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Abstract

Nature-inspired metaheuristic algorithms have been a topic of interest for researchers to solve op-
timization problems in engineering designs and real-world applications, due to their simplicity and
flexibility. This paper presents a new nature-inspired search algorithm called Woodpecker Mating
Algorithm (WMA) and applies it to challenging problems in structural optimization. The WMA
is a population-based metaheuristic algorithm that mimics the mating behavior of woodpeckers. It
was inspired by the drumming sound intensity. In WMA, the population of woodpeckers is divided
into male and female groups. The female woodpeckers approach the male woodpeckers based on the
intensity of their drum sound. An efficiency comparison was drawn between the WMA algorithm
and other metaheuristic algorithms by employing 19 benchmark functions(including unimodal, multi-
modal and composite functions). Moreover, the performance of WMA is compared with 8 of the best
meta-heuristic algorithms using 13 high dimensional multimodal and unimodal benchmark functions.
The assessments and statistical results indicate that the WMA algorithm offers promising results and
is capable of outperforming the most recent and popular algorithms proposed in the literature in most
of the employed benchmark functions. Moreover, a statistically significant difference was observed
compared to the other assessed algorithms. The proposed algorithm produced significant results for
a non-convex, inseparable, and scalable problems.
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1. Introduction

Optimization is the process of obtaining optimal values for the parameters of a specific system from all
of the possible values to maximize or minimize its output. The optimization problem can be observed
in all research fields because it has led to the development of optimization techniques and also the
emergence of intriguing areas for researchers [1]. In the past two decades, there has been a growing
interest in metaheuristic algorithms in order to solve the optimization problems[2]. Metaheuristic
algorithms are popular because they regard a problem as a black box [1, 3]. They avoid the local
optimum due to their random nature [2, 4]. Finally, they are easy to learn and implement [5, 6].
Since metaheuristic algorithms are mainly based on the regulations of natural organisms, they are
called nature inspired [7]. Depending on the nature of a simulated phenomenon, metaheuristic
algorithms can be categorized into four classes: evolutionary, physics-based, swarm intelligence and
inspired by human behaviour [2].
The evolutionary algorithms (EA) are generally certain optimization algorithms inspired by the
Darwinian principles of nature in relation to the abilities to live organisms to evolve and adapt to
environmental conditions. For instance, Genetic Algorithm(GA) [8, 9], Differential Evolution (DE)
[10], Evolutionary Programming (EP), Evolution Strategies (ES) [11], are evolutionary algorithms.
The second class includes physics-based techniques. These optimization algorithms are usually the
simulations of physical laws. For instance, they apply to motion, gravity, radiation, electromagnetic,
weight, etc [5]. The instances are Multi-Verse Optimizer (MVO) [3], Simulated Annealing (SA) [12],
Thermal Exchange Optimization (TEO) [13] and Orientation Search Algorithm (OSA) [14].
The third class of metaheuristic algorithms was inspired by human behaviour. The instances include
Harmony Search (HS) [8, 15], Brain Storm Optimization Algorithm (BSOA) [16], Imperialist Com-
petitive Algorithm (ICA) [17], Kidney-inspired algorithm (KA) [18], Interior Search Algorithm (ISA)
[19], Single Seekers Society (SSS) [20], Sine Cosine Algorithm (SCA) [21], Poor and rich optimization
algorithm (PRO) [22], group teaching optimization algorithm (GTOA) [23] and Teaching Learning
Based Optimization (TLBO) [24].
The fourth class is called swarm intelligence (SI), which is a distributed intelligence model used
to solve optimization problems. SI was inspired by the collective behaviour of a swarm of social
insects and other animal swarms. SI is usually made up of a simple population of elements (an
institution which is able to carry out certain operations) which operate with each other and the
environment locally. With very limited capabilities, these institutions can cooperate to carry out
very complicated tasks for survival [25]. Particle Swarm Optimization (PSO) [26, 27] , Artificial
Bee Colony (ABC) [28], Ant Colony Optimization (ACO) [29], Satin Bowerbird Optimizer (SBO)
[30], Dragonfly algorithm (DA) [31], Grey Wolf Optimizer (GWO) [5], Moth-flame Optimization
(MFO) [32], Bat Algorithm (BA) [33], Firefly Algorithm (FA) [34], Cuckoo Search (CS) [35], Ant
Lion Optimizer (ALO) [4], Whale Optimization Algorithm [2] ,Harris Hawks Optimizer (HHO) [36],
Crow Search Algorithm (SCA) [37, 38], Donkey and Smuggler Optimization Algorithm (SDO) [39]
and Artificial Acari Optimization (AAO) [40] are SI algorithms.
Exploration and exploitation are what population-based metaheuristic algorithms have in common
[41]. In the exploration phase, an algorithm should be equipped with certain mechanisms for exploring
the entire search space. In fact, the promising areas of the search space are identified in this phase
[3]. Exploration is meant to analyze the problem at a global level and to identify certain areas of
the search space with the best global solution [42]. The exploitation phase comes after exploration.
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It can be defined as the process of analyzing a promising area found in the exploration phase [2].
The exploitation phase emphasizes the local search, and the algorithm converges to the promising
areas found in the exploration phase [3]. Exploration and exploitation are two opposite turning
points. Promoting the results of one phase downgrades the results of the other. The proper balance
between these two turning points can guarantee an accurate estimation of the global optimum by
using population-based algorithms [32].
In this study, a novel nature-inspired metaheuristic algorithm was introduced based on the mating
behavior of woodpeckers. Woodpeckers peck at trees (drumming) to attract the opposite sex. Pecking
results in a sound wave. According to the physics laws, sound waves propagate in the environment so
that other woodpeckers can hear them. Therefore, the physical quantity is defined as sound intensity,
on which the amount of sound received by a listener depends. Such concepts provided the inspiration
for the proposed algorithm.
The rest of this paper contains four sections. In Section 2, the woodpecker mating algorithm is
introduced. In Section3, mathematical benchmark functions are used to evaluate the proposed
algorithm. Finally, Section 4, presents the conclusion and suggestions for future studies.

2. Woodpecker Mating Algorithm (WMA)

Woodpeckers are wonderful birds. There are nearly 200 different species of them. Woodpeckers
use a specific strategy for communication. It is called drumming or pecking the trunks of trees.
Drumming gives provides woodpeckers with special opportunities. They make holes into the trunks
of trees to build nests and feed on insects or resin. By doing so, they can also communicate with other
woodpeckers, show their territories, and scare their enemies. However, the most important purpose
of drumming is to attract mates in the mating season [43]. In fact, drumming is an intra-gender
competition in the mating season. Male woodpeckers compete with each other to attract female birds
by drumming. Before a female woodpecker selects a mate, it listens to multiple drumming sounds
and analyzes them instinctively. Then it gets attracted to the sound with the highest quality and
flies toward the source of drumming (the male woodpecker). The drumming rate differs in different
species. It falls down in larger species, and they make louder phones instead. However, drumming
is the main non-phonetic tool for long-distance communication. The WMA algorithm was inspired
by the mating behaviour of red-bellied woodpeckers (Melanerpes carolinus) [44]. In the proposed
algorithm, it is assumed that drumming is the only communication tool used by woodpeckers.
At the beginning of the mating season, male woodpeckers start drumming. The quality of the sound
produced by the male has a great effect on the attraction of female woodpeckers. Like other animals,
woodpeckers try to attract and choose the best mate. Birds with the higher ability for drumming can
produce stronger, higher quality drums and are regarded as ideal mates. Their drum can be heard
farther away and attract more female woodpeckers. The female woodpeckers are then attracted
to the source, because for them a more powerful sound connotes the male’s higher ability to find
food, nest and reproduce, making them a better option as mate. As a result, the acoustic power
(sound intensity) of the male woodpecker’s drum indicates its ability to attract female birds. In
other words, the size of a female woodpecker’s movement toward a male woodpecker depends on the
quality of sound it hears. The stronger the sound, the closer the female woodpecker gets to the male
bird producing it. It is worth noting that powerful or high quality sound means the physical quantity
of ”sound intensity” as described below.
A female woodpecker that is attracted to the sound of a male bird moves toward and approaches it.
This process is repeated in several intervals (or several days) and each time, the female woodpecker
gets closer to the male. The male woodpecker performs drumming at different time intervals, and
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these periodic drums attract the female bird step by step. This approach is similar to an evolutionary
process, and by each iteration, the female woodpecker gets closer to the male. On the other hand,
when a male woodpecker strikes a tree, the sound is transmitted to the environment and to the ears
of other females, so they move toward the male bird. Since the basis of the movement is the position
of the male bird, and the female woodpeckers move toward it based on the information obtained from
processing the male bird’s drum, there is a process of communication and flow of information between
the male and the female woodpeckers. So, this process is a swarm intelligence behavior.In the nature,
at the beginning of the mating season, many male woodpeckers begin drumming to attract female
woodpeckers as mates. As a result, at each time interval, a female woodpecker hears the drum sound
of several males at the same time. As mentioned in the preceding paragraph, female woodpeckers
look for the best males. But if another male (other than the best male) is closer to the female, the
female bird will be attracted to this male because it will receive a better quality drum due to the
shorter distance from the sound source.

2.1. Sound Intensity

In the physics of sound waves [45], the received sound depends on a quantity named the sound
intensity. The sound intensity (SI) of one level is the average energy changes reaching or exceeding
a level. It can be calculated through Equation (2.1):

SI =
P

A
(2.1)

In this equation, P is the sound power, and A is the area meeting the sound.
It is often complicated to determine how sound intensity changes over the distance from a real source
of the sound. Some of the sources (such as speakers) may send out the sound only in one direction.
The environment usually generates some echoes overlapping with the direct sound wave. However,
the echoes can sometimes be ignored in some cases. It can be assumed that the source of sound is
a point emitting the sound in an isotropic way, i.e. with the same intensity in all directions (This
assumption is true about woodpeckers.). In addition, the mechanical energy of sound waves (P ) is
conserved when waves are spread from a source. If a sphere is assumed with a radius of r around the
source, All the energy emitted by the source must pass through the surface of the sphere. Thus, the
transfer rate of sound wave energy through the perimeter should be equal to the propagation rate of
the source (PS). As a result, sound intensity (I) is defined as Equation (2.2):

SI =
PS

4πr2
(2.2)

Here 4πr2is the area of the sphere. According to Equation (2.2), the sound intensity of an isotropic
point source decreases by the squared distance r2. Therefore, the intensity of the received sound
depends greatly on the distance between an object and the source. The shorter the distance is, the
higher and better the sound will be received. The Euclidean distance (r) can be calculated through
Equation (2.3):

r = ‖XS − X ′‖ (2.3)

Here XSis the position of the sound-generating source, and X ′ is the position of a listener.
So far, it has been assumed that female woodpeckers fly towards a male woodpecker based on sound
intensity(I). Other main factor is distance. Intensity of the received sound is depended on the
distance between woodpeckers.
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2.2. The WMA algorithm assumptions

The WMA algorithm is inspired by the aforementioned concepts and based on the following assump-
tions.
1. The only way of communication for the woodpeckers is the sound produced via drumming.
2. All female woodpeckers hear a percentage of the drum from most appropriate male per their
distance and are attracted to it.
3. The fitness of a male woodpecker is calculated based on the objective function.
4. In the WMA algorithm, fitness is considered an attractiveness factor. Female woodpeckers are
attracted to the more qualified male woodpeckers. The best woodpecker, also called the gpop.
5. The rate at which a female woodpecker is attracted to a male bird depends on the ”sound
intensity” of the drum she hears. On the other hand, the rate of attraction, according to the laws of
physics in terms of acoustic waves, decreases with increasing distance from the source. The smaller
the distance, the greater the amount of attraction for a female woodpecker.
6. In the WMA, woodpecker populations are considered as male and female woodpeckers based
on their level of fitness. The male woodpecker population is large at the beginning of exploration
(because at the beginning of the mating season the number of single males is high). But this
population decreases with the increase in the number of iterations of the algorithm (as the mating
season advances, the number of single male birds declines, due to successful mating). This process
leads to exploitation.
7. In early iterations (at the beginning of the mating season), female woodpeckers are attracted to
the most appropriate and the least distant male woodpeckers. But in the later iterations, they are
attracted only to the best woodpecker.
8. For the sake of simplification, it is assumed that, besides the gpop drum, each female woodpecker
will hear only one other male woodpecker at any certain point of time, that is, the male which is the
closest to the female bird, and therefore, has a higher drum sound intensity.
As mentioned above, WMA is a swarm intelligence algorithm that inspired on the mating behavior
of woodpeckers. There are some similarities between the WMA and the Firefly Algorithm (FA) in
scientific terms. But the two are very different from technical and operator aspects. In FA, the
concept of light intensity is discussed as the amount of attraction of two fireflies, whereas in the
WMA, the concept of sound intensity is used as a measure of the attraction of search agents. These
two concepts are quite different in terms of physics laws and formulations. In FA, the population
of fireflies are considered unisex, and each firefly can be attracted by a more fitting search agent.
However, the woodpecker population in the WMA is considered as male and female woodpeckers.
Each female woodpecker is attracted to the best (or the gpop) and the nearest male woodpecker.
Unlike FA, the WMA algorithm has several operators for sequential and efficient implementation
of exploration and exploitation phases that have a significant effect on WMA performance and its
global and local search capability

2.3. Mathematical model and optimization algorithm

The WMA algorithm consists of two factors: male and female woodpeckers. Male and female wood-
peckers are each considered a candidate solutions. In the WMA algorithm, male and female wood-
peckers do not differ based on their gender but on the degree of fitting (value of objective function).
In addition, the difference between male and female woodpeckers lies in the method of exploring
the problems space and updating their positions. Female woodpeckers are the main search agents
that move through the problem space and the males are the best positions found so far by them. In
fact, males are signs and flags found by females. Hence, female woodpeckers search around for male
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fitness is selected as the best gpop. The gpop is the most attractive woodpecker, and all female woodpeckers hear a 

percentage of its drum relative to their distance, and move toward it. 

 

Fig. 1. Pseudo code of the WMA 

2.3.3. Woodpeckers in Motion 

In this step, every woodpecker updates its position through Equation (4). 
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𝑡∗(𝛼𝑔𝑝𝑜𝑝∗(𝑥𝑔𝑝𝑜𝑝
𝑡 −𝑥𝑖
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Figure 1: Pseudo code of the WMA

birds and update their position based on the location of male birds. If they find a better candidate
solution, they will update the position of the male woodpecker.

2.3.1. Initialization

The WMA algorithm is a population-based algorithm. Here every woodpecker is considered a candi-
date solution. Like other metaheuristic algorithms, the proposed algorithm initializes with a group of
random woodpeckers ( random candidate solutions). In fact, woodpeckers are distributed uniformly
in the search space. Every woodpecker is an n-dimensional solution vector for the problem. Other
parameters of the algorithm such as maximum iteration, population size, RA probability, and sound
wave power are adjusted in this step. Fig. 1 shows the pseudo code of the proposed WMA algorithm.

2.3.2. Evaluation and Divide Population of the Woodpeckers

Like other birds, woodpeckers tend to select the best mate. Thus, the better young woodpeckers
can be born. In this step, the population of woodpeckers is evaluated by the objective function to
determine their fitness values. Then the population of woodpeckers is divided into male and female
groups. At the beginning of each iteration, the woodpecker population is sorted on the basis of the
rate of fitness value according to the objective function, and proportional to the size of the male
woodpecker population, the most qualified woodpeckers are considered to be male birds. In each
iteration, male woodpeckers are search agents with the highest degree of fitness based on the objective
function. The male with the highest degree of fitness is selected as the best gpop. The gpop is the
most attractive woodpecker, and all female woodpeckers hear a percentage of its drum relative to
their distance, and move toward it.

2.3.3. Woodpeckers in Motion

In this step, every woodpecker updates its position through Equation (2.4).

xt+1
i = xti + r ∗

δti ∗
(
αgpop ∗ (xtgpop − x

t
i) + αmj ∗ (xtmj − x

t
i)
)

2
(2.4)



Woodpecker Mating Algorithm 11 (2020) No. 1, 137-157 143

Here xti indicates the previous position of the ith woodpecker, and xtgpop shows the position of the
best member (gpop, the best male). Moreover, xtmj is the position of the jth male woodpecker, r is a
random number of a uniformly distribution selected from [0, 1], δti shows the random coefficients for
the i-th woodpecker in iteration t. The values of these coefficients are calculated adaptively along the
iteration cycle of the algorithm based on Equation (2.5). The α(αgpop, αmj ) is a parameter which
can be determined through Equation (6(. In fact, α indicates how much a woodpecker is attracted
to a male woodpecker (i.e. the target position) based on a ratio of the received sound intensity (
really α determines the amount of step).
As mentioned in the preceding section, a female woodpecker may, at each time slice of the mating
season, be affected by and attracted not only to the gpop but also to the drum sound of the closest
male woodpecker. In equation (2.4) xmj is the indicator of the position of this male. In fact,
every female woodpecker updates its position based on gpop and a male woodpecker selected as mj.
Regarding the selection of an mjfrom male birds, the Euclidean distance of a female woodpecker (i)
from every male bird is determined in each iteration through Equation (2.3). Then the male bird
being on the shortest distance from the female woodpecker will be selected as the mj. In fact, gpop
shows the best male bird in the population. As a result, it generates the highest quality of drumming
sounds influencing the female woodpeckers. The male mj is near a female bird; thus, it pecks at
trees to influence the female bird and make it develop certain desires. Fig. 2 shows how a female
woodpecker updates its position according to gpop and mj in a 2D search space.

δti = r ∗ b (2.5)

In this equation, r is a random number from a uniform random distribution in [0, 3]. The value of
parameter b decreases from 0.77 to 0 during the iteration cycle of the algorithm. With this reduction,
the exploration and exploitation phases are respectively implemented efficiently. The value of b in
each iteration of the algorithm is calculated using equation (2.7).
δti has a random value in the range of [0, 3b] which decreases the value of δti as well as its fluctuation

range by decreasing b during the iteration cycle of the algorithm. If the value of δti is in the range of [0,
1],the new position of a female woodpecker is placed at any random point between its current position
and the target woodpecker’s position (gpop or mj). In other words, female woodpeckers converge
and get closer to the target woodpecker. This practice emphasizes exploitation phase particularly on
end iterations. In this case, search agents are required to search locally in promising areas around
male woodpeckers in order to enhance the quality of the received solutions. On the other hand, if
δti>1, then female woodpeckers are required to far away the target woodpecker and diverge from it.
This results in the exploration of new promising areas for better solutions. In this case, the WMA
algorithm can search globally. In short, if δti ≤ 1, then the female woodpeckers have to converge to
the target woodpecker (Fig. 3a); otherwise, they have to diverge from it (Fig. 3b).

α=
1

1+SI ij
(2.6)

In this equation, α shows the probability (attraction) of male woodpecker j for woodpecker i
and SI ij is the sound intensity of the target woodpecker (j ), reaching female woodpecker i. In
fact, Parameter α are amount of the pace in relation to the attractiveness (sound intensity) of the
selected male woodpecker. In fact, the pace is inversely related to the sound intensity. In other
words, the higher the sound intensity of a destination woodpecker is for female woodpecker, the
greater the denominator will be. Therefore, the pace will reduce. The pace is selected from (0, 1].
The greatest value is obtained when the attractiveness of the destination woodpecker approaches
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the female woodpecker will be selected as the 𝑚𝑗. In fact, gpop shows the best male bird in the population. As a result, it 

generates the highest quality of drumming sounds influencing the female woodpeckers. The male 𝑚𝑗 is near a female bird; 

thus, it pecks at trees to influence the female bird and make it develop certain desires. Fig. 2 shows how a female woodpecker 

updates its position according to gpop and 𝑚𝑗 in a 2D search space. 

 
Fig. 2. Position updating in WMA Algorithm 
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 (6)   𝛼 =
1

1+𝑆𝐼𝑗
𝑖 

In this equation, 𝛼 shows the probability (attraction) of male woodpecker j for woodpecker i and 𝑆𝐼𝑗
𝑖 is the sound intensity of 

the target woodpecker (j), reaching female woodpecker i. In fact, Parameter 𝛼 are amount of the pace in relation to the 
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target, something which increases exploitation and results in a more accurate estimated optimal solution. Therefore, 
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(7)  𝑏 = 𝑇𝑎𝑛𝑠𝑖𝑔 (1 −
𝑡

𝑡𝑚𝑎𝑥
) 

Figure 3: illustrates the influence of the parameter δti on the next position of the female woodpecker.

zero (the received sound intensity is too low). The smaller the pace is, the more accurately a
woodpecker moves towards the destination. A woodpecker moves around the centralized target,
something which increases exploitation and results in a more accurate estimated optimal solution.
Therefore, parameter α has an effect on the exploitation of the algorithm.

b = Tansig

(
1− t

tmax

)
(2.7)

Here Tansig is the tangent sigmoid function, in which t is the current iteration number, and tmax is
the maximum number of iterations.
The population of male woodpeckers decreases during the algorithm iteration cycle adaptively. In
the final iterations, only one male woodpecker will remain. The large number of male woodpeckers
can increase exploration in the initial iterations. Moreover, the algorithm is prevented from being
trapped in local optimums. In the final iterations, decreasing the number of male birds increases
exploitation and accuracy of solutions. Equation (8( can be used for determining the number of male
woodpeckers in each iteration.

Malenu =

{
Round

(
N

2
∗
(

1− t

tmax

))
+ 1

}
(2.8)

Here Malenu is the number of male woodpeckers in each iteration, and t is the current iteration
number. Moreover, tmax shows the maximum number of iterations, when N indicate the maximum
number of woodpeckers population.
As mentioned earlier, the population of male woodpeckers in the iteration cycle of the algorithm
decreases linearly with increase of iterations. The minimum population for male woodpeckers is one
woodpecker and that is the gpop. In this case, equation (2.4) is simplified as equation (2.9).

xt+1
i = xti + r ∗ (δti∗(x

t
gpop − x

t
i) ∗ αgpop) (2.9)

2.3.4. Running Away Function

When a female woodpecker is attracted to the sound of another male woodpecker and moves towards
it, sounds may overlap in nature. Therefore, the male woodpecker may change paths unconsciously
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and deviates. On the other hand, a woodpecker might be attacked by other woodpeckers or hunting
birds on the path. It may also make random changes to the path due to feeling danger. Such random
changes are stimulated as Running Away (RA) function. In other words, path changes are regarded
as random changes in the solutions. How the female woodpecker escapes can vary depending on
the sound intensity it receives from the best member (gpop) of the population. In this section, two
types of movement are considered as escape of woodpeckers. The criterion for selecting the type of
movement is based on the sound intensity threshold received from the gpop (THα). The value of
Hα is calculated by equation (2.11). Based on what was stated in the previous section, the value of
Hα is inversely related to the sound intensity. The larger the value of αi

gpop, the greater the distance
between the woodpecker and the gpop and the lower the quality of the drum. If αi

gpop> Hα, it is
assumed that the woodpecker is far from the gpop and that the drum will be received with a very
low sound intensity. In this case, the female woodpecker is at an inappropriate point relative to the
gpop position, so it flies quite randomly based on the equation (2.10) to another point of search space
(forest). This movement is called Random Running Away (RRA).

THα = 0.8 ∗
∑n−1

1 αi
gpop

n− 1
(2.10)

in which Hα is the threshold for the gpop sound intensity that is calculated in the first iteration, n
is size of the woodpeckers depart from, and αi

gpopis calculated proportional to the sound intensity of
the woodpecker i, whose value is calculated using equation (2.6).

xiRRA = lb− (lb− ub) ∗ r (2.11)

In this equation, xiRRA is the position of a new element obtained from RRA on the ith woodpecker,
r is a random number of a uniformly continuous distribution selected from [0, 1]. lb and ub are lower
and upper boundaries of variables Respectively.
If αi

gpop< Hα, then the woodpecker has heard the sound of the gpop drums with acceptable sound
intensity. Therefore, it is in an appropriate position. In this situation, the woodpecker escapes to
the gpop. This escape to gpop is called GRA (Gpop Running Away). The GRA rate is controlled
by the RA probability (PGRA).The values of PGRA decrease adaptively from γ to 0 in the algorithm
iteration cycle through Equation (2.12).

PGRA = γ ∗ ( 1− t

tmax

) (2.12)

Here t is the current iteration number. Moreover, tmax shows the maximum number of iterations,
when γ indicate is RA coefficient.
In the proposed algorithm, GRA is performed with two parents. GRAbit is a vector as long as the
problem dimensions, the elements of which are obtained through Equation (2.13).

GRAbit =

{
1 if r ≤ PGRA

0 else
(2.13)

In this equation, r is the j th element of the vector (as long as the problem dimensions). Every
element is a random number of uniform distribution, selected from [0, 1]. In the WMA algorithm,
GRA is done according to Equation (2.14).
In the GRA operator, the female woodpecker escapes to the gpop. Another influential factor here
is the location of the random woodpecker (xr). This woodpecker is randomly selected from the
woodpecker population, the aim of which is to randomize the escape of the female woodpecker. In
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fact, the female woodpecker escapes to the best male (gpop) and the position of a random woodpecker.
The new position of the female woodpecker sits at any random point between the gpop positions and
the random woodpecker.

xiGRA = xti +GRAbit ∗
{(
xtgpop − xr

)
∗R
}

(2.14)

In this equation, xiGRA is the position of a new element obtained from RA on the ith woodpecker, and
xr is the position of a random woodpecker. Moreover, xt

gpop shows the position of the best member
(gpop, the best male) in t iteration. xt

i is the new position of the ith woodpecker in iteration t, It was
obtained by moving in the search space in the previous step. R is a random number of a uniformly
distribution selected from [-1, 1]. t is the current iteration number. Every element of GRAbit vector
with a value of one changes in the second expression of Equation (2.14).
At the end of this operator (Running away function), the fitness of xiGRA or xiRRA is calculated by
using the objective function. If the fitness value is better than xt

i , then it is replaces. Otherwise, the
element that were generated by the RA operator will be ignored.
Given the Hα value and the values larger than α in the initial iterations in the WMA algorithm life
cycle, the RRA occurrence rate is higher in these iterations. Since in the RRA, female woodpeckers fly
quite randomly around the search space, it results in exploration. As the algorithm cycle is repeated
more and more, due to the approach of female woodpeckers to the gpop, as well as the declining
rate of α, the RRA rate decreases, and the GRA rate increases. At GRA operator, the random
movement of female woodpeckers around the gpop and another random woodpecker also increases
exploration. Although this random motion decreases with decreasing PGRAduring the iteration cycle
of the algorithm, it can still avoid stagnation in local optimality in the end iterations. By reducing
PGRA, due to the need to exploitation on the end iterations, the female woodpecker becomes more
concentrated on its position, leading to exploitation. In summary, the Running Away function has a
great effect on the implementation of exploration in the initial iterations and in preventing recession
in the local optimal.

2.3.5. Evaluating the new position and checking terminating conditions

In this step, the new position of the ith woodpecker is compared with the previous position and
the position of the best woodpecker. If the position is better than one, it will get replaced. If
the termination condition of the algorithm is met, the best solution will be selected as the optimal
solution to the problem. Otherwise, steps 3-5 are repeated.

3. Evaluation WMA algorithm by Benchmark Functions

In this section, the efficiency of the proposed algorithm is evaluated on 19 mathematical benchmark
functions, divided into four groups: unimodal (Table 1), multimodal (Table 2), and composite (Table
3) functions. The unimodal functions have only one optimum. They are appropriate for evaluating
the exploitation and convergence of the algorithm. However, multimodal functions have more than
one optimum. They are more challenging than unimodal functions. One of the optimums is global,
and the rest of them are local optimums. Every algorithm should avoid all local optimums to approach
and identify a global optimum. Therefore, test multimodal functions can be used to evaluate the
performance of algorithms in exploration and local optimum avoidance. The last class of benchmark
functions includes composite functions. In fact, these functions are the combined, shifted, rotated,
and biased version of multi-modal and unimodal functions. In these functions, the search space is
very complicated because there are many local optimums, and different areas of the search space are
in different forms. In such functions, an optimization algorithm should strike an efficient balance
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Table 1: Unimodal benchmark functions

  

very complicated because there are many local optimums, and different areas of the search space are in different forms. In 

such functions, an optimization algorithm should strike an efficient balance between exploration and exploitation so that it 

can move towards the global optimum. Thus, the main task of these functions is to evaluate exploration and exploitation 

simultaneously [4, 46].  

Table 1 Unimodal benchmark functions 
fmin Range Dim Function 

0 [-100,100] 30 F1(X) = ∑ Xi
2

n

i=1
 

0 [-10,10] 30 F2(X) = ∑ |Xi|
n

i=1
+ ∏|Xi|

n

i=1

 

0 [-100,100] 30 F3(X) = ∑ (∑ Xj

i

j−1

)

2
n

i=1

 

0 [-100,100] 30 F4(X) = max{|Xi|, 1 ≤ i ≤ n} 

0 [-30,30] 30 F5(X) = ∑ [100(Xi+1 − Xi
2)2 + (Xi − 1)2]

n−1

i=1
 

0 [-100,100] 30 F6(X) = ∑ ([Xi + 0.5])2
n

i=1
 

0 [-1.28,1.28] 30 F7(X) = ∑ iXi
4

n

i=1
+ random[0,1) 

 

Table 2 Multimodal benchmark functions 
fmin Range Dim Function 

-418*Dim [-500,500] 30 F8(X) = ∑ −Xi

n

i=1
sin (√|Xi|) 

0 [-5.12,5.12] 30 F9(X) = ∑ [Xi
2 − 10 cos(2πXi) + 10]

n

i=1
 

0 [-32,32] 30 F10(X) = −20exp (−0.2√
1

n
∑ Xi

2
n

i=1
) − exp (

1

n
∑ cos(2πXi)

n

i=1
) + 20 + e 

0 [-600,600] 30 F11(x) =
1

4000
∑ Xi

2
n

i=1
− ∏ cos

Xi

√i

n

i=1
+ 1 

0 [-50,50] 30 
F12(X) =

π

n
{10 sin(πy1) + ∑ (yi − 1)2[1 + 10sin2(πyi+1)]

n−1

i=1
+ (yn − 1)2} + ∑ u(Xi, 10,100,4)

n

i=1
 

yi = 1 +
Xi + 1

4
 

u(Xi, a, k, m) = {

k(Xi − a)m  xi > 𝑎
0           − a < xi < 𝑎

k(−Xi − a)mxi < 𝑎
 

0 [-50,50] 30 
F13(x) = 0.1 {sin2(3πx1) + ∑ (xi − 1)2

n

i=1

[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]} 

   
+ ∑ u(Xi, 5,100,4)

n

i=1
 

. 

The proposed algorithm was compared to a group of new and well-known metaheuristic algorithms such as Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Firefly Algorithm (FA) [8], Satin Bowerbird Optimizer (SBO) [30], 

Artificial Bee Colony (ABC) [47], Wolf Optimizer (GWO) [5], Multi-Verse Optimizer (MVO) [3] and Bat Algorithm (BA) 

[33]. 

All of the tests were run in MATLAB 2017a. Every benchmark function was run 30 times by the optimization algorithms. 

The best results of 30 executions were calculated to compare the average (Ave) and standard deviation (Std). Then the 

Wilcoxon signed rank test was employed to analyze the significance difference between the WMA and other algorithms. The 

output was the statistical p_value. In this study, the significance level was considered 0.05; therefore, if the results of two 

algorithms are lower than 0.05, they are statistically different. In all algorithms, the size of the initial population was 50, and 
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k(Xi − a)m  xi > 𝑎
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0 [-50,50] 30 
F13(x) = 0.1 {sin2(3πx1) + ∑ (xi − 1)2

n

i=1

[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]} 

   
+ ∑ u(Xi, 5,100,4)

n

i=1
 

. 

The proposed algorithm was compared to a group of new and well-known metaheuristic algorithms such as Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Firefly Algorithm (FA) [8], Satin Bowerbird Optimizer (SBO) [30], 

Artificial Bee Colony (ABC) [47], Wolf Optimizer (GWO) [5], Multi-Verse Optimizer (MVO) [3] and Bat Algorithm (BA) 

[33]. 

All of the tests were run in MATLAB 2017a. Every benchmark function was run 30 times by the optimization algorithms. 

The best results of 30 executions were calculated to compare the average (Ave) and standard deviation (Std). Then the 

Wilcoxon signed rank test was employed to analyze the significance difference between the WMA and other algorithms. The 

output was the statistical p_value. In this study, the significance level was considered 0.05; therefore, if the results of two 

algorithms are lower than 0.05, they are statistically different. In all algorithms, the size of the initial population was 50, and 

between exploration and exploitation so that it can move towards the global optimum. Thus, the
main task of these functions is to evaluate exploration and exploitation simultaneously [4, 46].
The proposed algorithm was compared to a group of new and well-known metaheuristic algorithms
such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Firefly Algorithm (FA) [8],
Satin Bowerbird Optimizer (SBO) [30], Artificial Bee Colony (ABC) [47], Wolf Optimizer (GWO)
[5], Multi-Verse Optimizer (MVO) [3] and Bat Algorithm (BA) [33].
All of the tests were run in MATLAB 2017a. Every benchmark function was run 30 times by the
optimization algorithms. The best results of 30 executions were calculated to compare the average
(Ave) and standard deviation (Std). Then the Wilcoxon signed rank test was employed to analyze
the significance difference between the WMA and other algorithms. The output was the statistical
p value. In this study, the significance level was considered 0.05; therefore, if the results of two
algorithms are lower than 0.05, they are statistically different. In all algorithms, the size of the
initial population was 50, and the maximum iteration was 500. The dimension of the problem (the
number of decision-making variables) was 30. Table 4 shows the other parameters setting for each
algorithm.

3.1. Evaluation of exploitation capability (functions F1-F7)

Table 5 shows the results of executing unimodal benchmark functions in optimization algorithms.
Accordingly, the WMA algorithm showed a better performance in 6 out of 7 unimodal functions
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Table 3: Composite benchmark functions

  

the maximum iteration was 500. The dimension of the problem (the number of decision-making variables) was 30. Table 4 

shows the other parameters setting for each algorithm. 

Table 3 Composite benchmark functions 

fmin Range Dim Function 

0 [-5,5] 10 

F14(CF1) 

𝑓1, 𝑓2, 𝑓3, … , 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ 𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [5/100, 5/100, 5/100, … , 5/100] 

0 [-5,5] 10 

F15(CF2) 

𝑓1, 𝑓2, 𝑓3, … , 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ 𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [5/100, 5/100, 5/100, … , 5/100] 

0 [-5,5] 10 

F16(CF3) 

𝑓1, 𝑓2, 𝑓3, … , 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ 𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [1, 1, 1, … , 1] 

0 [-5,5] 10 

F17(CF4) 

𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓5, 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓7, 𝑓8 = Ackley′s Function, 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ λ

1
,λ2,λ3, …,λ10]=[5/32,  5/32,  1,  1,  5/0.5,  5/0.5,  5/100,  5/100,  5/100,  5/100 ] 

0 [-5,5] 10 

F18(CF5) 

𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓5, 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓7, 𝑓8 = Ackley′s Function, 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ λ

1
,λ2,λ3, …,λ10]=[1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100 ] 

0 [-5,5] 10 

F19(CF6) 

𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓5, 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓7, 𝑓8 = Ackley′s Function, 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10]=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ] 
[ λ

1
,λ2,λ3, …,λ10]=[0.1 * 1/5,  0.2 * 1/5,  0.3 * 5/0.5,  0.4 * 5/0.5,  0.5 * 5/100, 

0.6 * 5/100,  0.7 * 5/32,  0.8 * 5/32,  0.9 * 5/100, 1 * 5/100] 

 

Table 4 Algorithm Parameters setting  

Parameters Algorithm 

Limit=100 ABC 

roulette wheel selection, single point crossover with a crossover 

probability of 0.9, mutation probability of 0.01 
GA 

=0.94, z=0.02, mutation probability= 0.05 SBO 

0=1, [0,1], =1 FA 

c1=2, c2=2, ω=1 PSO 

A=1, r=0.5, 𝑄𝑚𝑖𝑛=0, 𝑄𝑚𝑎𝑥=2, =0.99 , =0.01 BA 

Ps=1, 𝛾 = 0.2  WMA 

3.1. Evaluation of exploitation capability (functions F1-F7) 

Table 5 shows the results of executing unimodal benchmark functions in optimization algorithms. Accordingly, the WMA 

algorithm showed a better performance in 6 out of 7 unimodal functions than other algorithms. Given the features of these 

functions, the results indicate the ability to highly exploit the proposed algorithm. Fig. 4 shows the convergence curve of 

optimization algorithms in the unimodal functions. According to Fig. 4, the WMA performed the convergence process faster 

than other algorithms in addition to a higher exploitability. The P-values of the Wilcoxon signed rank test can be seen in 

Table 6. Accordingly, all of the p-values were smaller than 0.05. Therefore, there was a significant difference between the 

WMA algorithm and other algorithms. 

Table 4: Algorithm Parameters setting

  

the maximum iteration was 500. The dimension of the problem (the number of decision-making variables) was 30. Table 4 

shows the other parameters setting for each algorithm. 

Table 3 Composite benchmark functions 

fmin Range Dim Function 

0 [-5,5] 10 

F24(CF1) 

𝑓1, 𝑓2, 𝑓3, … , 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ 𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [5/100, 5/100, 5/100, … , 5/100] 

0 [-5,5] 10 

F25(CF2) 

𝑓1, 𝑓2, 𝑓3, … , 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ 𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [5/100, 5/100, 5/100, … , 5/100] 

0 [-5,5] 10 

F26(CF3) 

𝑓1, 𝑓2, 𝑓3, … , 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ 𝜆1, 𝜆2, 𝜆3, … , 𝜆10] = [1, 1, 1, … , 1] 

0 [-5,5] 10 

F27(CF4) 

𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓5, 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓7, 𝑓8 = Ackley′s Function, 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ λ

1
,λ2,λ3, …,λ10]=[5/32,  5/32,  1,  1,  5/0.5,  5/0.5,  5/100,  5/100,  5/100,  5/100 ] 

0 [-5,5] 10 

F28(CF5) 

𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓5, 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓7, 𝑓8 = Ackley′s Function, 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10] = [1, 1, 1, … , 1] 
[ λ

1
,λ2,λ3, …,λ10]=[1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100 ] 

0 [-5,5] 10 

F29(CF6) 

𝑓1, 𝑓2 = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓3, 𝑓4 = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓5, 𝑓6 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓7, 𝑓8 = Ackley′s Function, 𝑓9, 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

[ Ϭ1, Ϭ2, Ϭ3, … , Ϭ10]=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ] 
[ λ

1
,λ2,λ3, …,λ10]=[0.1 * 1/5,  0.2 * 1/5,  0.3 * 5/0.5,  0.4 * 5/0.5,  0.5 * 5/100, 

0.6 * 5/100,  0.7 * 5/32,  0.8 * 5/32,  0.9 * 5/100, 1 * 5/100] 

 

Table 4 Algorithm Parameters setting  

Parameters Algorithm 

Limit=100 ABC 

roulette wheel selection, single point crossover with a crossover 

probability of 0.9, mutation probability of 0.01 
GA 

=0.94, z=0.02, mutation probability= 0.05 SBO 

0=1, [0,1], =1 FA 

c1=2, c2=2, ω=1 PSO 

A=1, r=0.5, 𝑄𝑚𝑖𝑛=0, 𝑄𝑚𝑎𝑥=2, =0.99 , =0.01 BA 

Ps=1, 𝛾 = 0.2  WMA 

3.1. Evaluation of exploitation capability (functions F1-F7) 

Table 5 shows the results of executing unimodal benchmark functions in optimization algorithms. Accordingly, the WMA 

algorithm showed a better performance in 6 out of 7 unimodal functions than other algorithms. Given the features of these 

functions, the results indicate the ability to highly exploit the proposed algorithm. Fig. 4 shows the convergence curve of 

optimization algorithms in the unimodal functions. According to Fig. 4, the WMA performed the convergence process faster 

than other algorithms in addition to a higher exploitability. The P-values of the Wilcoxon signed rank test can be seen in 

Table 6. Accordingly, all of the p-values were smaller than 0.05. Therefore, there was a significant difference between the 

WMA algorithm and other algorithms. 
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Table 5 Results of unimodal benchmark functions 

Function WMA PSO SBO ABC FA MVO GA GWO BA 

F1 
Ave 1.75E-67 5.43E-06 8.43E-02 5.90E+03 1.61E+04 1.23E+00 2.48E+00 1.07E-27 3.46E+03 

Std 2.35E-67 2.59E-05 2.88E-02 1.01E+03 3.79E+03 3.76E-01 1.16E+00 1.56E-27 9.62E+02 

F2 
Ave 1.03E-34 4.91E-03 1.08E-01 6.42E+01 1.23E+02 3.92E+00 3.43E-01 9.20E-17 8.41E+05 

Std 6.91E-35 5.13E-03 2.47E-02 5.47E+00 9.52E+01 1.63E+01 8.23E-02 7.08E-17 3.08E+06 

F3 
Ave 4.26E-59 6.53E+02 9.57E+02 4.17E+04 2.37E+04 2.07E+02 4.35E+03 5.81E-06 9.89E+03 

Std 1.41E-58 1.12E+03 2.85E+02 4.74E+03 6.98E+03 7.65E+01 1.72E+03 7.35E-06 3.44E+03 

F4 
Ave 5.52E-34 4.17E-01 1.73E+00 7.04E+01 8.55E+06 2.37E+00 7.61E+00 7.27E-07 2.41E+01 

Std 4.72E-34 1.54E-01 1.07E+00 4.81E+00 3.64E+06 1.08E+00 1.33E+00 7.27E-07 5.53E+00 

F5 
Ave 3.87E+00 3.57E+01 2.58E+02 1.56E+07 8.55E+06 3.80E+02 2.73E+02 2.69E+01 5.63E+05 

Std 9.51E+00 2.53E+01 3.50E+02 2.59E+06 3.64E+06 6.25E+02 1.42E+02 8.64E-01 3.16E+05 

F6 
Ave 5.46E-03 3.81E-07 9.73E-02 6.25E+03 1.64E+04 1.36E+00 2.35E+00 7.78E-01 3.42E+03 

Std 3.91E-03 5.71E-07 3.37E-02 9.87E+02 3.33E+03 3.71E-01 8.43E-01 3.33E-01 1.42E+03 

F7 
Ave 8.96E-05 8.90E-02 1.57E-01 7.32E+00 2.52E+00 3.46E-02 1.08E-01 2.06E-03 5.91E-01 

Std 7.58E-05 2.84E-02 3.66E-02 1.65E+00 8.50E-01 1.46E-02 4.19E-02 8.29E-04 3.73E-01 

Table 6 P-values obtained from unimodal benchmark functions 

 Function PSO SBO ABC FA MVO GA GWO BA 

F1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F2 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F3 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F5 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 4.45E-05 1.73E-06 

F6 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F7 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

 

 

Fig. 4. Convergence of algorithms on unimodal benchmark function 

3.2. Evaluation of exploration capability (functions F8-F13) 

Table 7 shows the results of executing 6 multimodal functions in optimization algorithms. Accordingly, in  multimodal 

functions  the WMA algorithm showed the best performance on the all of the test cases. Also Table 8 shows a comparison on 
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Table 5 Results of unimodal benchmark functions 

Function WMA PSO SBO ABC FA MVO GA GWO BA 

F1 
Ave 1.75E-67 5.43E-06 8.43E-02 5.90E+03 1.61E+04 1.23E+00 2.48E+00 1.07E-27 3.46E+03 

Std 2.35E-67 2.59E-05 2.88E-02 1.01E+03 3.79E+03 3.76E-01 1.16E+00 1.56E-27 9.62E+02 

F2 
Ave 1.03E-34 4.91E-03 1.08E-01 6.42E+01 1.23E+02 3.92E+00 3.43E-01 9.20E-17 8.41E+05 

Std 6.91E-35 5.13E-03 2.47E-02 5.47E+00 9.52E+01 1.63E+01 8.23E-02 7.08E-17 3.08E+06 

F3 
Ave 4.26E-59 6.53E+02 9.57E+02 4.17E+04 2.37E+04 2.07E+02 4.35E+03 5.81E-06 9.89E+03 

Std 1.41E-58 1.12E+03 2.85E+02 4.74E+03 6.98E+03 7.65E+01 1.72E+03 7.35E-06 3.44E+03 

F4 
Ave 5.52E-34 4.17E-01 1.73E+00 7.04E+01 8.55E+06 2.37E+00 7.61E+00 7.27E-07 2.41E+01 

Std 4.72E-34 1.54E-01 1.07E+00 4.81E+00 3.64E+06 1.08E+00 1.33E+00 7.27E-07 5.53E+00 

F5 
Ave 3.87E+00 3.57E+01 2.58E+02 1.56E+07 8.55E+06 3.80E+02 2.73E+02 2.69E+01 5.63E+05 

Std 9.51E+00 2.53E+01 3.50E+02 2.59E+06 3.64E+06 6.25E+02 1.42E+02 8.64E-01 3.16E+05 

F6 
Ave 5.46E-03 3.81E-07 9.73E-02 6.25E+03 1.64E+04 1.36E+00 2.35E+00 7.78E-01 3.42E+03 

Std 3.91E-03 5.71E-07 3.37E-02 9.87E+02 3.33E+03 3.71E-01 8.43E-01 3.33E-01 1.42E+03 

F7 
Ave 8.96E-05 8.90E-02 1.57E-01 7.32E+00 2.52E+00 3.46E-02 1.08E-01 2.06E-03 5.91E-01 

Std 7.58E-05 2.84E-02 3.66E-02 1.65E+00 8.50E-01 1.46E-02 4.19E-02 8.29E-04 3.73E-01 

Table 6 P-values obtained from unimodal benchmark functions 

 Function PSO SBO ABC FA MVO GA GWO BA 

F1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F2 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F3 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F5 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 4.45E-05 1.73E-06 

F6 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F7 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

 

 

Fig. 4. Convergence of algorithms on unimodal benchmark function 

3.2. Evaluation of exploration capability (functions F8-F13) 

Table 7 shows the results of executing 6 multimodal functions in optimization algorithms. Accordingly, in  multimodal 

functions  the WMA algorithm showed the best performance on the all of the test cases. Also Table 8 shows a comparison on 

than other algorithms. Given the features of these functions, the results indicate the ability to highly
exploit the proposed algorithm. Fig. 4 shows the convergence curve of optimization algorithms in
the unimodal functions. According to Fig. 4, the WMA performed the convergence process faster
than other algorithms in addition to a higher exploitability. The P-values of the Wilcoxon signed
rank test can be seen in Table 6. Accordingly, all of the p-values were smaller than 0.05. Therefore,
there was a significant difference between the WMA algorithm and other algorithms.

3.2. Evaluation of exploration capability (functions F8-F13)

Table 7 shows the results of executing 6 multimodal functions in optimization algorithms. Accord-
ingly, in multimodal functions the WMA algorithm showed the best performance on the all of the
test cases. Also Table 8 shows a comparison on optimization algorithms in the Wilcoxon signed rank
test. Accordingly, the p-value was smaller than 0.05 in all cases except for one function (F13 in the
PSO). Therefore, there was a significant difference between the WMA and other algorithms. Fig.
5 shows the convergence diagram of optimization algorithms in multimodal multimodal functions
respectively . The WMA algorithm converged than other methods because of the high exploration
ability and local optimum avoidance as a result of moving towards the global optimum.
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Table 5 Results of unimodal benchmark functions 

Function WMA PSO SBO ABC FA MVO GA GWO BA 

F1 
Ave 1.75E-67 5.43E-06 8.43E-02 5.90E+03 1.61E+04 1.23E+00 2.48E+00 1.07E-27 3.46E+03 

Std 2.35E-67 2.59E-05 2.88E-02 1.01E+03 3.79E+03 3.76E-01 1.16E+00 1.56E-27 9.62E+02 

F2 
Ave 1.03E-34 4.91E-03 1.08E-01 6.42E+01 1.23E+02 3.92E+00 3.43E-01 9.20E-17 8.41E+05 

Std 6.91E-35 5.13E-03 2.47E-02 5.47E+00 9.52E+01 1.63E+01 8.23E-02 7.08E-17 3.08E+06 

F3 
Ave 4.26E-59 6.53E+02 9.57E+02 4.17E+04 2.37E+04 2.07E+02 4.35E+03 5.81E-06 9.89E+03 

Std 1.41E-58 1.12E+03 2.85E+02 4.74E+03 6.98E+03 7.65E+01 1.72E+03 7.35E-06 3.44E+03 

F4 
Ave 5.52E-34 4.17E-01 1.73E+00 7.04E+01 8.55E+06 2.37E+00 7.61E+00 7.27E-07 2.41E+01 

Std 4.72E-34 1.54E-01 1.07E+00 4.81E+00 3.64E+06 1.08E+00 1.33E+00 7.27E-07 5.53E+00 

F5 
Ave 3.87E+00 3.57E+01 2.58E+02 1.56E+07 8.55E+06 3.80E+02 2.73E+02 2.69E+01 5.63E+05 

Std 9.51E+00 2.53E+01 3.50E+02 2.59E+06 3.64E+06 6.25E+02 1.42E+02 8.64E-01 3.16E+05 

F6 
Ave 5.46E-03 3.81E-07 9.73E-02 6.25E+03 1.64E+04 1.36E+00 2.35E+00 7.78E-01 3.42E+03 

Std 3.91E-03 5.71E-07 3.37E-02 9.87E+02 3.33E+03 3.71E-01 8.43E-01 3.33E-01 1.42E+03 

F7 
Ave 8.96E-05 8.90E-02 1.57E-01 7.32E+00 2.52E+00 3.46E-02 1.08E-01 2.06E-03 5.91E-01 

Std 7.58E-05 2.84E-02 3.66E-02 1.65E+00 8.50E-01 1.46E-02 4.19E-02 8.29E-04 3.73E-01 

Table 6 P-values obtained from unimodal benchmark functions 

 Function PSO SBO ABC FA MVO GA GWO BA 

F1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F2 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F3 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F5 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 4.45E-05 1.73E-06 

F6 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F7 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

 

 

Fig. 4. Convergence of algorithms on unimodal benchmark function 

3.2. Evaluation of exploration capability (functions F8-F13) 

Table 7 shows the results of executing 6 multimodal functions in optimization algorithms. Accordingly, in  multimodal 

functions  the WMA algorithm showed the best performance on the all of the test cases. Also Table 8 shows a comparison on 

Figure 4: Convergence of algorithms on unimodal benchmark function

Table 7: Results of multimodal benchmark functions

  

optimization algorithms in the Wilcoxon signed rank test. Accordingly, the p-value was smaller than 0.05 in all cases except 

for one function (F13 in the PSO). Therefore, there was a significant difference between the WMA and other algorithms. Fig. 

5 shows the convergence diagram of optimization algorithms in multimodal multimodal functions respectively . The WMA 

algorithm converged than other methods because of the high exploration ability and local optimum avoidance as a result of 

moving towards the global optimum.  

Table 7 Results of multimodal benchmark functions 

 Function WMA PSO SBO ABC FA MVO GA GWO BA 

F8 
Ave -1.26E+04 -2.78E+03 -5.91E+03 -4.42E+03 -7.26E+03 -7.69E+03 -1.10E+04 -5.91E+03 -2.82E+03 

Std 6.75E-03 4.24E+02 9.75E+02 2.52E+02 5.64E+02 8.37E+02 2.99E+02 7.76E+02 7.17E+02 

F9 
Ave 0.00E+00 3.88E+01 5.51E+01 2.73E+02 1.90E+02 1.17E+02 4.61E+00 2.47E+00 1.15E+02 

Std 0.00E+00 1.03E+01 1.33E+01 1.18E+01 3.07E+01 3.10E+01 2.00E+00 4.14E+00 6.24E+01 

F10 
Ave 1.01E-15 7.94E-01 1.55E-01 1.40E+01 1.90E+01 1.85E+00 5.50E-01 1.03E-13 1.06E+01 

Std 6.49E-16 1.26E+00 9.81E-02 5.72E-01 1.24E-01 4.54E-01 1.82E-01 2.25E-14 2.03E+00 

F11 
Ave 0.00E+00 8.33E+01 4.57E-01 5.80E+01 1.54E+02 8.59E-01 9.97E-01 4.26E-03 3.55E+01 

Std 0.00E+00 7.34E+00 2.13E-01 9.43E+00 3.08E+01 6.64E-02 7.41E-02 9.99E-03 7.92E+00 

F12 
Ave 9.65E-05 1.45E-01 1.36E+00 2.65E+07 2.04E+06 2.33E+00 1.83E-01 4.26E-02 5.01E+03 

Std 8.41E-05 1.99E-01 1.95E+00 8.60E+06 2.00E+06 1.29E+00 1.57E-01 2.20E-02 1.69E+04 

F13 
Ave 1.12E-03 5.80E-02 9.23E-03 6.51E+07 2.06E+07 1.81E-01 1.74E-01 6.30E-01 4.07E+05 

Std 8.66E-04 2.31E-01 4.54E-03 2.26E+07 1.30E+07 9.75E-02 6.12E-02 1.92E-01 4.33E+05 

Table 8 P-values obtained from multimodal benchmark functions 

 Function PSO SBO ABC FA MVO GA GWO BA 

F8 1.92E-06 1.73E-06 1.73E-06 3.88E-06 1.13E-05 1.73E-06 1.73E-06 1.70E-06 

F9 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.66E-06 1.66E-06 1.73E-06 

F10 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.70E-06 1.70E-06 1.73E-06 

F11 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.70E-06 1.70E-06 1.73E-06 

F12 8.73E-03 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F13 0.643517 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

 

 

Fig. 5. Convergence of algorithms on multimodal benchmark functions 

3.3.  Ability to escape from local minima (functions F14–F19)  

 In composite functions, an optimization algorithm should strike an efficient balance between exploration and exploitation 

allows local optima to be avoided. Table 9 shows the results of executing 6 composite functions in optimization algorithms. 

Table 8: P-values obtained from multimodal benchmark functions

  

optimization algorithms in the Wilcoxon signed rank test. Accordingly, the p-value was smaller than 0.05 in all cases except 

for one function (F13 in the PSO). Therefore, there was a significant difference between the WMA and other algorithms. Fig. 

5 shows the convergence diagram of optimization algorithms in multimodal multimodal functions respectively . The WMA 

algorithm converged than other methods because of the high exploration ability and local optimum avoidance as a result of 

moving towards the global optimum.  

Table 7 Results of multimodal benchmark functions 

 Function WMA PSO SBO ABC FA MVO GA GWO BA 

F8 
Ave -1.26E+04 -2.78E+03 -5.91E+03 -4.42E+03 -7.26E+03 -7.69E+03 -1.10E+04 -5.91E+03 -2.82E+03 

Std 6.75E-03 4.24E+02 9.75E+02 2.52E+02 5.64E+02 8.37E+02 2.99E+02 7.76E+02 7.17E+02 

F9 
Ave 0.00E+00 3.88E+01 5.51E+01 2.73E+02 1.90E+02 1.17E+02 4.61E+00 2.47E+00 1.15E+02 

Std 0.00E+00 1.03E+01 1.33E+01 1.18E+01 3.07E+01 3.10E+01 2.00E+00 4.14E+00 6.24E+01 

F10 
Ave 1.01E-15 7.94E-01 1.55E-01 1.40E+01 1.90E+01 1.85E+00 5.50E-01 1.03E-13 1.06E+01 

Std 6.49E-16 1.26E+00 9.81E-02 5.72E-01 1.24E-01 4.54E-01 1.82E-01 2.25E-14 2.03E+00 

F11 
Ave 0.00E+00 8.33E+01 4.57E-01 5.80E+01 1.54E+02 8.59E-01 9.97E-01 4.26E-03 3.55E+01 

Std 0.00E+00 7.34E+00 2.13E-01 9.43E+00 3.08E+01 6.64E-02 7.41E-02 9.99E-03 7.92E+00 

F12 
Ave 9.65E-05 1.45E-01 1.36E+00 2.65E+07 2.04E+06 2.33E+00 1.83E-01 4.26E-02 5.01E+03 

Std 8.41E-05 1.99E-01 1.95E+00 8.60E+06 2.00E+06 1.29E+00 1.57E-01 2.20E-02 1.69E+04 
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Ave 1.12E-03 5.80E-02 9.23E-03 6.51E+07 2.06E+07 1.81E-01 1.74E-01 6.30E-01 4.07E+05 

Std 8.66E-04 2.31E-01 4.54E-03 2.26E+07 1.30E+07 9.75E-02 6.12E-02 1.92E-01 4.33E+05 

Table 8 P-values obtained from multimodal benchmark functions 

 Function PSO SBO ABC FA MVO GA GWO BA 

F8 1.92E-06 1.73E-06 1.73E-06 3.88E-06 1.13E-05 1.73E-06 1.73E-06 1.70E-06 

F9 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.66E-06 1.66E-06 1.73E-06 
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F12 8.73E-03 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F13 0.643517 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 
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3.3.  Ability to escape from local minima (functions F14–F19)  

 In composite functions, an optimization algorithm should strike an efficient balance between exploration and exploitation 

allows local optima to be avoided. Table 9 shows the results of executing 6 composite functions in optimization algorithms. 
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optimization algorithms in the Wilcoxon signed rank test. Accordingly, the p-value was smaller than 0.05 in all cases except 

for one function (F13 in the PSO). Therefore, there was a significant difference between the WMA and other algorithms. Fig. 
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moving towards the global optimum.  
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Table 9: Results of composite benchmark functions

  

Accordingly, in  this functions  the WMA algorithm showed the best performance on the majority of the test cases. Also 

Table 10 shows a comparison on optimization algorithms in the Wilcoxon signed rank test. Accordingly, the p-value was 

smaller than 0.05 in most cases except for F16. Therefore, there was a significant difference between the WMA algorithm 

and other algorithms. The large discrepancy of results comes from the high complexity of the search space in the evaluated 

composite functions. Fig. 6 shows the convergence diagram of optimization algorithms. The WMA algorithm converged than 

other methods as discussed earlier, exploration and exploitation phases were combined in composite functions. According to 

the results in Fig. 6 and Table 9, the proposed algorithm struck an efficient balance between these two phases to address the 

various differences of such a complicated search space.  

Table 9 Results of composite benchmark functions 

 Function WMA PSO SBO ABC FA MVO GA GWO BA 

F14 
Ave 40 80 120.0005 74.15591 151.3277 60.00288 237.7551 70.00343 151.3277 

Std 51.63978 91.89366 113.5291 22.71768 86.65939 69.91944 75.88531 105.9354 86.65939 

F15 
Ave 22.806 128.5088 160.547 103.5252 171.8722 289.5416 422.9546 119.8556 171.8722 

Std 9.147513 75.34788 119.1571 10.39313 110.6674 140.9827 158.1751 74.58779 110.6674 

F16 
Ave 204.1304 325.1323 596.0808 331.9271 683.9428 253.3962 622.7233 214.815 683.9428 

Std 59.82906 101.982 169.3054 34.43387 110.7461 118.8489 159.8559 65.25627 110.7461 

F17 
Ave 347.2332 479.8703 724.4624 381.5485 854.7304 372.8359 756.4808 374.6482 854.7304 

Std 42.62632 119.6874 146.7025 14.57331 141.4829 123.1018 145.3013 128.0835 141.4829 

F18 
Ave 25.00393 222.8516 197.5817 84.31209 664.9722 42.23124 434.6995 166.9422 664.9722 

Std 40.42662 204.4668 132.212 15.56667 240.7158 49.82718 161.7466 153.3033 240.7158 

F19 
Ave 692.0237 741.7132 784.2334 533.3116 850.0618 772.2147 876.4621 854.1923 850.0618 

Std 203.4475 207.741 190.4928 15.97211 138.4712 188.7851 108.2746 126.6481 138.4712 

Table 10 P-values obtained from composite functions 

 Function PSO SBO ABC FA MVO GA GWO BA 

F14 0.009766 0.042128 0.001953 0.001953 0.001953 0.019531 0.019531 0.001953 

F15 0.009766 0.001953 0.001953 0.001953 0.001953 0.019531 0.019531 0.001953 

F16 0.009766 0.005859 0.001953 0.001953 0.001953 0.019531 0.769531 0.001953 

F17 0.037109 0.042128 0.001953 0.001953 0.001953 0.019531 0.019531 0.001953 

F18 0.039063 0.009766 0.001953 0.001953 0.001953 0.019531 0.019531 0.001953 

F19 0.009766 0.005859 0.001953 0.001953 0.001953 0.019531 0.019531 0.001953 
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3.3. Ability to escape from local minima (functions F14–F19)

In composite functions, an optimization algorithm should strike an efficient balance between explo-
ration and exploitation allows local optima to be avoided. Table 9 shows the results of executing 6
composite functions in optimization algorithms. Accordingly, in this functions the WMA algorithm
showed the best performance on the majority of the test cases. Also Table 10 shows a comparison on
optimization algorithms in the Wilcoxon signed rank test. Accordingly, the p-value was smaller than
0.05 in most cases except for F16. Therefore, there was a significant difference between the WMA
algorithm and other algorithms. The large discrepancy of results comes from the high complexity
of the search space in the evaluated composite functions. Fig. 6 shows the convergence diagram of
optimization algorithms. The WMA algorithm converged than other methods as discussed earlier,
exploration and exploitation phases were combined in composite functions. According to the results
in Fig. 6 and Table 9, the proposed algorithm struck an efficient balance between these two phases
to address the various differences of such a complicated search space.

3.4. Optimization of large-scale problems using WMA

To further demonstrate the capabilities of WMA and the importance of applying this algorithm to
high-dimensional, real-world problems, the 1000 dimensional versions of the unimodal and multi-
modal benchmark functions (F1. . . F13) were used. In this test, the population size and number
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Figure 6: Convergence of algorithms on composite benchmark functions

of iterations were considered 30 and 500, respectively. The statistical results were averaged for 30
independent runs. Details of the this test problems are reported in Tables 11. The results of the
proposed algorithm for high dimensions of the multimodal and unimodal functions (F1. . . F13) are
presented in Table 11 As shown, the results are highly promising and effective in high dimensions,
which is maintained as the number of problem variables ( dimension ) is increased. The results of
1000 dimensional search space are given in Table 11 As shown, the WMA algorithm by far outper-
forms the other assessed algorithms offering the best results for all F1 to F13 functions.. It should
be noted that the proposed algorithm was able to obtain the global optimum for functions F9 and
F11 in 30 and 1000 dimensions.

4. Conclusion

In this study, a new metaheuristic algorithm was inspired by the intelligent behavior of woodpeckers
in the mating process called WMA. In the WMA algorithm, the received drum sound intensity was
defined as the attractiveness for moving in another direction. The sound intensity was inspired by
the concepts of sound waves physics. The proposed algorithm was equipped with multiple operators
to explore and exploit the search space. In the WMA, the population is divided into male and female
woodpeckers. The female woodpeckers update their positions based on the position of the best and
closest male bird. In the initial iterations, this method increases exploration and diversity. As the
final iterations come along, the adaptive decrease in the number of male woodpeckers increases the
exploitation around the resultant solutions. At the same time, decreasing the magnitudes of steps
adaptively during the algorithm iteration cycle will directly affect exploration and exploitation as
well as the transfer between these two phases.
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Table 11: Results of benchmark functions (F1-F13), with 1000 dimensions

  

3.4. Optimization of large-scale problems using WMA 

To further demonstrate the capabilities of WMA and the importance of applying this algorithm to high-dimensional, real-

world problems, the 1000 dimensional versions of the unimodal and multimodal benchmark functions (F1…F13) were used. 

In this test, the population size and number of iterations were considered 30 and 500, respectively. The statistical results were 

averaged for 30 independent runs. Details of the this test problems are reported in Tables 11. The results of the proposed 

algorithm for high dimensions of the multimodal and unimodal functions (F1…F13) are presented in Table 11 As shown, the 

results are highly promising and effective in high dimensions, which is maintained as the number of problem variables ( 

dimension ) is increased. The results of 1000 dimensional search space are given in Table 11 As shown, the WMA algorithm 

by far outperforms the other assessed algorithms offering the best results for all F1 to F13 functions.. It should be noted that 

the proposed algorithm was able to obtain the global optimum for functions F9 and F11 in 30 and 1000 dimensions. 

Table 11 Results of benchmark functions (F1-F13), with 1000 dimensions. 

 Function WMA PSO SBO ABC FA MVO GA GWO BA 

F1 
Ave 1.59E-63 3.87E+03 2.27E+05 3.05E+06 2.75E+07 7.98E+05 1.55E+05 2.59E-01 1.94E+05 

Std 2.31E-63 6.35E+02 2.38E+04 3.24E+04 2.04E+04 3.10E+04 1.30E+04 8.11E-02 7.61E+03 

F2 
Ave 1.14E-32 1.56E+03 1.63E+10 5.98E+08 2.14E+10 5.62E+07 2.04E+03 7.81E-01 2.06E+03 

Std 6.39E-33 8.92E+02 8.90E+09 2.15E+07 8.56E+09 3.62E+06 6.53E+02 4.64E-01 4.70E+02 

F3 
Ave 6.94E-50 2.24E+06 1.03E+07 4.82E+07 3.54E+07 8.01E+06 2.38E+06 1.51E+06 2.49E+06 

Std 2.23E-49 1.18E+06 2.64E+06 5.12E+06 6.23E+06 8.15E+05 4.96E+05 3.49E+05 2.05E+05 

F4 
Ave 7.07E-32 1.60E+01 4.53E+01 9.94E+01 9.45E+01 9.77E+01 5.01E+01 7.86E+01 5.24E+01 

Std 5.64E-32 7.76E-01 3.62E+00 9.05E-02 3.26E-01 5.73E-01 4.44E+00 3.15E+00 8.28E-01 

F5 
Ave 3.64E+00 3.42E+05 1.08E+08 1.42E+10 1.12E+10 2.33E+09 5.44E+07 1.03E+03 8.67E+07 

Std 4.34E+00 6.39E+04 1.93E+07 2.61E+08 2.42E+08 1.52E+08 8.91E+06 2.15E+00 5.77E+06 

F6 
Ave 1.89E-01 3.89E+03 1.08E+08 3.05E+06 2.73E+06 7.92E+05 1.50E+05 2.03E+02 1.93E+05 

Std 2.77E-01 6.75E+02 1.93E+07 3.87E+04 6.13E+04 2.98E+04 1.02E+04 2.70E+00 7.80E+03 

F7 
Ave 1.80E-04 1.76E+04 2.86E+02 2.32E+05 1.46E+05 2.96E+04 1.53E+05 1.51E-01 1.13E+03 

Std 1.01E-04 1.67E+03 4.08E+01 4.21E+03 7.07E+03 2.02E+03 1.26E+04 3.32E-02 9.33E+01 

F8 
Ave -4.19E+05 -1.60E+04 -1.60E+04 -2.59E+04 -9.99E+04 -1.10E+05 -1.26E+05 -8.07E+04 -1.60E+05 

Std 4.33E-01 2.30E+03 3.71E+03 2.01E+03 2.01E+03 4.10E+03 7.88E+03 2.45E+04 3.55E+04 

F9 
Ave 0.00E+00 6.26E+03 6.47E+03 1.73E+04 1.22E+04 1.45E+04 5.69E+03 1.89E+02 5.66E+03 

Std 0.00E+00 2.94E+02 2.34E+02 1.59E+02 1.52E+02 2.27E+02 1.14E+02 4.42E+01 1.14E+02 

F10 
Ave 1.95E-15 8.43E+00 1.36E+01 2.11E+01 2.03E+01 2.10E+01 1.26E+01 1.76E-02 1.82E+01 

Std 1.66E-15 2.76E-01 3.06E-01 7.47E-03 2.21E-02 2.48E-02 2.89E-01 2.73E-03 2.07E-01 

F11 
Ave 0.00E+00 3.60E+03 2.06E+03 2.74E+04 2.45E+04 7.22E+03 1.34E+03 6.86E-02 1.74E+03 

Std 0.00E+00 6.70E+01 2.15E+02 3.40E+02 3.73E+02 3.00E+02 1.15E+02 8.54E-02 3.80E+01 

F12 
Ave 6.69E-06 6.62E+00 1.76E+07 3.50E+10 2.44E+10 4.20E+09 1.46E+06 1.24E+00 4.41E+06 

Std 6.88E-06 9.01E-01 7.82E+06 7.57E+08 8.99E+08 4.10E+08 6.99E+05 2.75E-01 7.28E+05 

F13 
Ave 6.86E-03 2.41E+03 1.56E+08 6.43E+10 4.85E+10 9.21E+09 5.05E+07 1.21E+02 8.80E+07 

Std 1.61E-02 6.48E+02 3.65E+07 1.53E+09 9.25E+08 6.50E+08 1.34E+07 8.25E+00 1.29E+07 
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The efficiency of the proposed algorithm was evaluated using 19 mathematical benchmark functions
(7 unimodal, 6 multimodal and 6 composite). The WMA algorithm was compared with a group of
new and well-known metaheuristic algorithms. The proposed algorithm could obtain better results in
17 benchmark functions. The proposed algorithm produced significant results in the non-convex, in-
separable, and scalable benchmark functions. In addition, the convergence diagrams showed a higher
convergence speed. The simulation results indicated the high abilities of the proposed algorithm to
explore and exploit the search space. It can also bring about convergence quickly. As a suggestion
for future studies, the WMA algorithm can be used to solve the real world problems in different
engineering fields. It can also be combined with other algorithms to improve the performance of the
WMA.
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