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Abstract

In this paper, we introduce the (G,ψ)−Ciric-Reich-Rus contraction on metric space endowed with a
graph, such that (X, d) is a metric space, and V (G) is the vertices of G coincides with X. We give
an example to show that our results generalize some known results
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1. Introduction and preliminaries

One of the most attractive areas of the fixed point theory is the existence of fixed points in a
metric space respect to a given graph. Recently Jachymski [? ] has given some generalizations of the
Banach Contraction Principle to mappings on a metric space respect to a graph. In order to study
ψ−Ciric-Reich-Rus type contraction, we need the following definitions. (see also [? ? ? ? ? ? ? ?
? ? ? ? ? ? ])
Let (X, d) be a metric space, and ∆ be the diagonal of X ×X. Let G be a directed graph such that
the set V (G) of its vertices coincides with X, and the set E(G) of its edges contains all loops, i.e.,
E(G) ⊇ ∆. Let G has no parallel edges, so one can identify G with the pair (V (G), E(G)).
By G−1 we denote the graph obtained from G by reversing the direction of edges, and call it the
reverse of graph G. Thus,
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E(G−1) = {(x, y) ∈ X ×X|(y, x) ∈ E(G)}.
G̃ is the undirected graph that obtained from G by remove the direction of edges. So we have,

E(G̃) = E(G)
∪
E(G−1).

A path from x to y of length N(N ∈ N) is a sequence (xi)
N
i=0 of N + 1 vertices such that

x0 = x, xN = y and (xn−1, xn) ∈ E(G) for i = 1, ..., N .
G is weakly connected if G̃ is connected. [x]G is the equivalence class of relations ℜ defined on V (G)
by the rule:

zℜy if there is a path in G from z to y.
Gx is called the component of G which consists of all edges and vertices which are contained in some
path beginning at x.
If f : X → X is an operator, then

Xf := {x ∈ X : (x, fx)} ∈ E(G)},
and the set of all fixed points of f is denoted by

Ff := {x ∈ X : f(x) = x}.

Definition 1.1. [? ] The operator f : X → X is called a G−Ciric-Reich-Rus operator if:

1. for all x, y ∈ X if (x, y) ∈ E(G) then (Tx, Ty) ∈ E(G);

2. There exists α, β, γ ∈ R+ with α + β + γ ∈ (0, 1), such that for each x, y ∈ X we have,
d(fx, fy) ≤ αd(x, y) + βd(x, fx) + γd(y, fy).

Definition 1.2. [? ] The operator f : X → X is called a Picard operator (PO) if:

(i) f has a unique fixed point x∗;

(ii) For all x ∈ X, we have limn→∞ T nx = x∗.

Definition 1.3. [? ] The operator f : X → X is called a weakly Picard operator (WPO) if:

(i) Ff ̸= ∅;

(ii) for all x ∈ X, we have limn→∞ T nx = x∗(x).
(x∗(x) is the fixed point of f which depened on x )

Definition 1.4. [? ] A mapping f : X → X is called orbitally continuous if for all x, y ∈ X and
any sequence (Kn)n∈N of positive integers,
fknx→ y, implise f(fknx) → fy as n→ ∞.

Definition 1.5. [? ] A mapping f : X → X is called orbitally G− continuous if for all x, y ∈ X
and any sequence (Kn)n∈N of positive integers,
fknx→ y, (fknx, fkn+1x) ∈ E(G) imply f(fknx) → fy as n→ ∞ .

Definition 1.6. [? ] Let us define the class Ψ = {ψ : R+ → R+ | ψ is nondecreasing } which
satisfies the following conditions:
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(i) ψ(w) = 0 if and only if w = 0;

(ii) for every (wn) ∈ R+, ψ(wn) → 0 if and only if wn → 0;

(iii) for every w1, w2 ∈ R+, ψ(w1 + w2) ≤ ψ(w1) + ψ(w2).

In the next section, we state two fixed point theorems for (G,ψ)−Ciric-Reich-Rus type contraction.

2. Main results

In this section, we assume that (X, d) is a metric space, and G is a directed graph such that
V (G) = X,△⊆ E(G) and G has no parallel edges.

Definition 2.1. A mapping f : X → X is called (G,ψ)− Ciric−Reich−Rus contraction if:

(i) for all x, y ∈ X if (x, y) ∈ E(G) then (Tx, Ty) ∈ E(G);

(ii) there exists α, β, γ ∈ R+, with α + β + γ ∈ (0, 1), such that for each (x, y) ∈ E(G) implies
ψ(d(fx, fy)) ≤ αψ(d(x, y)) + βψ(d(x, fx)) + γψ(d(y, fy)).

The following Lemma is immediately.

Lemma 2.2. If f : X → X is a (G,ψ) − Ciric − Reich − Rus contraction then f is both a
(G−1, ψ)− Ciric−Reich−Rus contraction and a (G̃, ψ)− Ciric−Reich−Rus contraction.

Lemma 2.3. Let f : X → X be a (G,ψ) − Ciric − Reich − Rus with the constants α, β, γ. Then,
for given x ∈ Xf , there exists r(x) ≥ 0 such that

ψ(d(fnx, fn+1x)) ≤ anr(x),

for all n ∈ N, where a :=
α + β

1− γ
.

Proof . Assume that x ∈ Xf , then by induction, we have (fnx, fn+1x) ∈ E(G) for each n ∈ N. So
ψ(d(fnx, fn+1x)) ≤ αψ(d(fn−1x, fnx)) + βψ(d(fn−1x, fnx)) + γψ(d(fnx, fn+1x)).

Hence ψ(d(fnx, fn+1x)) ≤ α + β

1− γ
ψ(d(fn−1x, fnx)) ≤ · · · ≤ anψ(d(x, fx)). Set r(x) := ψ(d(x, fx)).

2

Lemma 2.4. Assume that (X, d) is a complete metric space and f : X → X is a
(G,ψ) − Ciric − Reich − Rus contraction with the constants α, β, γ. Then, for each x ∈ Xf , there
exists x∗(x) ∈ X such that the sequence (fnx)n∈N converges to x∗(x) as n→ ∞.
Proof . Let x ∈ Xf . By Lemma 2.3, ψ(d(fnx, fn+1x)) ≤ anr(x). Hence∑∞

n=0 ψ(d(f
nx, fn+1x)) <∞.Thus ψ(d(fnx, fn+1x)) → 0 as n→ ∞.

Then we have d(fnx, fn+1x) → 0. So the sequence (fnx)n∈N is a Cauchy sequence. Since the space
X is complete, there exists x∗(x) ∈ X such that the sequence (fnx)n∈N converges to x∗(x) as n→ ∞.
2

Theorem 2.5. Let (X, d) be a complete metric space endowed with a graph G, and let the triple
(X, d,G) has the following condition:
For any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for all n ∈ N, then there is a subsequence
(xkn)n∈N with (xkn , x) ∈ E(G) for all n ∈ N.
Let f : X → X be a (G,ψ) − Ciric − Reich − Rus contraction and f be orbitally G−continuous.
Then the following statements hold.
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(i) Ff ̸= ∅ if and only if Xf ̸= ∅.

(ii) If Xf ̸= ∅ and G is weakly connected, then f is a weakly Picard operator.

(iii) For any Xf ̸= ∅, f |[x]G̃ is a weakly Picard operator.

Proof . First we prove (iii). Let x ∈ Xf ; by Lemma 2.4, there exists x∗ ∈ X such that
limn→∞ fnx = x∗. Since x ∈ Xf , then fnx ∈ Xf for every n ∈ N. Now assume that (x, fx) ∈
E(G). By condition (P ), there is a subsequence (fknx)n∈N of (fnx)n∈N such that (fknx, x∗) ∈
E(G) for each n ∈ N. Now we have a path in G by using the points x, fx, · · ·, fklx, x∗ and
hence x∗ ∈ [x]G̃. On the other hand since f is orbitally G−continuous, we have x∗ is a fixed
point forf |[x]G̃ .
(i) is obtained using (iii), because Ff ̸= ∅ if Xf ̸= ∅. Now suppose that Ff ̸= ∅. By using the
assumption that △ ⊆ E(G), we obtain Xf ̸= ∅.
For proving (ii) let x ∈ Xf . Because G is weakly connected, we have X = [x]G̃ and (iii)
complete the proof. 2

Remark 2.6. Set ψ(w) = w in Theorem 2.5, then Theorem 2.2 in [? ] obtain immediately.

In the next we study the case that f : X → X as a (G,ψ) − Ciric − Reich − Rus contraction can
be a Picard operator. So we need the following definition.

Definition 2.7. Let (X, d) be a metric space endowed with a graph G and f : X → X be a mapping.
We say that the graph G has a f−path property, if for any path in G, (xi)

N
i=0 from x to y such that

x0 = x, xN = y we have fxi−1 = xi for all i = 1, · · ·, N.

Lemma 2.8. Let (X, d) be a metric space endowed with a graph G and f : X → X be a (G,ψ) −
Ciric−Reich−Rus contraction such that the graph G has the f−path property. Then for any x ∈ X
and y ∈ [x]G̃ two sequences (fnx)n∈N and (fny)n∈N are equivalent.
Proof . Let x ∈ X, and let y ∈ [x]G̃; then there exists a path (xi)

l
i=0 in G̃ from x to y such that

x0 = x, xl = y with (xi−1, xi) ∈ E(G) and fxi−1 = xi for all i = 1, · · ·, l. From Lemma 2.2, f is a
(G̃, ψ)− Ciric−Reich−Rus. Then for all n ∈ N (fnxi−1, f

nxi) ∈ E(G̃), so

ψ(d(fnxi−1, f
nxi)) ≤ αψ(d(fn−1xi−1, f

n−1xi)) + βψ(d(fn−1xi−1, f
nxi−1)) + γψ(d(fn−1xi, f

nxi))
= αψ(d(fn−1xi−1, f

n−1xi)) + βψ(d(fn−1xi−1, f
n−1xi)) + γψ(d(fnxi−1, f

nxi))

then,

ψ(d(fnxi−1, f
nxi)) ≤

α+ β

1− γ
ψ(d(fn−1xi−1, f

n−1xi)).

Hence, for all n ∈ N
ψ(d(fnxi−1, f

nxi)) ≤ anψ(d(xi−1, xi)), (2.1)

where a =
α + β

1− γ
. We know that (fnxi)

l
i=0 is a path in G̃ from fnx to fny. Using the triangle

inequality and (2.1),

ψ(d(fnx, fny)) ≤
l∑

i=1

ψ(d(fnxi−1, f
nxi)) ≤ an

l∑
i=1

ψ(d(xi−1, xi)).

Letting n→ ∞, we get d(fnx, fny) → 0. 2
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Theorem 2.9. Let (X, d) be a complete metric space endowed with a graph G, and f : X → X be a
(G,ψ)-Ciric-Reich-Rus contraction such that the graph G has the f−path property and f be orbitally
G−continuous. Let the triple (X, d,G) has the following condition:
For any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for all n ∈ N, then there is a subsequence
(xkn)n∈N with (xkn , x) ∈ E(G) for all n ∈ N. Let there exists z ∈ X such that z ∈ Xf , then the
following statements hold:

(1) f |[z]G̃ is a Picard operator;

(2) if G is weakly connected, then f is a Picard operator.

Proof . (1) Using (iii) Theorem 2.5, there exists x∗(z) ∈ [z]G̃ such that
limn→∞ fn(z) = x∗(z), and x∗(z) is a fixed point of f. Now if y ∈ [z]G̃ and limn→∞ fn(y) =
x∗(y). Then by Lemma 2.8 two sequences (fnz)n∈N and (fny)n∈N are equivalent. Since both
are convergent sequence, then they are Cauchy sequences. Hence they are Cauchy equivalent.
This means x∗(y) = x∗(z).
(2) Since z ∈ Xf and G is weakly connected, we have X = [z]G̃. Then we only need to apply
(1). 2

Definition 2.10. [? ] We say that mapping f : X → X is a (G,ψ)−contraction if the following
hold:

(i) f preserves edges of G, i.e, for all x, y ∈ X if (x, y) ∈ E(G) then (fx, fy) ∈ E(G));

(ii) f decreases the weight of G, that is, there exists c ∈ (0, 1) such that for all x, y ∈ X if

(x, y) ∈ E(G) then ψ(d(fx, fy)) ≤ cψ(d(x, y)).

In the following example we show that (G,ψ)−Ciric-Reich-Rus contraction is a generalization of
(G,ψ)−contraction.

Example 2.11. Let X = [0, 1] and d(x, y) =| x− y | . Define the graph G by

E(G) = {(0, 0), (0, 1)}
∪
{(x, y) ∈ (0, 1]× [0, 1] x ⩾ y}.

f : X → X and

fx =

{
x
2
, x ∈ (0, 1];

3
4
, x = 0.

G is weakly connected, and f is a (G,ψ)−Ciric-Reich-Rus contraction with constants,

α = 1
8
, β = 3

4
, γ = 1

16
, ψ(w) =

w

2
. But f is not (G,ψ)−contraction, because if we consider

ψ(d(f(0), f(
1

2
)) ≤ cψ(d(0,

1

2
)

Then we have 1
4
≤ c1

4
which is a contradiction since c ∈ [0, 1).

Definition 2.12. The mapping f : X → X is called a (G,ψ)−Kannan mapping if:

(i) for all x, y ∈ X if (x, y) ∈ E(G) then (fx, fy) ∈ E(G));
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(ii) there exists a constant a ∈ (0, 1) such that for all x, y ∈ X, (x, y) ∈ E(G) then,

ψ(d(fx, fy)) ≤ a[ψ(d(x, fx)) + ψ(d(y, fy))].

Corollary 2.13. Let (X, d) be a complete metric space endowed with a graph G, and f : X → X be a
(G,ψ)− contraction such that the graph G has the f−path property and f be orbitally G−continuous.
Let the triple (X, d,G) has the following condition:
For any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for all n ∈ N, then there is a subsequence
(xkn)n∈N with (xkn , x) ∈ E(G) for all n ∈ N. Let there exists z ∈ X such that z ∈ Xf , then the
following statements hold:

(1) f |[z]G̃ is a Picard operator;

(2) if G is weakly connected, then f is a Picard operator.

Proof . If f is a (G,ψ)−contraction with constant c ∈ [0, 1), then f is a
(G̃, ψ)−Ciric-Reich-Rus contraction with constants α = c, β = γ = 0. Hence according to
Theorem ??, f is a Picard operator. 2

Corollary 2.14. Let (X, d) be a complete metric space endowed with a graph G, and f : X → X
be a (G,ψ)−Kannan mapping such that the graph G has the f−path property and f be orbitally
G−continuous. Let the triple (X, d,G) has the following condition:
For any (xn)n∈N in X, if xn → x and (xn, xn+1) ∈ E(G) for all n ∈ N, then there is a subsequence
(xkn)n∈N with (xkn , x) ∈ E(G) for all n ∈ N. Let there exists z ∈ X such that z ∈ Xf , then the
following statements hold:

(1) f |[z]G̃ is a Picard operator;

(2) if G is weakly connected, then f is a Picard operator.

Proof . If f is a (G,ψ)−Kannan with constant a ∈ [0, 1), then f is a
(G̃, ψ)−Ciric−Reich−Rus contraction with constants α = 0, β = γ = a. Hence according to
Theorem ??, f is a Picard operator. 2
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