, which may be an 

electrolyte. In this case the fluid flow is induced due to 

the shrinking of the plate [4]. Glass blowing, 

continuous casting and the spinning of fibres also 

involve the flow due to a stretching surface. The first 

study on the boundary-layer adjacent to a continuous 

moving surface was conducted by Sakiadis [5] and 

since then it has been much generalized and refined. 

The fluid flow problem due to a continuously moving 

surface in an ambient fluid differs from that of the fluid 

flow past a fixed surface. Unlike the flow past a fixed 

surface, the continuous moving surface sucks the 

ambient fluid and pumps it again in the downstream 

direction. However, in all the earlier studies on 

boundary-layer flows due to a moving surface , the 

effects of the transverse magnetic field was neglected. 

Liao [6] investigated an analytical solution of unsteady 

boundary-layer flows caused by an impulsively 

stretching plate. Roslindar et al. [7] studies unsteady 

boundary layer flow due to am impulsively stretching 

surface.  In their paper, the stretching velocity is 

assumed  to vary linearly with the distance along the 

sheet and solved numerically using keller-box method. 

They observed a smooth transition from the small time 

solution to the large- time solution. Takhar et al. [8] 

also studied unsteady three-dimensional MHD-

boundary layer flow due to the impulsive motion of a 

stretching surface. Hayat et al. [9] investigated the 

influence of soret and dufour effect on 

magnetohydrodynamics MHD flow of casson fluid. In 

the above mentioned literatures, the fluid viscosity and 

thermal conductivity were assumed to be constant 

value within the boundary layer. Prasad and Vajravelu 

[10] investigated the effect of variable thermal 

conductivity in a non-isothermal sheet stretching 

through power law fluids. Abel et al. [11] examined the 

combined effects of thermal buoyancy and variable 

thermal conductivity on a magnetohydrodynamic flow 

and the associated heat transfer in a power-law fluid 

past a vertical stretching sheet in the presence of a 

nonuniform heat source and observed that variable 

thermal conductivity parameter increases the wall 

shear stress in the boundary layer region. 

Bhattacharyya and Pop [12] reported the influence of 

external magnetic field on the Casson flow over an 

exponentially shrinking sheet. Recently, Bhattacharyya 

studied boundary layer stagnation point of Casson 

fluid and heat transfer towards a shrinking/stretching 

sheet. It is established that the thermo-physical 

properties of fluid play a significant role in the 

engineering applications as seen in aerodynamics, 

geothermal systems, crude oil extraction,ground water 

pollution, thermal insulation, heat exchanger, storage 

of nuclear waste etc. 

It is well known that most fluids which are 

encountered in chemical and allied processing 

applications do not adhere to the classical Newtonian 

viscosity postulate and are accordingly known as non-

Newtonian fluids Astarita and Marrucci [14]. One 

particular class of materials which are of considerable 

practical importance is that in which the viscosity 

depends on the shear stress or on the flow rate. Most 

slurries, suspensions and dispersions, polymer 

solutions, melts and solutions of naturally occurring 

high-molecular-weight, synthetic polymers, 

pharmaceutical formulations, cosmetics and toiletries, 

paints, biological fluids, synthetic lubricants and 

foodstuffs, exhibit complex rheological behaviour 

which is not experienced when handling ordinary low-

molecular-weight Newtonian fluids such as air, water, 

silicon oils, etc. Due to the importance of the 

applications of non-Newtonian fluids for the design of 

equipment and in industrial processing, considerable 

efforts have been directed towards the analysis and 

understanding of such fluids. Further, a fairly large 

body of fundamental research on non-Newtonian fluid 

flow can also be found in a number of excellent review 

articles [15],[16]. A classical example of non-

newtonian fluid is Casson fluid. Casson fluid is one of 

the types of such non-Newtonian fluids, which behaves 

like an elastic solid such that a yield shear stress exists 

in the constitutive equation. Some materials e.g. muds, 

condensed milk,emulsions,paints, printing ink,sugar 

solutions, exhibit almost all the properties of non- 

Newtonian fluid. This rheological model was 

introduced originally by Casson [17] in his research on 

a flow equation for pigment oil-suspensions of printing 

ink. Casson model constitutes a plastic fluid model 

which exhibits shear thinning characteristics, yield 

stress, and high shear viscosity. According to a 

research reported by Rao et al. [18], it is stated that 

Casson fluid model is reduced to a Newtonian fluid at  

a very high wall shear stress, i.e., when the wall stress 

is much greater than yield stress. This fluid model also 

approximates reasonably well the rheological behavior 

of other liquids including physiological suspensions, 

foams, cosmetics, syrups, etc. Although different 
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models are proposed to explain the behavior of non-

Newtonian fluids, the most important non-Newtonian 

fluid possessing a yield value is the Casson fluid. Bird 

et al. [19] investigated the rheology and flow of visco-

plastic materials and reported that the Casson model 

constitutes a plastic fluid model which exhibits shear 

thinning characteristics, yield stress, and high shear 

viscosity. The fundamental analysis of the flow field of 

non-Newtonian fluids in a boundary layer adjacent to a 

stretching sheet or an extended surface is very 

important and is an essential part in the study of fluid 

dynamics and heat transfer in Mukhopadhyay [20]. 

The unsteady boundary layer flow and heat transfer of 

a Casson fluid over a moving flat plate with a parallel 

free stream were studied by Mustafa et al. [21] and 

they solved the problem analytically using the 

Homotopy analysis method (HAM). 

The effects of transverse magnetic field on a 

boundary layer control and on the performance of 

many systems using electrically conducting fluid such 

as MHD power generators, cooling of nuclear reactors, 

plasma studies, etc. has been widely investigated and 

reported in literatures. Magneto-hydrodynamics 

(MHD) as a branch of fluid mechanics deals with the 

study of electrically conducting fluids and 

electromagnetic forces Srinivasa and Eswara [22]. The 

idea of MHD is that magnetic fields induce currents in 

a moving conductive fluid, which create forces on the 

fluids, and also change the magnetic field itself. MHD 

problems arise in a wide variety of situations ranging 

from the explanation of the origin of Earth’s magnetic 

field and the prediction of space weather to the 

damping of turbulent fluctuations in semiconductor 

melts during crystal growth and, even in the 

measurement of the flow rates of beverages in food 

industry. An interesting application of MHD to 

metallurgy lies in the purification of molten metals 

from non-metallic inclusions by the application of a 

transverse magnetic field. In recent years, MHD flow 

problems have become more important industrially. 

Indeed, MHD laminar boundary layer behavior over a 

stretching surface is a significant type of flow having 

considerable practical applications in chemical 

engineering, electrochemistry and polymer 

processing. The laminar boundary layer on a moving 

continuous flat surface in the presence of suction and 

magnetic field was studied by Shrivastava [23]. They 

observed the effect of magnetic field on boundary layer 

thickness and skin friction at the surface. Boundary 

layer flow along a flat plate is considered when a 

magnetic field acts perpendicular to the plate. 

Recently, Noghrehabadi et al. [24] considered the 

effect of magnetic field on the boundary layer flow, 

heat and mass transfer of nanofluids over a stretching 

cylinder. Ishak et al. [25] studied the effect of a uniform 

transverse magnetic field on the stagnation point flow 

over a stretching and vertical sheet. While, Isa et al. 

[26] studied the effect of magnetic field on mixed 

convection boundary layer flow over an exponentially 

shrinking vertical sheet with suction. 

The aim of the present paper is to investigate the 

unsteady MHD boundary layer flow of a Casson fluid 

development caused by an impulsively stretching 

surface using numerical approach called spectral 

quasi-linearization method. Finding an optimal 

numerical solution to the problem of unsteady 

boundary layer flow due to stretching sheeting that 

valid for all time, has been a subject of investigations 

over time by many researchers. In recent years, there 

has been an increasing amount of literatures that have 

adopted Liao’s analytic approach in solving unsteady 

boundary layer flows. However, there are limits to how 

far analytic approaches can be utilised in nonlinear 

systems of PDEs involving many equations. Nonlinear 

systems involving many coupled equations are very 

difficult to solve analytically. In this work, the spectral 

quasi-linearization method (SQLM) is apply to solve 

nonlinear PDEs describing unsteady boundary layer 

flow of Casson fluid due to an impulsively stretching 

surface. In the SQLM, the governing nonlinear 

equations are linearized using the Newton-Raphson 

based quasi-linearization method (QLM), developed by 

Bellman and Kalaba [27], and are then integrated using 

Chebyshev spectral collocation method. Spectral 

method based quasi-linearisation schemes have also 

been successfully applied to a range of fluid mechanics 

based ODE model problems (see [28]-[30]). 

In this review, investigation is focus on the unsteady 

boundary layer flow due to an impulsively stretching 

surface that was previously discussed by Liao [6] using 

the homotopy analysis method and recently reported 

in Ishak [3] and Srinivasa [22] using the Keller-box 

method. Our purpose is to investigate effects of 

transverse magnetic field, Casson fluid parameter and 

the applicability of the new SQLM approach to systems 

of nonlinear PDE-based unsteady boundary layer flows 

of varying levels of complexity. Numerical simulations 

are conducted on the sample problems using SQLM. 

The method is compared in terms of accuracy, with the 

reported results in literatures. 

The rest of the paper is organized as follows: Section 

2 discusses the mathematical formulation of an 

unsteady MHD boundary-layer flow of Casson fluid 

caused by an impulsively stretching plate. Section 3 

presents the imple- mentation of SQLM on an unsteady 

MHD boundary layer flow of Casson fluid. Section 4 

contains the results and discussion, and the 

conclusions are given in Section 5. 

2. Governing Equations 

Following Nadeem et al. [4], Liao [6] and Srinivasa 

and Eswara [17], an unsteady two-dimensional flow of 

an incompressible Casson fluid over a stretching 

surface is examined. The fluid is an electrically 

conducting fluid in the presence of a fixed applied 
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a 

magnetic field Bo. A magnetic field Bo of uniform 

strength is applied transversely to  the direction of the 

flow. Since the fluid pressure is constant throughout 

the boundary, it is assumed that induced magnetic field 

is small in comparison to the applied magnetic field; 

hence it is neglected. It is also assume that the 

Rheological equation of Casson fluid, following 

Mustafa et al. [21], is given as : 

𝜏𝑖𝑗 = [µ𝑐 + (
𝑃𝑦

√2𝜋
)

1
𝑛⁄

]

𝑛

2𝑒𝑖𝑗 (1) 

where µc is plastic dynamic viscosity of the non-

Newtonian fluid, Py is the yield stress of fluid, π is the 

product of the component of deformation rate with 

itself, namely, π = eijeij,  eij is the (i, j) th component of 

the deformation rate. Where n 1 is an arbitrary 

constant. However, in many application this value is 

n≫1. With this in mind and aforementioned 

assumptions, The boundary-layer equations based on 

conservation of mass and momentum, governing the 

unsteady two-dimensional flow on the impulsively 

stretching surface is: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (2) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜗 (1 +

1

𝛽
)
𝜕2𝑢

𝜕𝑦2 − 𝜎
𝛽0

2

𝜌
𝑢. (3) 

here x and y are the longitudinal and the normal 

directions respectively. u and v are the velocity 

components in the x and y-directions respectively, Bo is 

the magnetic field applied in the y- direction, ρ is the 

fluid density, ϑ is the kinematic viscosity, σ is the 

electrical conductivity and β is the Casson fluid 

parameter. The corresponding boundary conditions 

are: 

𝑡 < 0:       𝑢(𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) = 0, 𝑦 = 0 

𝑡 ≥ 0:       𝑢(𝑥, 0, 𝑡) = 𝑎𝑥, 
                  𝑣(𝑥, 0, 𝑡) = 0,                 𝑢(𝑥,∞, 𝑡) = 0 

(4) 

where constant a is positive number. Now the time 

scale ξ is choosen such as given above so that the region 

of the time integration can be finite. 

One such transformations is given by Williams and 

Rhyne [33]. The transformations are expressed as; 

 𝜉 = 1 − 𝑒−𝜏 ,     𝜏 = 𝑏𝑡, 

where b is a positive constant and t is the time variable.  

The Williams and Rhyne [33] transformation are 

used to convert from the infinite (original) time scale 

0 ≤ τ ≤ 1 to the finite scale 0 ≤ ξ ≤ 1 so that the interval 

of integration is collapsed from an infinite domain to a 

finite domain. 

The similarity variables given in [22] are utilized 

and are defined as; 

𝑢 =
𝜕𝜓

𝜕𝑦
,           𝑣 = −

𝜕𝜓

𝜕𝑥
,  

ψ = √𝑏𝜗𝜉𝑥𝑓(𝜉, 𝜂),          𝜂 = √
𝑏

𝜗𝜉
𝑦. = 

(5) 

Equation (2) is satisfied identically and equation (3) 

becomes: 

(1 +
1

𝛽
)𝑓′′′ +

𝜂

2
(1 − 𝜉)𝑓′′ + 𝜉[𝑓𝑓′′ − 𝑓′2] 

                        −𝜉𝑀𝑓′ = 𝜉(1 − 𝜉)
𝜕𝑓′

𝜕𝜉
. 

(6) 

Subject to the boundary condition: 

𝑓(0, 𝜉) = 0,     𝑓′(0, 𝜉) = 1,     𝑓′(∞, 𝜉) = 0 (7) 

In the above equations, the prime denotes the 

derivative with respect to 𝜂, (𝑐 =
𝑏

𝑎
) which indicate 

that the stretching sheet parameter is a positive 
constant. The local Hartman number M (Magnetic 
parameter) and the non-newtonian Casson fluid 
parameter β are defined as; 

𝑀 =
𝜎𝐵0

2

𝑏𝜌
                     𝐵 =

𝜇𝑐√2𝜋

𝑃𝑦
. 

In the analysis of boundary layer flow problems, a 
quantity of physical interest is the skin friction which 
is given 

𝐶𝑓 =
𝜏𝜔

𝜇𝑐
𝑏

 

where 

𝜏𝜔 = (𝜇𝑐 +
𝑃𝑦

√2𝜋
) 

Now adopting the expressions in equation 5, the 

dimensionless form of the skin-friction coefficient is 

𝐶𝑓√𝜉 = (1 +
1

𝛽
)√𝑅𝑒𝑥𝑓′′(0, 𝜉) 

where Rex is the local reynold number defined as 
𝑏𝑥2

𝜗
 . 

The unsteady case can be divided into two cases: 

1. Initial unsteady state flow (t = 0). When τ = 0 
corresponding to ξ = 0 and 𝛽 = ∞, equation 
(6) becomes Rayleigh ordinary differential 
equation viz., 

𝑓′′′ +
𝜂

2
𝑓′′ = 0 (8) 

Subject to the boundary condition: 

𝑓(0,0) = 0,   𝑓′(0,0) = 1,   𝑓′(∞, 0) = 0 (9) 

Equations (8) together with the boundary 
conditions (9) admit the closed form analytical 
solution for the initial unsteady state when 
ξ = 0 given by Srinivasa [22] as: 

𝑓(𝜂, 0) = 𝜂𝑒𝑟𝑓𝑐 (
𝜂

2
) 

               +(
2

√𝜋
) [1 − exp (

−𝜂2

4
)] 

(10) 
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with 

𝑒𝑟𝑓𝑐(𝜂) = (
2

√𝜋
)∫ 𝑒−𝑡2

𝜂

0

𝑑𝑡 (11) 

defined as the complementary error function 

2. Final steady state flow (ξ = 1) When (ξ = 1), 
corresponding to 𝜏 = ∞ and 𝛽 = ∞, 
equation(6) becomes Crane type ordinary 
differential equation viz., 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 − 𝑀𝑓′ = 0 (12) 

Subject to the boundary condition: 

𝑓(0,1) = 0,   𝑓′(0,1) = 1,   𝑓′(∞, 1) = 0 (13) 

The exact solution of (12) is given by  

𝑓(𝜂, 1) = 𝛾−1[1 − exp (−𝛾𝜂)] 

where 

𝛾 = (1 + 𝑀)
1

2⁄  

3. Method of solution 

The nonlinear partial differential equation (6) 

subject to boundary conditions (7) is solved 

numerically using spectral quasi-linearization method 

(SQLM). In applying spectral quasi-linearization 

method to the above governing equation, equation (6) 

is separate into linear and non -linear part and called 

them linear operator F and non-linear operator H 

respectively. This is expressed as : 

𝐹(𝑓, 𝑓′, 𝑓′′ , 𝑓′′′) = (1 +
1

𝛽
) 𝑓′′′ +

𝜂

2
(1 − 𝜉)𝑓′′ 

                                 −𝜉𝑀𝑓′ − 𝜉(1 − 𝜉)
𝜕𝑓′

𝜕𝜉
, 

𝐻(𝑓, 𝑓′, 𝑓′′ , 𝑓′′′) = 𝜉[𝑓𝑓′′ − 𝑓′2].     

(14) 

Then by linearized the non-linear operator H by 

using the equation 

𝐻 ≈ 𝐻(𝑓𝑟 , 𝑓
′
𝑟
, 𝑓′′

𝑟
, 𝑓′′′

𝑟
) 

            + ∑ 𝜙𝑘,𝑟𝑓𝑟+1
(𝑘)

  −  ∑ 𝜙𝑘,𝑟𝑓𝑟
(𝑘)

3

𝑘=0

3

𝑘=0

. 
(15) 

The coefficients ϕk,r in the above equation are given 

as 

𝜙0,𝑟 =
𝜕𝐻

𝜕𝑓
[𝑓𝑟 , 𝑓

′
𝑟
, 𝑓′′

𝑟
, 𝑓′′′

𝑟
] = 𝜉𝑓′′

𝑟
, 

 𝜙1,𝑟 =
𝜕𝐻

𝜕𝑓′
[𝑓𝑟 , 𝑓

′
𝑟
, 𝑓′′

𝑟
, 𝑓′′′

𝑟
] = −2𝜉𝑓′

𝑟
, 

(16) 

𝜙2,𝑟 =
𝜕𝐻

𝜕𝑓′′
[𝑓𝑟 , 𝑓

′
𝑟
, 𝑓′′

𝑟
, 𝑓′′′

𝑟
] = 𝜉𝑓𝑟 , 

𝜙3,𝑟 =
𝜕𝐻

𝜕𝑓′′′
[𝑓𝑟 , 𝑓

′
𝑟
, 𝑓′′

𝑟
, 𝑓′′′

𝑟
] = 0. 

(17) 

And 

𝑅𝑟 = ∑ 𝜙𝑘,𝑟𝑓𝑟
(𝑘)

  −  ∑ 𝜙𝑘,𝑟𝑓𝑟
(𝑘)

3

𝑘=0

3

𝑘=0

 

      −𝐻(𝑓𝑟 , 𝑓𝑟
′, 𝑓𝑟

′′ , 𝑓𝑟
′′′) = 𝜉𝑓𝑟𝑓𝑟

′′ − 𝜉(𝑓′
𝑟
)2 

(18) 

Such that the linearized form of the governing 

equation (6) is 

𝐹[𝑓𝑟+1, 𝑓𝑟+1
′ , 𝑓𝑟+1

′′ , 𝑓𝑟+1
′′′ ] + ∑ 𝜙𝑘,𝑟

𝑛

𝑘=0

𝑓𝑟+1
(𝑘)

 
(19) 

−𝑓𝑟+1 = 𝑅𝑟[𝑓𝑟 , 𝑓𝑟
′, 𝑓𝑟

′′, 𝑓𝑟
′′′] 

simplified further as 

𝑎0,𝑟(𝜂, 𝜉)𝑓𝑟+1
′′′ + 𝑎1,𝑟(𝜂, 𝜉)𝑓𝑟+1

′′ + 𝑎2,𝑟(𝜂, 𝜉)𝑓𝑟+1
′  

(20) 
+𝑎3,𝑟(𝜂, 𝜉)𝑓𝑟+1 − 𝜉(1 − 𝜉)

𝜕𝑓𝑟+1
′

𝜕𝜉
= 𝑎4,𝑟(𝜂, 𝜉). 

Subject to 

𝑓𝑟+1(0, 𝜉) = 𝑓𝑟+1
′ (∞, 𝜉) = 0,   𝑓𝑟+1

′ (0, 𝜉) = 1 (21) 

where 

𝑎0,𝑟(𝜂 , 𝜉) = (1 +
1

𝛽
),      𝑎1,𝑟(𝜂 , 𝜉) =

𝜂

2
(1 − 𝜉) + 𝜉𝑓𝑟 , 

𝑎2,𝑟(𝜂 , 𝜉) = −2𝜉𝑓𝑟
′ − 𝜉𝑀,         𝑎3,𝑟(𝜂 , 𝜉) =  𝜉 𝑓𝑟

′′, 

𝑎4,𝑟(𝜂 , 𝜉) = 𝜉𝑓𝑟𝑓𝑟
′′ − 𝜉(𝑓𝑟

′)2. 

The initial approximation for solving (20)-(21) is 

obtained as the solutions at ξ = 0. Hence f0(η, ξ) as 

𝑓0(𝜂, 0) = 𝜂𝑒𝑟𝑓𝑐 (
𝜂

2
) + (

2

√𝜋
) [1 − exp (−

𝜂2

4
)] (22) 

The solution for the linearized PDE (20) is obtained 

by approximating the exact solution of f (η, ξ) by the 

initial approximations given in (22) and a Lagrange 

form of polynomial F (η,) which interpolates f (η, ξ) at 

the selected points (called collocation points): 

0 = 𝜉0 < 𝜉1 < 𝜉2 < ⋯ < 𝜉𝑁𝜉
= 1 

Therefore the approximation for f (η, ξ) has the form 

𝑓(𝜂, 𝜉) ≈ ∑𝐹(

𝑁𝜉

𝑙=0

𝜂, 𝜉𝑗)𝐿𝑗(𝜉) = ∑𝐹𝑗(

𝑁𝜉

𝑙=0

𝜂)𝐿𝑗(𝜉), (23) 

Which interpolates f(η,ξ) at the collocation points 

defined above. It is remark that, for ease of notation, 

the subscripts r+1 is dropped. The function Lj(ξ) is the 

well-known characteristic Lagrange cardinal 

polynomials: 

𝐿𝑗(𝜉) = ∏
𝜉 − 𝜉𝑘

𝜉𝑗 − 𝜉𝑘

𝑀

𝑗=0
𝑗≠𝑘

,   𝐿𝑗(𝜉𝑘) = 𝛿𝑗𝑘 = {
0
1
  
𝑖𝑓 𝑗 ≠ 𝑘
𝑖𝑓 𝑗 = 𝑘

   (24) 

The equations for the solution of Fj(η) are obtained 

by substituting (23) in (20) and compelling the 

equation to be satisfied exactly at the points ξi, 

i=0,1,2,...,Nξ. This process is called collocation. To 

enable the derivatives of the Lagrange polynomial with 

respect to ξ to be computable analytically, it is 

convenient to transform the interval ξϵ[0, 1] to 

ζϵ[−1, 1] then choose Chebyshev-Gauss-Lobatto points 
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𝜁𝑖 = cos(
𝑖𝜋

𝑁𝜉
), 

as the collocation points. After using linear 

transformation to transform ξ to the new variable ζ,  

the derivative of f′ with respect to ξ at the collocation 

points ζj is computed as 

𝜕𝑓′

𝜕𝜉
|
(𝜉 = 𝜉𝑖)

= 2∑𝐹𝑗
′

𝑁𝜉

𝑗=0

(𝜂)
𝑑𝐿𝑗

𝑑𝜁
(𝜁𝑖) = 2∑𝐹𝑗

′

𝑁𝜉

𝑗=0

(𝜂)𝑑𝑖,𝑗 , 

𝑖 = 0,1,2,3,⋯ ,𝑁𝜉   (25) 

where 𝑑𝑖,𝑗 =
𝑑𝐿𝑗

𝑑𝜉
(𝜉𝑖), 𝑖 = 0,1,2,3,⋯ ,𝑁𝜉 are entries of 

the standard Chebyshev differentiation matrix. 
Applying the collocation at ξi in (20) gives 

𝑎0,𝑟
(𝑖)

𝑓𝑟+1
′′′ (𝜂) + 𝑎1,𝑟

(𝑖)
𝑓𝑟+1

′′ (𝜂) + 𝑎2,𝑟
(𝑖)

𝑓𝑟+1
′ (𝜂) + 𝑎3,𝑟

(𝑖)
𝑓𝑟+1(𝜂) 

−2𝜉𝑖(1 − 𝜉𝑖)∑𝐹𝑗
′

𝑁𝜉

𝑗=0

(𝜂)𝑑𝑖,𝑗 = 𝑎4,𝑟
(𝑖)

. (26) 

where 𝑎𝑘,𝑟
(𝑖)

= 𝑎𝑘,𝑟(𝜂 , 𝜉), 𝑘 = 0,1,2,3,4. Since the 

solution at ξ=0 and ξ=ξ𝑁𝜉  is known, Then equation (29) 

is only evaluate for i=0,1,2,...,Nξ −1. The resulting 

systems becomes 

𝑎0,𝑟
(𝑖)

𝑓𝑟+1
′′′ (𝜂) + 𝑎1,𝑟

(𝑖)
𝑓𝑟+1

′′ (𝜂) + 𝑎2,𝑟
(𝑖)

𝑓𝑟+1
′ (𝜂) + 𝑎3,𝑟

(𝑖)
𝑓𝑟+1(𝜂) 

−2𝜉𝑖(1 − 𝜉𝑖)∑𝐹𝑗
′

𝑁𝜉

𝑗=0

(𝜂)𝑑𝑖,𝑗  (27) 

= 𝑎4,𝑟
(𝑖)

+ 2𝜉𝑖(1 − 𝜉𝑖)𝑑𝑖,𝑁𝜉
𝐹𝑟+1,𝑁𝜉

′ (𝜂).  

It is worth note that for each ξi, equation (27) forms 

a linear ordinary equation with variable coefficients. 

To solve equation (27) Chebyshev spectral collocation 

is apply independently in the η direction by choosing 

Nη+1 Chebyshev- Gauss-Lobatto points 

0=η0<η1<η2<η0<...<ηNη=ηe, where ηe is a finite value 

that is chosen to be suffiently large to approximate the 

conditions at ∞. Again, before implementing the 

collocation, the interval ηϵ[0,ηe] is transformed into 

ιϵ[−1,1] using a linear transformation. Thus, the 

collocation points are chosen as 

𝜄𝑗 = cos(
𝑗𝜋

𝑁𝜂
), 

The derivatives with respect to η are defined is 

terms of the Chebyshev differentiation matrix as 

𝑑𝑝𝐹𝑟+1,𝑖

𝑑𝜂𝑝
|
(𝜂 = 𝜂𝑒)

= (
2

𝜂𝑒
)
𝑝

∑ 𝐷𝑗,𝑘
𝑝

𝑁𝜂

𝑘=0

𝐹𝑟+1,𝑖(𝜄𝑘) 
(28) 

= 𝐷𝑝𝐹𝑟+1,𝑖    

where p is the order of the derivative, 

𝐷 = (
2

𝜂𝑒
) [𝐷𝑗,𝑘](𝑗, 𝑘 = 0,1,2,⋯ ,𝑁𝜂) with [Dj,k] being an 

(Nη+1)×((Nη+1)).  

Chebyshev derivative matrix, and the vector Fr+1,i is 
defined as Fr+1,i=[Fr+1,i(ι0), Fr+1,i(ι1), Fr+1,i(ι2,..., Fr+1,i(ιN ))]T 

By substituting equation (28) into (27), yields: 

𝐴(𝑖)𝐹𝑟+1,𝑖 − 2𝜉𝑖(1 − 𝜉𝑖) ∑ 𝐷

𝑁𝜉−1

𝑗=0

𝐹𝑟+1,𝑗 = 𝑅(𝑖). (29) 

where 

𝐴(𝑖) = 𝑎0,𝑟
(𝑖)

𝐷3 + 𝑎1,𝑟
(𝑖)

𝐷2+𝑎2,𝑟
(𝑖)

𝐷 + 𝑎3,𝑟
(𝑖)

, 

𝑅(𝑖) = 𝑎3,𝑟
(𝑖)

+ 2𝜉𝑖(1 − 𝜉𝑖) ∑ 𝑑𝑖,𝑁𝜉
𝐷

𝑁𝜉−1

𝑗=0

𝐹𝑟+1,𝑁𝜉
. 

where 𝑎𝑘,𝑟
(𝑖) (𝑘 = 0,1,2,3) is a diagonal matrix with the 

vector [𝑎𝑘,𝑟
(𝑖) (𝜄0), 𝑎𝑘,𝑟

(𝑖) (𝜄1),… , 𝑎𝑘,𝑟
(𝑖)

(𝜄𝑁𝑥
)]

𝑇
 placed on the 

main diagonal. After substituting the boundary 
conditions, for each i=0,1,...,Nξ-1, equation (29) can be 
written in matrix form as 

[
 
 
 
 

𝐴0,0

𝐴1,0

⋮
𝐴𝑁𝜉−1,0

𝐴0,1

𝐴1,1

⋮
𝐴𝑁𝜉−1,1

…
…
⋱
…

𝐴0,𝑁𝜉−1

𝐴1,𝑁𝜉−1

⋮
𝐴𝑁𝜉−1,𝑁𝜉−1]

 
 
 
 

[
 
 
 

𝐹𝑟+1,0

𝐹𝑟+1,1

⋮
𝐹𝑟+1,𝑁𝜉−1]

 
 
 

=

[
 
 
 
 

𝑅1
0

𝑅1
1

⋮

𝑅1

𝑁𝜉−1
]
 
 
 
 

 (30) 

where 

𝐴𝑖,𝑖 = 𝐴(𝑖) − 2𝜉𝑖(1 − 𝜉𝑖)𝑑𝑖,𝑖𝐷,         𝑖 = 0,1,2, , ⋯ , 𝑁𝜉 − 1 

𝐴𝑖,𝑖 = −2𝜉𝑖(1 − 𝜉𝑖)𝑑𝑖,𝑗𝐷,   𝑤ℎ𝑒𝑟𝑒  𝑖 ≠ 𝑗 

Hence, starting from the initial approximations 

f0(η,ξ); given by equations (10), equations (29) can be 

solved iteratively to give approximate solutions for 

fr+1(η, ξ) r=0, 1, 2,... until a solution that converges to a 

given accuracy is obtained. 

Table 1. Computed values of wall shear stress f′′(ξ, 0) using QSLM as compared with other results 
in literatures for different values of ξ, when β = ∞ and M = 0.0 

ξ Ref. [6] Ref. [31] Ref. [32] Ref. [22] Present result 

0.1 -0.6106105684 -0.6150155043 -0.6106968740 -0.6106120 -0.6104674607 

0.3 -0.7015602589 -0.7116696045 -0.7014912575 -0.7115610 -0.7012666313 

0.5 -0.7904118776 -0.8018198801 -0.7900472367 -0.8004117 -0.7898281748 

0.7 -0.8773153545 -0.8856581275 -0.8764799121 -0.8873160 -0.8762663192 

0.8 -0.9200563754 -0.9252701770 -0.9198114759 -0.9200550 -0.9187007163 

0.9 -0.9623399700 -0.9633761429 -0.9607448540 -0.9623398 -0.9605377533 

1.0 - - -1.0000000000 -1.0000000 -0.9951954343 
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Table 2. Computed values of wall shear stress f′′(ξ,0) for 
various values of Magnetic parameter M 

when β = 100,ξ = 0.5 

M f′′(ξ, 0) 

0.0 -0.7878602743 

0.5 -0.9121941670 

0.7 -0.9591901558 

1.0 -1.0270440776 

Table 3. Computed values of wall shear stress f′′(ξ,0) for 
various values of Casson fluid parameter β 

 when M = 0.5,ξ = 0.5 

β f′′(ξ, 0) 

1.0 -0.7465920225 

10 -0.8924220729 

100 -0.9121941670 

∞ -0.9144728990 

 

 

Figure 1. Velocity profile of the Casson fluid at  
different collocation point along η domain 

 to check grid independent test. 

 
Figure 2. Skin-friction coefficient profile of the Casson fluid 

at different collocation point along η domain 
 to check grid independent test. 

 

Figure 3. Effect of magnetic parameter (M)  
on velocity profile of the Casson fluid. 

 
Figure 4. Effect of Casson fluid parameter (β) 

on velocity profile of the fluid. 

 
Figure 5. Velocity profile of the Casson fluid 

for various values of ξ 
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4. Results and Discussion 

In this section, the numerical results obtained using 

spectral quasi-linearization method (SQRM) on the 

governing nonlinear partial differential equation (6) is 

presented. Numerical computation were carried out 

using the proposed method as discussed in the 

previous sections for the velocity and the local skin 

friction for different values of the significant physical 

parameters in this study. Results are displayed in 

tabular and graphical formats. The SQRM was used to 

generate results from the initial approximate at ξ=0 

up to results close to the steady state values at ξ=1.  

The accuracy of the computed SQRM results was 

validated against numerical results obtained using the 

Keller-box method as reported in literatures.The 

results presented in this work were generated using  

L=30, which was found to give accurate results through 

numerical experimentation. In computing the 

numerical results presented in this paper, unless 

otherwise stated, the following values of physical 

parameters were used: M= 0.5, β=10, ξ=0.5 and Nt =50. 

Grid independence tests as illustrated in Figures 1 and 

2 revealed that Nx = 120 and Nt = 50 collocation points 

in the η and ξ domain, respectively, were sufficient to 

give accurate and consistent results. A further increase 

in the number of collocation points did not result in a 

change in the computed results. Furthermore, the 

minimum number of iterations required to give results 

that are consistent to within a tolerance level of 10−7 

were used. In all the results presented below, it was 

found that 50 iterations were sufficient to give 

consistent results. The value of η∞ was set to be 10. All 

graphs and tables therefore corresponds to these 

values except otherwise indicated. The values of all 

other physical parameters governing the fluid flow are 

chosen based on values earlier used in literatures. 

In order to test the method of solution,the special 

case of the problem is solved and compared with Liao 

[6], Srinivasa [22], Awang [31] and Fadzilah [32] in 

Table 1. Table 1 is drawn for a special case when 

pertinent parameters M=ξ=0 and β=∞ . The available 

results obtained in literatures above and SQRM are 

compared and are in very good agreement. The 

comparison shows that the present results obtained 

using SQLM has an excellent agreement with the 

solution obtained using other method of solution such 

as implicit finite difference scheme called Keller-box 

method and homotopy analysis method (HAM). 

Table 2 gives account on the effect of the Magnetic 

parameter M, on local wall shear stress of the flow. 

From the Table 2, It is noticed that an increase in the 

values of magnetic parameter M results in narrowing 

of horizontal velocity of the fluid. The transverse 

contraction of the velocity boundary layer is due to the 

applied magnetic field which invokes the Lorentz force 

producing noticeable opposition to the fluid flow. 

Hence, the magnetic parameter M influences the 

control of surface shear stress.Further, it is found that 

absolute value of f′′(0, ξ) increases with the increase of 

magnetic field M. This is because when M increases, the 

Lorentz force produces more resistance to the 

transport phenomena which leads to the deceleration 

of the flow, enhancing the surface shear stress. These 

results are in good agreement with those obtained by 

Srinivasa and Eswara [22]. 

Similarly Table 3 gives the skin friction coefficient 

for selected Casson fluid parameter β values. Here It is 

observed that as the Casson fluid parameter increase, 

the absolute values of skin friction coefficient 

increases. 

In Fig. 3, the effect of increasing the magnetic field 

strength on the momentum boundary layer thickness 

is illustrated. It is established fact that the magnetic 

field presents a damping effect on the velocity field by 

creating drag force that opposes the fluid motion, 

causing the velocity to decease.That is the boundary 

layer thickens and the magnitude of the velocity 

decreases with an increase in Hartmann number,M. 

This clearly indicates that the transverse magnetic 

field opposes the transport phenomena. This is 

because the variation of M leads to the variation of 

Lorentz force due to the magnetic field, and the Lorentz 

force produces more resistance to the transport 

phenomena. Therefore, the momentum boundary 

layer thickness becomes larger, and the separation of 

the boundary layer occurs earlier.  

Figure 4 shows the graphical influence of fluid 

Casson parameter β on the velocity profile of the flow. 

It shows that the magnitude of velocity and boundary 

layer thickness decreases with an increase in Casson 

fluid parameter, β. It is noticed that when the fluid 

parameter approaches infinity, the problem in the 

given case reduces to a Newtonian case.  

Figure 5 exhibits velocity profiles for different 

values of ξ. It is obvious from this figure that increase 

in ξ results in the reduction of momentum boundary 

layer thickness and thereby enhancing the velocity 

gradient at the surface. Further, the velocity profiles 

decrease monotonically with the distance from the 

surface and finally become zero for away from it, 

satisfying the boundary conditions asymptotically, and 

thus supporting the numerical results obtained. 

5. Conclusions 

The study investigated the application of the 

spectral quasi-linearization technique coupled with 

the Chebyshev pseudo-spectral collocation method to 

obtain a numerical solution of unsteady MHD 

boundary layer flow of Casson fluid due to an 

impulsively stretching surface. Approximate numerical 

results were generated using spectral quasi- 

linearization for the solution of the skin friction 

coefficient as well as velocity profile of the fluid at 

different flow parameter values. The accuracy of the 
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SQLM was demonstrated by comparing with results 

generated using the implicit finite difference method 

(keller box) and homotopy analysis method (HAM) and 

a good agreement was achieved between the two set of 

results up to a fixed level of accuracy. Other parameters 

which appear to have a marginal influence on the 

velocity distribution also have strong influence on the 

surface shear stress. 

The study showed that the SQLM can be used as an 

alternative method to obtain numerical solutions of 

partial differential equations (PDEs). The SQLM 

approach presented in this study also adds to a 

growing body of literature on numerical methods for 

solving complex nonlinear fluid flow problems in fluid 

mechanics. The results reveal that: 

▪ An increase in the Casson fluid parameter β of 
Casson fluid corresponds to an increase in the 
velocity profiles. 

▪ The magnetic field exerts significant influence 
on skin friction coefficient and reduces the 
momentum boundary layer thickness 

Conflicts of Interest 

The author declares that there is no conflict of 
interest regarding the publication of this manuscript. 
In addition, the authors have entirely observed the 
ethical issues, including plagiarism, informed consent, 
misconduct, data fabrication and/or falsification, 
double publication and/or submission, and 
redundancy. 

References 

[1] Bird, R.B., Stewart, W.E. and Lightfoot, E.N, 
2007. Transport Phenomena (Revised Second 
Edition ed.) John Wiley and Sons. ISBN 978-0-
470-11539-8. 

[2] Chiam, T.C., 1993. Magnetohydrodynamic 
boundary layer flow due to a continuously 
moving flat plate. Computers & Mathematics 
with Applications, 26(4), pp.1-7. 

[3] Ishak, A., Nazar, R. and Pop, I., 2009. Heat 
transfer over an unsteady stretching 
permeable surface with prescribed wall 
temperature. Nonlinear Analysis: Real World 
Applications, 10(5), pp.2909-2913. 

[4] Nadeem, S., Haq, R.U. and Lee, C., 2012. MHD 
flow of a Casson fluid over an exponentially 
shrinking sheet. Scientia Iranica, 19(6), 
pp.1550-1553. 

[5] Sakiadis, B.C., 1961. Boundary‐layer behavior 
on continuous solid surfaces: II. The boundary 
layer on a continuous flat surface. AiChE 
journal, 7(2), pp.221-225. 

[6] Liao, S., 2006. An analytic solution of unsteady 
boundary-layer flows caused by an 
impulsively stretching plate. Communications 
in Nonlinear Science and Numerical 
Simulation, 11(3), pp.326-339. 

[7] Nazar, R., Ishak, A. and Pop, I., 2008. Unsteady 
boundary layer flow over a stretching sheet in 

a micropolar fluid. International Journal of 
Mathematical, Physical and Engineering 
Sciences, 2(3), pp.161-165. 

[8] Takhar, H.S., Chamkha, A.J. and Nath, G., 2001. 
Unsteady three-dimensional MHD-boundary-
layer flow due to the impulsive motion of a 
stretching surface. Acta Mechanica, 146(1-2), 
pp.59-71. 

[9] Hayat, T., Shehzad, S.A. and Alsaedi, A., 2012. 
Soret and Dufour effects on 
magnetohydrodynamic (MHD) flow of Casson 
fluid. Applied Mathematics and Mechanics, 33, 
pp.1301-1312. 

[10] Prasad, K.V. and Vajravelu, K., 2009. Heat 
transfer in the MHD flow of a power law fluid 
over a non-isothermal stretching sheet. 
International Journal of Heat and Mass 
Transfer, 52(21-22), pp.4956-4965. 

[11] Abel, M.S., Siddheshwar, P.G. and Mahesha, N., 
2009. Effects of thermal buoyancy and 
variable thermal conductivity on the MHD 
flow and heat transfer in a power-law fluid 
past a vertical stretching sheet in the presence 
of a non-uniform heat source. International 
journal of non-linear mechanics, 44(1), pp.1-
12. 

[12] Bhattacharyya, K. and Pop, I., 2011. MHD 
boundary layer flow due to an exponentially 
shrinking sheet. Magnetohydrodynamics, 
47(4), pp.337-344. 

[13] Bhattacharyya, K., 2013. Boundary layer 
stagnation-point flow of Casson fluid and heat 
transfer towards a shrinking/stretching 
sheet. Frontiers in Heat and Mass Transfer 
(FHMT), 4(2). 

[14] Astarita, G. and Marrucci, G., 1974. Principles 
of non-Newtonian fluid mechanics. 

[15] Shenoy, A.V. and Mashelkar, R.A., 1982. 
Thermal convection in non-Newtonian fluids. 
In Advances in heat transfer (Vol. 15, pp. 143-
225). Elsevier. 

[16] Crochet, M.J. and Walters, K., 1983. Numerical 
methods in non-Newtonian fluid mechanics. 
Annual Review of Fluid Mechanics, 15(1), 
pp.241-260. 

[17] Casson, N., 1959. Flow equation for pigment-
oil suspensions of the printing ink-type. 
Rheology of disperse systems, pp.84-104. 

[18] Subba Rao, A., Ramachandra Prasad, V., 
Bhaskar Reddy, N. and Anwar Bég, O., 2015. 
Heat transfer in a Casson rheological fluid 
from a semi‐infinite vertical plate with partial 
slip. Heat Transfer—Asian Research, 44(3), 
pp.272-291. 

[19] Bird, R.B., Dai, G.C. and Yarusso, B.J., 1983. The 
rheology and flow of viscoplastic materials. 
Reviews in chemical engineering, 1(1), pp.1-
70. 

[20] Mukhopadhyay, S., 2013. Casson fluid flow 
and heat transfer over a nonlinearly 
stretching surface. Chinese Physics B, 22(7), 
p.074701. 

[21] Mustafa, M., Hayat, T., Pop, I. and Aziz, A., 
2011. Unsteady boundary layer flow of a 
Casson fluid due to an impulsively started 



278 A. I. Fagbade / JHMTR 9 (2022) 269 - 278 

moving flat plate. Heat Transfer—Asian 
Research, 40(6), pp.563-576. 

[22] Srinivasa, A.H. and Eswara, A.T., 2014. 
Unsteady MHD Laminar Boundary Layer Flow 
and Heat Transfer due to an Impulsively 
Stretching Surface. International Journal of 
Modern Sciences and Engineering Technology 
(IJMSET). V1, (7), pp.32-40. 

[23] Shrivastava, U.N. and Usha, S., 1987. Magneto-
fluid dynamic boundary layer on a moving 
continuous flat surface. Indian J. pure appl. 
Math, 18, pp.741-751. 

[24] A. Noghrehabadi, M. Ghalambaz, E. Izadpanahi 
and R. Pourrajab. Effect of Magnetic Filed on 
the Boundary Layer Flow, Heat and Mass 
Transfer of Nanofluids over a Stretching 
Cylinder. Journal of Heat and Mass Transfer 
Research, 2014;1: 9-16. 

[25] Ishak, A., Nazar, R. and Pop, I., 2008. 
Hydromagnetic flow and heat transfer 
adjacent to a stretching vertical sheet. Heat 
and Mass Transfer, 44(8), pp.921-927. 

[26] Isa, S.S.P.M., Arifin, N.M., Nazar, R., Bachok, N., 
Ali, F.M. and Pop, I., 2014. Effect of magnetic 
field on mixed convection boundary layer 
flow over an exponentially shrinking vertical 
sheet with suction. International Journal of 
Mechanical, Aerospace, Industrial and 
Mechatronics Engineering, 8, p.1519. 

[27] Bellman, R.E., 1965. Quasilinearization and 
nonlinear boundary-value problems (Vol. 3). 
American Elsevier Publishing Company. 

[28] Motsa, S.S., Hayat, T. and Aldossary, O.M., 
2012. MHD flow of upper-convected Maxwell 
fluid over porous stretching sheet using 
successive Taylor series linearization method. 
Applied Mathematics and Mechanics, 33, 
pp.975-990. 

[29] Motsa, S.S. and Shateyi, S., 2012. Successive 
linearization analysis of the effects of partial 
slip, thermal diffusion, and diffusion-thermo 
on steady MHD convective flow due to a 
rotating disk. Mathematical Problems in 
Engineering, 2012. 

[30] Awad, F.G., Sibanda, P., Motsa, S.S. and 
Makinde, O.D., 2011. Convection from an 
inverted cone in a porous medium with cross-
diffusion effects. Computers & Mathematics 
with Applications, 61(5), pp.1431-1441. 

[31] Kechil, S.A. and Hashim, I., 2007. Series 
solution for unsteady boundary-layer flows 
due to impulsively stretching plate. Chinese 
Physics Letters, 24(1), p.139. 

[32] Md, A.F., Roslinda, N.A.Z.A.R. and Md, A.N., 
2010. Numerical solutions of unsteady 
boundary layer flow due to an impulsively 
stretching surface. Journal of Applied 
Computer Science & Mathematics, 4(2), pp.25-
30. 

[33] Williams, III, J.C. and Rhyne, T.B., 1980. 
Boundary layer development on a wedge 
impulsively set into motion. SIAM Journal on 
Applied Mathematics, 38(2), pp.215-224. 

 


