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Abstract

In this paper, we give some sufficient conditions under which perturbations preserve Hilbert-Schmidt
frames. Also show that the canonical dual of a perturbed Hilbert-Schmidt frame is a perturbation
of the canonical dual (alternative dual respectively) of the original Hilbert-Schmidt frame and dis-
cuss best approximation in the set of all dual Hilbert-Schmidt frames. Next, we apply the woven
principle to Hilbert-Schmidt frames and study the stability of weaving Hilbert-Schmidt frames under
perturbations. Finally, we present sufficient conditions under which perturbations preserve weaving
Hilbert-Schmidt frames and weaving dual Hilbert-Schmidt frames.
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1. Introduction

The von NeumannSchatten frames in a separable Banach space was first proposed by Sadeghi and
Arefijamaal [29] to deal with all the existing frames as a united object. In fact, von Neumann-Schatten
frames is an extension of g-frames [30], bounded quasi-projectors [19], fusion frames [3, 8], pseudo-
frames [22], weighted frames [4], oblique frames [10, 18], outer frames [1], p-frames for separable
Banach spaces [12] and in the context of numerical analysis the stable space splittings [24, 25].
As an important class of von Neumann-Schatten p-frames, Hilbert-Schmidt frames have interested
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some mathematicians due to having the inner product structure [11, 12]. For more information on
Hilbert-Schmidt frames, see Refs. [20, 26, 27, 35].

Weaving frames in a separable Hilbert space was first proposed by Bemrose et al. [5]. This
frames are an important concept for applications in wireless sensor networks that require distributed
processing under different frames, as well as pre-processing of signals using Gabor frames. Casazza
and Lynch [6] studied the fundamental properties of weaving frames. Also, Casazza et al. [7]
extended the concept of weaving Hilbert space frames to the Banach space setting. They introduced
and studied weaving Schauder frames in Banach spaces. Many generalizations of the notion of
weaving Hilbert space frames such as Weaving g-frames and fusion frames [14, 15, 21, 33], weaving
K-Frames and K-g-Frames [16, 34], continuous weaving frames [31, 32], as well as weaving Gabor
frames in L2(R) [17] were presented by many authors. In this study, we will apply the woven principle
to Hilbert-Schmidt frames. We first show that small perturbations of a Hilbert-Schmidt frame give
rise to another Hilbert-Schmidt frame. Also, we prove that if we do a sufficiently small perturbation
of a Hilbert-Schmidt frame, the canonical dual of the new Hilbert-Schmidt frame is also a small
perturbation of the canonical dual of the first one. We then obtain a similar result for the case of
alternative dual Hilbert-Schmidt frames. Using this, we present sufficient conditions under which
perturbations preserve weaving Hilbert-Schmidt frames and weaving dual HilbertSchmidt frames.

The rest of this paper is organized as follows. Section 2 gives an overview of some notions and
related results for later use. In Section 3, we give various results about stability under perturbations
for HilbertSchmidt frames and dual HilbertSchmidt frames. Finally, in Section 4, we introduce the
notion of weaving Hilbert-Schmidt frames and study the stability of weaving Hilbert-Schmidt frames
under perturbations.

2. Background on von Neumann-Schatten and Hilbert-Schmidt frames

In this section, we give some basic notations of von Neumann-Schatten p-Bessel sequences in the
sense of Sadeghi and Arefijamaal [29]. Nevertheless, we shall require some facts about the theory of
von Neumann-Schatten p-class Cp. For background on this theory, we use [23, 28] as reference and
adopt that book’s notation. Moreover, our notation and terminology are standard and, concerning
frames in Hilbert and Banach spaces, they are in general those of the book [9].

Let H be a separable Hilbert space with orthonormal basis E = {en}n∈N and B(H) denotes
the C∗-algebra of all bounded linear operators on H. For a compact operator A ∈ B(H), let
s1(A) ≥ s2(A) ≥ · · · ≥ 0 denote the singular values of A, that is, the eigenvalues of the positive

operator |A| = (A∗A)
1
2 , arranged in a decreasing order and repeated according to multiplicity. For

1 ≤ p < ∞, the von Neumann- Schatten p-class Cp is defined to be the set of all compact operators
A for which

∑∞
i=1 s

p
i (A) < ∞. For A ∈ Cp, the von Neumann Schatten p-norm of A is defined by

∥A∥Cp =
( ∞∑

i=1

spi (A)
) 1

p
=
(
tr|A|p

) 1
p
, (2.1)

where tr is the trace functional which defines as tr(A) =
∑

n∈N⟨A(en), en⟩. It is convenient to let C∞
denote the class of compact operators, and in this case ∥A∥C∞ = s1(A) is the usual operator norm.
In what follows, the notations ∥ · ∥Cp and ∥ · ∥C∞ denote the norm of the Banach spaces Cp and C∞,
respectively. The special case C2 is called the Hilbert-Schmidt class. Recall from [36, Theorem 1.4.6]
that an operator A is in Cp if and only if Ap ∈ C1. In particular, ∥A∥pCp = ∥Ap∥C1 . It is proved that
Cp is a two sided ∗-ideal of B(H), that is, a Banach algebra under the norm (2.1) and the finite rank
operators are dense in (Cp, ∥ · ∥Cp). Moreover, for A ∈ Cp, one has ∥A∥Cp = ∥A∗∥Cp , ∥A∥ ≤ ∥A∥Cp
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and if B ∈ B(H), then ∥BA∥Cp ≤ ∥B∥∥A∥Cp and ∥AB∥Cp ≤ ∥B∥∥A∥Cp . In particular, Cp ⊆ Cq if
1 ≤ p ≤ q ≤ ∞. We also recall that C2 is a Banach space with respect to the norm ∥ · ∥HS . It is
shown that the space C2 with the inner product [T, S]tr := tr(S∗T ) is a Hilbert space.

Now for a fixed 1 < p < ∞, following Conway [13, p. 74], we define the Banach spaces

⊕Cp =
{
A = {Ai}∞i=1 : Ai ∈ Cp ∀i ∈ N and ∥A∥p :=

(∑
i

∥Ai∥pCp
) 1

p
< ∞

}
.

In particular, ⊕C2 is a Hilbert space with the inner product

⟨A,A′⟩ :=
∞∑
i=1

[Ai,A′
i]tr,

and so ∥A∥22 = ⟨A,A⟩.
If x and y are elements of a Hilbert spaces H we define the operator x⊗ y on H by

(x⊗ y) (z) = ⟨z, y⟩x.

It is obvious that ∥x ⊗ y∥ = ∥x∥∥y∥ and the rank of x ⊗ y is one if x and y are non-zero. If
x, x′, y, y′ ∈ H and u ∈ B(H), then the following equalities are easily verified:

(x⊗ x′) (y ⊗ y′) = ⟨y, x′⟩ (x⊗ y′)

(x⊗ y)∗ = y ⊗ x

u (x⊗ y) = u(x)⊗ y

(x⊗ y)u = x⊗ u∗(y).

Note that if x, y ∈ H, then ∥x ⊗ y∥Cp = ∥x ⊗ y∥Cq = ∥x∥∥y∥ and tr(x ⊗ y) = ⟨x, y⟩ so x ⊗ y is in
Cp for all p ≥ 1. The operator x ⊗ x is a rank-one projection if and only if ⟨x, x⟩ = 1, that is, x is
a unit vector. Conversely, every rank-one projection is of the form x ⊗ x for some unit vector x. If
{ηi : i ∈ I} and {ζi : i ∈ I} are orthonormal bases in H, then {ηi ⊗ ζj : i, j ∈ I} is an orthonormal
basis of C2; see [28] for more details.

Recall from [29] that a countable family G = {Gi}∞i=1 of bounded linear operators from X to Cp ⊆
B(H) is a von Neumann-Schatten p-frame for the Banach space X with respect to H (1 ≤ p < ∞)
if constants A,B > 0 exist such that

A∥f∥X ≤

(∑
i≥1

∥Gi(f)∥pCp

) 1
p

≤ B∥f∥X (2.2)

for all f ∈ X . It is called a von Neumann-Schatten p-Bessel sequence with bound B if the second
inequality holds. In particular, the authors of [29] showed that the von Neumann-Schatten p-frame
condition is satisfied if and only if {Ai}∞i=1 7→

∑∞
i=1AiGi is a well defined mapping from ⊕Cq onto

X ∗, and motivated by this fact, they considered the following operators:

TG : ⊕Cq → X ∗; {Ai}∞i=1 7→
∞∑
i=1

AiGi, (2.3)

and

T ∗
G : X → ⊕Cp; f 7→ {Gi(f)}∞i=1 . (2.4)
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As usual, the operator TG is called the synthesis operator, and T ∗
G is the analysis operator of G. The

reader will remark that if H = C, then B(H) = Cp = C and thus ⊕Cp = ℓp (1 ≤ p ≤ ∞), and thus
the above definitions is consistent with the corresponding definitions in the concept of p-frames for
separable Banach spaces.

In the case where p = 2 the spaces C2 :=2 (H) and ⊕2C2 are Hilbert and motivated by this fact
the authors of [2, 29] provided a detailed study of the duals of a von Neumann-Schatten 2-frame,
called Hilbert–Schmidt frame for Hilbert space K with respect to Hilbert space H.

Definition 2.1. A sequence G := {Gi}∞i=1 ⊆ B(K,⊕C2) is said to be a HilbertSchmidt frame or
simply a HS-frame for K with respect to H, whenever there exist two positive numbers AG and BG
such that

AG∥f∥2 ≤
∞∑
i=1

∥Gi(f)∥2C2 ≤ BG∥f∥2 (2.5)

for all f ∈ K. The constants AG and BG are called the lower and upper HS-frame bounds of G and
G is called to be a HS-Bessel sequence for K with respect to H, if the right-hand side of (2.5) holds.

Particularly, by using the Hilbert properties of the spaces, they observed that

TG({Ai}∞i=1) =
∞∑
i=1

G∗
i Ai and T ∗

G(f) = {Gi(f)}∞i=1 ,

where f ∈ K and {Ai}∞i=1 ∈ ⊕C2 and the mapping

SG : K → K , SG(f) := TGT
∗
G(f) =

∞∑
i=1

G∗
i Gi(f)

is an invertible, self-adjoint, positive and bounded linear operator and

AGIdK ≤ SG ≤ BGIdK.

From this, they were able to characterize all dual frames of a HS-frame. It is worthwhile to mention
that a HS-frame is a more general version of the g-frame, an important generalization of ordinary
frames.

3. The Perturbation on the Dual Hilbert-Schmidt frames

In what follows we shall frequently make use of the following notation for a HS-frame F :

rannB(K,⊕2)(TF) :=
{
Φ ∈ B(K,⊕C2) : TFΦ = 0

}
,

the set of all right annihilators of the operator TF in B(K,⊕C2).

Definition 3.1. Let F = {Fi}∞i=1 be a HS-frame for K with respect to H. A HS-frame {Gi}∞i=1

is called Hilbert-Schmidt dual frame or simply a HS-dual frame for F if f =
∑∞

i=1F∗
i Gi(f) for all

f ∈ K, i.e. TFT
∗
G = IdK.
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By using the properties of the Hilbert-Schmidt frame operator SF , we observe that for all f ∈ K

f = SF(S
−1
F f) =

∞∑
i=1

F∗
i FiS

−1
F (f) and f = S−1

F (SFf) =
∞∑
i=1

S−1
F F∗

i Fi(f).

The sequence F̃ = {F̃i}∞i=1 := {FiS
−1
F }∞i=1 is a HS-dual frame for K with respect to H with the lower

and upper HS-bounds B−1
F and A−1

F , where AF and BF are the lower and upper HS-frame bounds

of F (see Ref. [2]). The HS-dual frame F̃ is called the canonical HS-dual frame of F . The authors
in [2] characterized all HS-duals of F by using the canonical HS-dual. Indeed, if F be a HS-frame of
H, then Fd = {Fd

i }∞i=1 is a HS-dual of F if and only if

Fd
i = F̃i + πiΦ = FiS

−1
F + πiΦ,

where Φ ∈ rannB(K,⊕2)(TF) and

πi : ⊕2 →2 , πi ({Aj}j) = Ai.

In what follows, the notation F̃(Φ) denote the HS-dual {F̃i + πiΦ}∞i=1 of F .

Theorem 3.2. Let F = {Fi}∞i=1 and G = {Gi}∞i=1 be HS-frames for K with respect to H. Then the
following statements hold:

(a) Let {νn,m : n,m ∈ N} be an orthonormal basis for C2. Then, G is a HS-dual frame of F if and
only if the ordinary frame {G∗

i (νn,m)} be a dual frame of {F∗
i (νn,m)}.

(b) Let {ei}∞i=1 be an orthonormal basis for H, then G is a HS-dual frame of F if and only if and
only {G∗

i (en ⊗ em)} is a dual frame of {F∗
i (en ⊗ em)}.

Proof . Let {Fi}∞i=1 be a HS-frame for K with respect to H and {νn,m : n,m ∈ N} be a orthonormal
basis of 2. Define a bounded linear functional on K as follows

f 7→ [Fjf, νn,m]tr (f ∈ K).

By Riesz representation theorem, there exists fj,n,m ∈ K such that

[Fjf, νn,m]tr = ⟨f, fj,n,m⟩ (f ∈ K).

Hence
Fjf =

∑
n,m∈N

⟨f, fj,n,m⟩νn,m (f ∈ K).

The sequence {fj,n,m} is a Bessel sequence, since for all f ∈ K∑
n,m∈N

|⟨f, fj,n,m⟩|2 = ∥Fjf∥22 (3.1)

≤ ∥Fj∥2∥f∥2.

Now, for any f ∈ K and A ∈2, we get

⟨f,F∗
j A⟩ = [Fif,A]tr =

[ ∑
n,m∈N

⟨f, fj,n,m⟩νn,m, A

]
tr

=

⟨
f,
∑

n,m∈N

[A, νn,m]tr fj,n,m

⟩
.
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Therefore
F∗

j A =
∑

n,m∈N

[A, νn,m]trfj,n,m (A ∈2). (3.2)

In particular, F∗
j (νn,m) = fj,n,m. Therefore by (3.2), we have

F∗
j A =

∑
n,m∈N

[A, νn,m]tr F∗
j (νn,m) (A ∈2). (3.3)

Similarly, there exists gj,n,m ∈ H such that G∗
j (νn,m) = gj,n,m. By [2, Theorem 3.3], F = {F∗

j (νn,m)}
and G = {G∗

j (νn,m)} are frames for Hilbert space K. Using (3.3), we obtain that

TFT
∗
G(f) =

∞∑
i=1

∑
n,m∈N

⟨f,G∗
i (νn,m)⟩F∗

i (νn,m)

=
∞∑
i=1

F∗
i

( ∑
n,m∈N

[Gi(f), νn,m]tr νn,m

)

=
∞∑
i=1

F∗
i Gi(f) = TFT

∗
G(f),

which proves part (a) of the theorem. To prove the part (b), it is sufficient to put νn,m := en ⊗ em in
part (a). □

Definition 3.3. Let F = {Fi}∞i=1 and G = {Gi}∞i=1 be HS-Bessel sequences for K with respect to H.
For µ > 0, we say that G is a µ-perturbation of F if

∥TF − TG∥ ≤ µ.

Theorem 3.4. Let F = {Fi}∞i=1 be HS-frame for K with respect to H with the lower and upper
HS-bounds A,B and let G = {Gi}∞i=1 be a µ-perturbation of F . If µ <

√
A, then G is a HS-frame for

K with respect to H with frame HS-bounds(√
A− µ

)2
,
(√

B + µ
)2
.

Proof . Since A and B are the lower and upper HS-frame bounds for F , so that
√
A∥f∥ ≤ ∥T ∗

F(f)∥2 ≤
√
B∥f∥ (f ∈ K).

Therefore, for all f ∈ K we have

∥T ∗
G(f)∥2 ≥ ∥T ∗

F(f)∥2 − ∥(TF − TG)
∗(f)∥2 ≥

(√
A− µ

)
∥f∥,

and
∥T ∗

G(f)∥2 ≤ ∥(TF − TG)
∗(f)∥2 + ∥T ∗

F(f)∥2 ≤
(
µ+

√
B
)
∥f∥.

Hence, for all f ∈ K we obtain

(√
A− µ

)2 ∥f∥2 ≤
∞∑
i=1

∥Gi(f)∥22 ≤
(√

B + µ
)2 ∥f∥2.

□
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Lemma 3.5. Let F = {Fi}∞i=1 and G = {Gi}∞i=1 be HS-frame for K with respect to H and let
Φ ∈ rannB(K,⊕2)(TF), Ψ ∈ rannB(K,⊕2)(TG). Then

TG̃(Ψ) − TF̃(Φ) = TF̃(Φ) (TF − TG)
∗ TG̃ +Ψ∗ − TF̃(Φ)PkerTG

. (3.4)

Proof . At first, note that R(T ∗
G) is closed , since ∥T ∗

G(f)∥2 ≥
√
A∥f∥ where A is lower HS-frame

bound of G. Therefore R(T ∗
G)⊕ kerTG = Id⊕2 . Thus

PR(T ∗
G )
⊕ PkerTG = Id⊕2 and T ∗

GTG̃ = PR(T ∗
G )
.

Also TF̃(Φ)T
∗
F = IdK, Since F̃(Φ) is a HS-dual frame of F . For an arbitary {Ai}∞i=1 ∈ ⊕2, we have

TG̃(Ψ) ({Ai}∞i=1) =
∞∑
i=1

(G̃i + πiΨ)∗Ai

=
∞∑
i=1

G̃∗
i Ai +

∞∑
i=1

Ψ∗π∗
iAi

=TG̃ ({Ai}∞i=1) + Ψ∗( ∞∑
i=1

π∗
iAi

)
=TG̃ ({Ai}∞i=1) + Ψ∗ ({Ai}∞i=1) .

So TG̃(Ψ) = TG̃ +Ψ∗. Therefor, we obtain

TF̃(Φ)(T
∗
F − T ∗

G)TG̃ +Ψ∗ − TF̃(Φ)PkerTG

= TG̃ − TF̃(Φ)PR(T ∗
G )
+Ψ∗ − TF̃(Φ)PkerTG

=
(
TF̃(Φ)T

∗
F
)
TG̃ − TF̃(Φ)

(
T ∗
GTG̃

)
+Ψ∗ − TF̃(Φ)PkerTG

=
(
TG̃ +Ψ∗)− TF̃(Φ)

(
PR(T ∗

G )
+ PkerTG

)
= TG̃(Ψ) − TF̃(Φ),

and the lemma is proven. □
Theorem 3.6. Let F = {Fi}∞i=1 be HS-frame for K with respect to H with the lower HS-frame bound
A and let G = {Gi}∞i=1 be a µ-perturbation of F . If µ <

√
A, then G is a HS-frame and the canonical

dual G̃ of G is a λ-perturbation of F̃ , where

λ =
1√

A− µ
.

Proof . By Theorem 3.4, G is a HS-frame for K with respect to H with the lower bound
(√

A−µ
)2
.

Putting Φ = Ψ := 0 in Lemma 3.5, we get

TG̃ − TF̃ = TF̃ (TF − TG)
∗ TG̃ − TF̃PkerTG

,

and so
∥TG̃ − TF̃∥ ≤ ∥TF̃∥ ∥TF − TG∥ ∥TG̃∥+ ∥TF̃∥.

Since A−1 and
(√

A− µ
)−2

are lower HS-bauds of F̃ and G̃, respectively, therefore

∥TG̃ − TF̃∥ ≤ 1√
A− µ

,

which completes the proof. □
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Theorem 3.7. Let F = {Fi}∞i=1 be HS-frame for K with respect to H with lower HS-frame bound
A and let G = {Gi}∞i=1 be a µ-perturbation of F . If µ <

√
A, then G is a HS-frame and for every

Φ ∈ rannB(K,⊕2)(TF) the HS-dual G̃
(
PkerTGT

∗
F̃(Φ)

)
of G is a λ-perturbation of F̃(Φ), where

λ =
µ
√
1 + A∥Φ∥2√

A
(√

A− µ
) . (3.5)

Moreover, for every Φ ∈ rannB(K,⊕2)(TF) the HS-dual G̃
(
PkerTGT

∗
F̃(Φ)

)
of G is a best approximation

of F̃(Φ) in the set of all HS-duals of G.

Proof . By Theorem 3.4, G is a HS-frame for K with respect to H with the lower bound frame(√
A − µ

)2
and so ∥TG̃∥ ≤

(√
A− µ

)−1
. Since A−1 is the lower HS-bound frame of F̃ , we conclude

that

∥T ∗
F̃(Φ)

(f)∥22 =
∞∑
i=1

∥F̃i + πiΦ(f)∥22

=
∞∑
i=1

⟨
F̃i + πi Φ(f), F̃i + πiΦ(f)

⟩
=

∞∑
i=1

(
∥F̃i(f)∥22 +

⟨
F̃i, πi Φ(f)

⟩
+
⟨
πiΦ(f), F̃i

⟩
+ ∥πiΦ(f)∥22

)
= ∥T ∗

F̃(f)∥
2
2 + ∥Φ(f)∥22

≤ 1

A
∥f∥2 + ∥Φ∥2∥f∥2 (3.6)

for all f ∈ K and Φ ∈ rannB(K,⊕2)(TF). So that ∥TF̃(Φ)∥ ≤
√
A−1 + ∥Φ∥2. For every Φ ∈

rannB(K,⊕2)(TF), we denote Ψ0 := PkerTGT
∗
F̃(Φ)

∈ rannB(K,⊕2)(TG). Putting Ψ := Ψ0 in Lemma

3.5, we get

TG̃(Ψ0)
− TF̃(Φ) = TF̃(Φ) (TF − TG)

∗ TG̃ +Ψ∗
0 − TF̃(Φ)PkerTG

= TF̃(Φ) (TF − TG)
∗ TG̃,

which implies ∥TG̃(Ψ0)
− TF̃(Φ)∥ ≤ λ, where λ given by (3.5).

Moreover, since PR(T ∗
G )
⊕ PkerTG = Id⊕2 ,we observe that

=(TG̃ − TF̃(Φ))PR(T ∗
G )
+ (Ψ∗ − TF̃(Φ))PkerTG

for all Ψ ∈ rannB(K,⊕2)(TG). By setting Ψ := Ψ0 in (??), we have

TG̃(Ψ0)
− TF̃(Φ) = (TG̃ − TF̃(Φ))PR(T ∗

G )
.

Therefor, for all Υ ∈ ⊕2 we have

∥(TG̃(Ψ) − TF̃(Φ))Υ∥2 ≥ ∥(TG̃ − TF̃(Φ))PR(T ∗
G )
(Υ)∥2 = ∥(TG̃(Ψ0)

− TF̃(Φ))Υ∥2,

which implies the HS-dual G̃
(
PkerTGT

∗
F̃(Φ)

)
of G is a best approximation of F̃(Φ) in the set of all

HS-duals of G. □
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Theorem 3.8. Let F = {Fi}∞i=1 be HS-frame for K with respect to H with lower HS-frame bound

A and let G = {Gi}∞i=1 be a µ-perturbation of F . If µ <
√
A
2
, then G is a HS-frame and the set of all

HS-duals of F and the set of all HS-duals of G are isomorphic.

Proof . We show that for every Φ ∈ rannB(K,⊕2)(TF), Λ : F̃(φ) 7→ G̃(PkerTGT
∗
F̃(Φ)

) is a bijective map

from the set of all HS-duals of F onto the set of all HS-duals of G. Suppose that Λ(F̃(φ1)) = Λ(F̃(φ2))

for two Φ1,Φ2 ∈ rannB(K,⊕2)(TF). Hence, we have G̃(PkerTGT
∗
F̃(Φ1)

) = G̃(PkerTGT
∗
F̃(Φ2)

). Therefore

PkerTGT
∗
F̃(Φ1)

= PkerTGT
∗
F̃(Φ2)

, which yields PkerTGΦ1 = PkerTGΦ2. Clearly, PkerTGΦ =
(
PkerTG |kerTF

)
Φ

for all Φ ∈ rannB(K,⊕2)(TF). It will thus be sufficient to prove that PkerTG |kerTF is injective and so

that Φ1 = Φ2. By Theorem 3.4, ∥T ∗
G(g)∥2 ≥

(√
A−µ

)
∥g∥ for all g ∈ K which, together with µ <

√
A
2
,

yields

=sup
{
infΩ∈R(T ∗

F ) ∥Ω−Υ∥2 : Υ ∈ R(T ∗
G), ∥Υ∥2 = 1

}
= sup

{
inff∈K ∥T ∗

F(f)− T ∗
G(g)∥2 : g ∈ K, ∥T ∗

G(g)∥2 = 1
}

≤ sup
{
∥T ∗

F(g)− T ∗
G(g)∥2 : g ∈ K, ∥T ∗

G(g)∥2 = 1
}

≤ ∥T ∗
F − T ∗

G∥ sup{∥g∥ : g ∈ K, ∥T ∗
G(g)∥2 = 1}

≤ µ√
A−µ

< 1.

For all Υ = {Ai}∞i=1 ∈ ⊕2 with ∥Υ∥2 = 1, we can use the Pythagorean relation to show that

∥PkerTG(Υ)∥22 = 1− ∥
(
Id⊕2 − PkerTG

)
(Υ)∥22.

So that by (??) we have

inf
Υ∈kerTF ,∥Υ∥2=1

∥PkerTG(Υ)∥22 = 1− sup
Υ∈kerTF ,∥Υ∥2=1

∥
(
Id⊕2 − PkerTG

)
(Υ)∥22

= 1− ∥
(
Id⊕2 − PkerTG

)
| kerTF∥2

= 1− ∥PR(T ∗
G )
| kerTF∥2

= 1− ∥
(
PR(T ∗

G )
| kerTF

)∗∥2
= 1− ∥PkerTF |R(T ∗

G)∥2 > 0

Thus, PkerTG | kerTF is bounded below and so is injective.

To prove Λ is surjective, suppose that G̃(Ψ) be a HS-duals of G, where Ψ ∈ rannB(K,⊕2)(TG). We
set

Φ :=
(
PkerTG |kerTF

)−1
(Ψ− PkerTGT

∗
F̃).

Then, we have

PkerTGT
∗
F̃(Φ) = PkerTG(T

∗
F̃ + Φ)

= PkerTGT
∗
F̃ +Ψ− PkerTGT

∗
F̃

= Ψ,

which completes the proof. □
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4. Weaving Hilbert-Schmidt frames and Perturbations

The concept of weaving was recently proposed by Bemrose et al [5] to simulate a question in dis-
tributed signal processing. In this section, we first recall the definition of weaving Hilbert space
frames ([5]), and apply the woven principle to Hilbert-Schmidt frames. Next, we discuss the erasures
and perturbations of weaving for Hilbert-Schmidt frames.

For a given natural number m, let [m] := {1, 2, · · · ,m}.

Definition 4.1. A family of frames {{fij}i∈N : j ∈ [m]} for a separable Hilbert space H is said to
be woven if there are universal constants A and B so that, for every partition {σj}j∈[m] of N, the
family {fij}i∈σj ,j∈[m] is a frame for H with lower and upper frame bounds A and B, respectively.

Definition 4.2. A family of HS-frames {{Fij}i∈N : j ∈ [m]} for a separable Hilbert space K with
respect to H is said to be HS-woven if there are universal constants A and B so that, for every
partition {σj}j∈[m] of N, the family {Fij}i∈σj ,j∈[m] is a HS-frame for K with respect to H with lower
and upper HS-frame bounds A and B, respectively, and each ∪j∈[m]{Fij}i∈σj

is called a weaving.

Theorem 4.3. Let F = {Fi}∞i=1 and G = {Gi}∞i=1 be HS-frames for K with respect to H and let
{νn,m : n,m ∈ N} be an orthonormal basis for C2. Then, F and G are HS-woven for K with respect
to H if and only if for every σ ⊂ N, the family

{F∗
i (νn,m)}n,m∈N,i∈σ ∪ {G∗

i (νn,m)}n,m∈N,i∈σc

is a frame for K. In particular, if {ei}∞i=1 be an orthonormal basis for H, then F and G are HS-woven
for K with respect to H if and only if for every σ ⊂ N, the family

{F∗
i (en ⊗ em)}n,m∈N,i∈σ ∪ {G∗

i (en ⊗ em)}n,m∈N,i∈σc

is a frame for K.

Proof . Let {Fi}∞i=1 be a HS-frame for K with respect to H and {νn,m : n,m ∈ N} be a orthonormal
basis of 2. As in the proof of Theorem 3.2, there exists fj,n,m, gj,n,m ∈ H such that F∗

j (νn,m) = fj,n,m,
G∗
j (νn,m) = gj,n,m and also by (3.1),

∥Fif∥22 =
∑

n,m∈N

| ⟨f, fi,n,m⟩ |2 , ∥Gif∥22 =
∑

n,m∈N

| ⟨f, gi,n,m⟩ |2.

Now, for every subset σ ⊂ N and f ∈ H we have∑
i∈σ

∥Fif∥22 +
∑
i∈σc

∥Gif∥22 =
∑
i∈σ

∑
n,m∈N

| ⟨f, fi,n,m⟩ |2 +
∑
i∈σc

∑
n,m∈N

| ⟨f, gi,n,m⟩ |2

=
∑
i∈σ

∑
n,m∈N

| ⟨f,F∗
i (νn,m)⟩ |2 +

∑
i∈σc

∑
n,m∈N

| ⟨f,G∗
i (νn,m)⟩ |2.

Therefore, {Fi}i∈σ∪{Gi}i∈σc is HS-frame for H with respect to K if and only if {F∗
i (νn,m)}n,m∈N,i∈σ∪

{F∗
i (νn,m)}n,m∈N,i∈σc is frames for K. This completes the proof. □
As application of Theorem 4.3, we now present the following example which use a finite index set

J instead of N.
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Example 4.4. Let H be a two-dimensional Hilbet space and {e1, e2} be an orthonormal basis of H.
Choose

{fi}3i=1 = {e1, e2, 2e2} , {gi}3i=1 = {e1, e1 + e2, e1 − e2}.

Since both of {fi}3i=1 and {gi}3i=1 span H , then those are frames. Define

Fi : H →2

Fi(f) := f ⊗ fi
and

Gi : H →2

Gi(f) := f ⊗ gi

for all f ∈ H and i ∈ J := {1, 2, 3}. We first show that for every σ ⊆ J , {Fi}i∈σ∪{Gi}i∈σc ⊆ B(H,2 )
are HS-frames, i.e. {Fi}3i=1 and {Gi}3i=1 are HS-woven.

Note that {Fi}3i=1 and {Gi}3i=1 are HS-frames, because for all f ∈ H

( 3∑
i=1

∥fi∥2
)
∥f∥2 ≥

∑
i

∥Fif∥22 =
3∑

i=1

2∑
n,m=1

∣∣[Fi(f), en ⊗ em]tr
∣∣2

=
3∑

i=1

2∑
n,m=1

∣∣tr((em ⊗ en)(f ⊗ fi)
)∣∣2

=
3∑

i=1

2∑
n,m=1

∣∣ 2∑
k=1

⟨
⟨f, en⟩(em ⊗ fi)(ek), ek

⟩∣∣2
=

3∑
i=1

2∑
n,m=1

∣∣ 2∑
k=1

⟨f, en⟩⟨ek, fi⟩⟨em, ek⟩
∣∣2

=
3∑

i=1

2∑
n,m=1

∣∣⟨f, en⟩⟨em, fi⟩∣∣2
≥

3∑
i=1

2∑
n=1

∣∣⟨f, en⟩⟨en, fi⟩∣∣2
=

3∑
i=1

|⟨f, fi⟩|2

and similarly
∑3

i=1 |⟨f, gi⟩|2 ≤
∑3

i=1 ∥Gif∥22 ≤
(∑3

i=1 ∥gi∥2
)
∥f∥2.

Let A be an Hilbert-Schmidt operator. We compute

[Fi(f),A]tr =tr
(
A∗f ⊗ fi

)
=

2∑
k=1

⟨
(A∗f ⊗ fi)(ek), ek

⟩
=

2∑
k=1

⟨ek, fi⟩⟨A∗f, ek⟩

=
⟨
f,A

( 2∑
k=1

⟨fi, ek⟩ek
)⟩

=⟨f,A(fi)⟩.
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Thus F∗
i (A) = A(fi). Similarly G∗

i (A) = A(gi). So that

{F∗
i (en ⊗ em) : n,m = 1, 2}3i=1 =

{
e1, 0, e2, 0︸ ︷︷ ︸

i=1

; 0, e1, 0, e2︸ ︷︷ ︸
i=2

; 0, 2e1, 0, 2e2︸ ︷︷ ︸
i=3

}
and

{G∗
i (en ⊗ em) : n,m = 1, 2}3i=1 =

{
e1, 0, e2, 0︸ ︷︷ ︸

i=1

; e1, e1, e2, e2︸ ︷︷ ︸
i=2

; e1,−e1, e2,−e2︸ ︷︷ ︸
i=3

}
.

Now, since for any σ ⊂ J , {F∗
i (en ⊗ em) : n,m = 1, 2}i∈σ ∪ {G∗

i (en ⊗ em) : n,m = 1, 2}i∈σc is a
frame for H, hence by Theorem 4.3, {Fi}3i=1 and {Gi}3i=1 are HS-woven.

Two ordinary frames {fi}∞i=1 and {gi}∞i=1 for a Hilbert space H are weakly woven if for every
σ ⊂ N, the family {fi}i∈σ∪{gi}i∈σc is a frame for H. In [5], Bemrose et al. proved that woven frames
are equivalent to weakly woven frames.

Definition 4.5. A family of HS-frames {{Gni}n∈N : i ∈ [m]} for a separable Hilbert space K with re-
spect to H is said to be weakly HS-woven if for every partition {σi}i∈[m] of N, the family {Gni}n∈σi,i∈[m]

is a HS-frame for K with respect to H.

Using a technique given in Theorem 4.5. of [5], we have the following result for woven and weakly
woven HS-frames.

Theorem 4.6. Let F = {Fi}∞i=1 and G = {Gi}∞i=1 be HS-frames for K with respect to H. Then, the
following are equivalent:

(a) F and G are HS-woven frames.

(b) F and G are weakly HS-woven frames.

Let F = {Fi}∞i=1 be HS-frames for K with respect to H. For all σ ⊆ N, let ⊕i∈σC2 denote the
Hilbert space {

A = {Ai}i∈σ : Ai ∈ C2 ∀i ∈ σ and ∥A∥2 :=
(∑

i∈σ

∥Ai∥2C2
) 1

2
< ∞

}
.

We define πσ : ⊕C2 → ⊕i∈σC2 by πσ({Ai}i∈N) := {Ai}i∈σ and

TF ,σ({Ai}i∈N) := TFπσ({Ai}i∈N) =
∑
i∈σ

F∗
i Ai,

(
{Ai}i∈N ∈ ⊕C2

)
.

Theorem 4.7. Let F = {Fi}∞i=1 be a HS-frame for K with respect to H with lower and upper HS-
bounds AF , BF , respectively, and let G = {Gi}∞i=1 be a HS-Bessel sequences for K with respect to H
with upper HS-bound BG. If G be a µ-perturbation of F and µ < AF√

BF+
√

BG
, then G is a HS-frame

for K with respect to H and F and G are HS-woven.

Proof . The fact that G is a HS-frame for K with respect to H follows directly from Theorem 3.4,
since

µ <
AF√

BF +
√
BG

≤ AF√
BF

≤
√
AF .
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Let σ be an arbitrary subset of N. For every f ∈ K, we have∑
i∈σc

∥Fi(f)∥22 +
∑
i∈σ

∥Gi(f)∥22 ≤ BF∥f∥2 +BG∥f∥2 ≤ (BF +BG)∥f∥2.

Therefore, the upper HS-frame bound of {Gi}i∈σ ∪ {Fi}i∈σc is at most BF + BG. Since ∥πσ∥ ≤ 1,
observe that

∥T ∗
F ,σ∥ = ∥TF ,σ∥ = ∥TFπσ∥ ≤ ∥TF∥ ≤

√
BF

and similarly ∥TG,σ∥ ≤
√
BF , ∥T ∗

G,σ − T ∗
F ,σ∥ = ∥TG,σ − TF ,σ∥ ≤ ∥TG − TF∥ ≤ µ. Therefore, for every

f ∈ K we have∥∥∑
i∈σ

G∗
i Gi(f)−

∑
i∈σ

F∗
i Fi(f)

∥∥ =
∥∥TG,σT

∗
G,σ(f)− TF ,σT

∗
F ,σ(f)

∥∥
≤
∥∥(TG,σT

∗
G,σ − TG,σT

∗
F ,σ

)
(f)
∥∥+ ∥∥(TG,σT

∗
F ,σ − TF ,σT

∗
F ,σ

)
(f)
∥∥

≤
(∥∥TG,σ

∥∥∥∥T ∗
G,σ − T ∗

F ,σ

∥∥+ ∥∥TG,σ − TF ,σ

∥∥∥∥T ∗
F ,σ

∥∥) ∥f∥
≤ µ

(√
BF +

√
BG
)
∥f∥

which implies∥∥∑
i∈σ

G∗
i Gi(f) +

∑
i∈σc

F∗
i Fi(f)

∥∥ =
∥∥∥ ∞∑

i=1

F∗
i Fi(f) +

(∑
i∈σ

G∗
i Gi(f)−

∑
i∈σ

F∗
i Fi(f)

)∥∥∥
≥
∥∥ ∞∑

i=1

F∗
i Fi(f)

∥∥− ∥∥∑
i∈σ

G∗
i Gi(f)−

∑
i∈σ

F∗
i Fi(f)

∥∥
≥
∥∥SF(f)

∥∥− ∥∥TG,σT
∗
G,σ(f)− TF ,σT

∗
F ,σ(f)

∥∥
≥
(
AF − µ

(√
BF +

√
BG
))

∥f∥.

Thus AF − µ
(√

BF +
√
BG
)
is the lower HS-frame bound of {Gi}i∈σ ∪ {Fi}i∈σc , which proves the

theorem. □
Corollary 4.8. Let F = {Fi}∞i=1 be a HS-frame for K with respect to H with HS-bounds AF , BF and
let G = {Gi}∞i=1 be a µ-perturbation of F . If µ < AF

2
√
BF+µ

, then G is a HS-frame for K with respect to
H and F and G are HS-woven. Moreover, if also

µ <

√
AF
(√

AF − µ
)2

2BF
(
2 + AF∥Φ∥2

) ,
for some operator Φ ∈ rannB(K,⊕2)(TF), then the HS-dual F̃(Φ) of F and HS-dual G̃

(
PkerTGT

∗
F̃(Φ)

)
of

G are HS-woven.

Proof . The fact that G is a HS-frame for K with respect to H follows directly from Theorem 3.4,
since

µ <
AF

2
√
BF + µ

≤ AF

2
√
BF

≤
√
AF

2
.

This theorem also yields that G has the lower and upper HS-frame bounds AG :=
(√

A − µ
)2

and

BG :=
(√

B+µ
)2
, respectively. By (3.6), F̃(Φ) has the upper HS-frame bound AF̃(Φ) := A−1+∥Φ∥2.

Also BF̃(Φ) := B−1 is the lower HS-bound frame of F̃(Φ), since

∥T ∗
F̃(Φ)

(f)∥22 = ∥T ∗
F̃(f)∥

2
2 + ∥Φ(f)∥22 ≥

1

B
∥f∥2 + ∥Φ(f)∥22 ≥

1

B
∥f∥2.
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Similarly, we conclude ∥∥∥T ∗
G̃(Ψ)

(f)
∥∥∥2
2
= ∥T ∗

G̃(f)∥
2
2 + ∥PkerTGT

∗
F̃(Φ)

(f)∥22

≤ 1(√
A− µ

)2∥f∥2 + ∥T ∗
F̃(Φ)

(f)∥22

≤

(
1(√

A− µ
)2 +

1

A
+ ∥Φ∥2

)
∥f∥2

where, Ψ := PkerTGT
∗
F̃(Φ)

. Thus BG̃(Ψ) :=
(√

A − µ
)−2

+ A−1 + ∥Φ∥2 is the upper HS-frame bound

of G̃(Ψ). Theorem 3.7 yields that G̃(Ψ) is a λ-perturbation of F̃(Φ), where λ given by (3.5). Since
µ < AF√

BF+
√

BG
and

AF̃(Φ)√
BF̃(Φ) +

√
BG̃(Ψ)

≥ 1

2BF

√(√
AF − µ

)−2
+ A−1

F + ∥Φ∥2

≥
√
AF − µ

2BF

√
2 +

(√
AF − µ

)2∥Φ∥2
≥

√
AF − µ

2BF
√
2 + AF∥Φ∥2

>
µ
√

2 + A∥Φ∥2√
AF
(√

AF − µ
)

> λ,

then by Theorem 4.7 we have the result. □

Corollary 4.9. Let F = {Fi}∞i=1 be HS-frame for K with respect to H with HS-bounds AF , BF and
let G = {Gi}∞i=1 be a µ-perturbation of F . If µ < AF√

AF+2
√
BF

, then G is a HS-frame for K with respect
to H and F and G are HS-woven. Moreover, if also

µ <
AF

√
AF

8BF
(
2 + AF∥Φ∥2

) ,
for some operator Φ ∈ rannB(K,⊕2)(TF), then the HS-dual F̃(Φ) of F and HS-dual G̃

(
PkerTGT

∗
F̃(Φ)

)
of

G are HS-woven.
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