(G. ψ)-Ciric-Reich-Rus contraction on metric space endowed with a graph

Shahram Mirzaee ${ }^{\text {a }}$, Madjid Eshaghi Gordji ${ }^{\text {b,* }}$
${ }^{a}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
${ }^{b}$ Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran.
(Communicated by Javad Damirchi)

Abstract

In this paper, we introduce the (G, ψ)-Ciric-Reich-Rus contraction on metric space endowed with a graph, such that (X, d) is a metric space, and $V(G)$ is the vertices of G coincides with X. We give an example to show that our results generalize some known results

Keywords: Metric space, Fixed point, (G, ψ)-Ciric-Reich-Rus type contraction. 2010 AMS Classification: $47 \mathrm{H} 10,47 \mathrm{H} 09$.

1. Introduction and preliminaries

One of the most attractive areas of the fixed point theory is the existence of fixed points in a metric space respect to a given graph. Recently Jachymski [?] has given some generalizations of the Banach Contraction Principle to mappings on a metric space respect to a graph. In order to study ψ-Ciric-Reich-Rus type contraction, we need the following definitions. (see also [? ? ? ? ? ? ? ? ? ? ? ? ? ?])
Let (X, d) be a metric space, and Δ be the diagonal of $X \times X$. Let G be a directed graph such that the set $V(G)$ of its vertices coincides with X, and the set $E(G)$ of its edges contains all loops, i.e., $E(G) \supseteq \Delta$. Let G has no parallel edges, so one can identify G with the pair $(V(G), E(G))$.
By G^{-1} we denote the graph obtained from G by reversing the direction of edges, and call it the reverse of graph G. Thus,

[^0]$$
E\left(G^{-1}\right)=\{(x, y) \in X \times X \mid(y, x) \in E(G)\}
$$
\tilde{G} is the undirected graph that obtained from G by remove the direction of edges. So we have,
$$
E(\tilde{G})=E(G) \bigcup E\left(G^{-1}\right)
$$

A path from x to y of length $N(N \in \mathbf{N})$ is a sequence $\left(x_{i}\right)_{i=0}^{N}$ of $N+1$ vertices such that $x_{0}=x, x_{N}=y$ and $\left(x_{n-1}, x_{n}\right) \in E(G)$ for $i=1, \ldots, N$.
G is weakly connected if \tilde{G} is connected. $[x]_{G}$ is the equivalence class of relations \Re defined on $V(G)$ by the rule:
$z \Re y$ if there is a path in G from z to y.
G_{x} is called the component of G which consists of all edges and vertices which are contained in some path beginning at x.
If $f: X \rightarrow X$ is an operator, then

$$
\left.X^{f}:=\{x \in X:(x, f x)\} \in E(G)\right\}
$$

and the set of all fixed points of f is denoted by

$$
F_{f}:=\{x \in X: f(x)=x\} .
$$

Definition 1.1. [?] The operator $f: X \rightarrow X$ is called a G-Ciric-Reich-Rus operator if:

1. for all $x, y \in X$ if $(x, y) \in E(G) \quad$ then $\quad(T x, T y) \in E(G)$;
2. There exists $\alpha, \beta, \gamma \in \boldsymbol{R}^{+}$with $\alpha+\beta+\gamma \in(0,1)$, such that for each $x, y \in X$ we have, $d(f x, f y) \leq \alpha d(x, y)+\beta d(x, f x)+\gamma d(y, f y)$.

Definition 1.2. [?] The operator $f: X \rightarrow X$ is called a Picard operator ($P O$) if:
(i) f has a unique fixed point x^{*};
(ii) For all $x \in X$, we have $\lim _{n \rightarrow \infty} T^{n} x=x^{*}$.

Definition 1.3. [?] The operator $f: X \rightarrow X$ is called a weakly Picard operator (WPO) if:
(i) $F_{f} \neq \varnothing$;
(ii) for all $x \in X$, we have $\lim _{n \rightarrow \infty} T^{n} x=x^{*}(x)$. $\left(x^{*}(x)\right.$ is the fixed point of f which depened on $\left.x\right)$

Definition 1.4. [?] A mapping $f: X \rightarrow X$ is called orbitally continuous if for all $x, y \in X$ and any sequence $\left(K_{n}\right)_{n \in N}$ of positive integers,
$f^{k_{n}} x \rightarrow y$, implise $\quad f\left(f^{k_{n}} x\right) \rightarrow f y \quad$ as $n \rightarrow \infty$.
Definition 1.5. [?] A mapping $f: X \rightarrow X$ is called orbitally $G-$ continuous if for all $x, y \in X$ and any sequence $\left(K_{n}\right)_{n \in N}$ of positive integers, $f^{k_{n}} x \rightarrow y, \quad\left(f^{k_{n}} x, f^{k_{n+1}} x\right) \in E(G) \quad$ imply $\quad f\left(f^{k_{n}} x\right) \rightarrow f y \quad$ as $n \rightarrow \infty$.

Definition 1.6. [?] Let us define the class $\Psi=\left\{\psi: \boldsymbol{R}^{+} \rightarrow \boldsymbol{R}^{+} \mid \psi\right.$ is nondecreasing $\}$ which satisfies the following conditions:
(i) $\psi(w)=0 \quad$ if and only if $\quad w=0$;
(ii) for every $\left(w_{n}\right) \in \boldsymbol{R}^{+}, \psi\left(w_{n}\right) \rightarrow 0$ if and only if $w_{n} \rightarrow 0$;
(iii) for every $w_{1}, w_{2} \in \boldsymbol{R}^{+}, \psi\left(w_{1}+w_{2}\right) \leq \psi\left(w_{1}\right)+\psi\left(w_{2}\right)$.

In the next section, we state two fixed point theorems for (G, ψ)-Ciric-Reich-Rus type contraction.

2. Main results

In this section, we assume that (X, d) is a metric space, and G is a directed graph such that $V(G)=X, \Delta \subseteq E(G)$ and G has no parallel edges.

Definition 2.1. A mapping $f: X \rightarrow X$ is called (G, ψ) - Ciric - Reich - Rus contraction if:
(i) for all $x, y \in X$ if $(x, y) \in E(G)$ then $(T x, T y) \in E(G)$;
(ii) there exists $\alpha, \beta, \gamma \in \boldsymbol{R}^{+}$, with $\alpha+\beta+\gamma \in(0,1)$, such that for each $(x, y) \in E(G)$ implies $\psi(d(f x, f y)) \leq \alpha \psi(d(x, y))+\beta \psi(d(x, f x))+\gamma \psi(d(y, f y))$.

The following Lemma is immediately.
Lemma 2.2. If $f: X \rightarrow X$ is a (G, ψ) - Ciric - Reich - Rus contraction then f is both a $\left(G^{-1}, \psi\right)-$ Ciric - Reich - Rus contraction and a $(\tilde{G}, \psi)-$ Ciric - Reich - Rus contraction.

Lemma 2.3. Let $f: X \rightarrow X$ be a (G, ψ) - Ciric - Reich - Rus with the constants α, β, γ. Then, for given $x \in X^{f}$, there exists $r(x) \geq 0$ such that

$$
\psi\left(d\left(f^{n} x, f^{n+1} x\right)\right) \leq a^{n} r(x)
$$

for all $n \in N$, where $a:=\frac{\alpha+\beta}{1-\gamma}$.
Proof . Assume that $x \in X^{f}$, then by induction, we have $\left(f^{n} x, f^{n+1} x\right) \in E(G)$ for each $n \in N$. So $\psi\left(d\left(f^{n} x, f^{n+1} x\right)\right) \leq \alpha \psi\left(d\left(f^{n-1} x, f^{n} x\right)\right)+\beta \psi\left(d\left(f^{n-1} x, f^{n} x\right)\right)+\gamma \psi\left(d\left(f^{n} x, f^{n+1} x\right)\right)$.
Hence $\psi\left(d\left(f^{n} x, f^{n+1} x\right)\right) \leq \frac{\alpha+\beta}{1-\gamma} \psi\left(d\left(f^{n-1} x, f^{n} x\right)\right) \leq \cdots \leq a^{n} \psi(d(x, f x))$. Set $r(x):=\psi(d(x, f x))$.

Lemma 2.4. Assume that (X, d) is a complete metric space and $f: X \rightarrow X$ is a
$(G, \psi)-$ Ciric - Reich - Rus contraction with the constants α, β, γ. Then, for each $x \in X^{f}$, there exists $x^{*}(x) \in X$ such that the sequence $\left(f^{n} x\right)_{n \in N}$ converges to $x^{*}(x)$ as $n \rightarrow \infty$.
Proof. Let $x \in X^{f}$. By Lemma [2.3, $\psi\left(d\left(f^{n} x, f^{n+1} x\right)\right) \leq a^{n} r(x)$. Hence
$\sum_{n=0}^{\infty} \psi\left(d\left(f^{n} x, f^{n+1} x\right)\right)<\infty$. Thus $\psi\left(d\left(f^{n} x, f^{n+1} x\right)\right) \rightarrow 0 \quad$ as $n \rightarrow \infty$.
Then we have $d\left(f^{n} x, f^{n+1} x\right) \rightarrow 0$. So the sequence $\left(f^{n} x\right)_{n \in N}$ is a Cauchy sequence. Since the space X is complete, there exists $x^{*}(x) \in X$ such that the sequence $\left(f^{n} x\right)_{n \in N}$ converges to $x^{*}(x)$ as $n \rightarrow \infty$.

Theorem 2.5. Let (X, d) be a complete metric space endowed with a graph G, and let the triple (X, d, G) has the following condition:
For any $\left(x_{n}\right)_{n \in N}$ in X, if $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in N$, then there is a subsequence $\left(x_{k_{n}}\right)_{n \in N}$ with $\left(x_{k_{n}}, x\right) \in E(G)$ for all $n \in N$.
Let $f: X \rightarrow X$ be a (G, ψ) - Ciric - Reich - Rus contraction and f be orbitally G-continuous. Then the following statements hold.
(i) $F_{f} \neq \varnothing$ if and only if $X^{f} \neq \varnothing$.
(ii) If $X^{f} \neq \varnothing$ and G is weakly connected, then f is a weakly Picard operator.
(iii) For any $X^{f} \neq \varnothing,\left.f\right|_{[x]_{\tilde{G}}}$ is a weakly Picard operator.

Proof . First we prove (iii). Let $x \in X^{f}$; by Lemma [2.4, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} f^{n} x=x^{*}$. Since $x \in X^{f}$, then $f^{n} x \in X^{f}$ for every $n \in N$. Now assume that $(x, f x) \in$ $E(G)$. By condition (P), there is a subsequence $\left(f^{k_{n}} x\right)_{n \in N}$ of $\left(f^{n} x\right)_{n \in N}$ such that $\left(f^{k_{n}} x, x^{*}\right) \in$ $E(G)$ for each $n \in N$. Now we have a path in G by using the points $x, f x, \cdots, f^{k_{l}} x, x^{*}$ and hence $x^{*} \in[x]_{\tilde{G}}$. On the other hand since f is orbitally G-continuous, we have x^{*} is a fixed point forf $\left.\right|_{[x]_{G}}$.
(i) is obtained using (iii), because $F_{f} \neq \varnothing$ if $X^{f} \neq \varnothing$. Now suppose that $F_{f} \neq \varnothing$. By using the assumption that $\triangle \subseteq E(G)$, we obtain $X^{f} \neq \varnothing$.
For proving (ii) let $x \in X^{f}$. Because G is weakly connected, we have $X=[x]_{\tilde{G}}$ and (iii) complete the proof.

Remark 2.6. Set $\psi(w)=w$ in Theorem [2.5, then Theorem 2.2 in [?] obtain immediately.
In the next we study the case that $f: X \rightarrow X$ as a $(G, \psi)-$ Ciric - Reich - Rus contraction can be a Picard operator. So we need the following definition.

Definition 2.7. Let (X, d) be a metric space endowed with a graph G and $f: X \rightarrow X$ be a mapping. We say that the graph G has a f-path property, if for any path in $G,\left(x_{i}\right)_{i=0}^{N}$ from x to y such that $x_{0}=x, x_{N}=y$ we have $f x_{i-1}=x_{i}$ for all $i=1, \cdots, N$.

Lemma 2.8. Let (X, d) be a metric space endowed with a graph G and $f: X \rightarrow X$ be $a(G, \psi)-$ Ciric-Reich-Rus contraction such that the graph G has the f-path property. Then for any $x \in X$ and $y \in[x]_{\tilde{G}}$ two sequences $\left(f^{n} x\right)_{n \in N}$ and $\left(f^{n} y\right)_{n \in N}$ are equivalent.
Proof . Let $x \in X$, and let $y \in[x]_{\tilde{G}}$; then there exists a path $\left(x_{i}\right)_{i=0}^{l}$ in \tilde{G} from x to y such that $x_{0}=x, x_{l}=y$ with $\left(x_{i-1}, x_{i}\right) \in E(G)$ and $f x_{i-1}=x_{i}$ for all $i=1, \cdots, l$. From Lemma [.2, f is a $(\tilde{G}, \psi)-$ Ciric - Reich - Rus. Then for all $n \in N\left(f^{n} x_{i-1}, f^{n} x_{i}\right) \in E(\tilde{G})$, so

$$
\begin{aligned}
\psi\left(d\left(f^{n} x_{i-1}, f^{n} x_{i}\right)\right) & \leq \alpha \psi\left(d\left(f^{n-1} x_{i-1}, f^{n-1} x_{i}\right)\right)+\beta \psi\left(d\left(f^{n-1} x_{i-1}, f^{n} x_{i-1}\right)\right)+\gamma \psi\left(d\left(f^{n-1} x_{i}, f^{n} x_{i}\right)\right) \\
& =\alpha \psi\left(d\left(f^{n-1} x_{i-1}, f^{n-1} x_{i}\right)\right)+\beta \psi\left(d\left(f^{n-1} x_{i-1}, f^{n-1} x_{i}\right)\right)+\gamma \psi\left(d\left(f^{n} x_{i-1}, f^{n} x_{i}\right)\right)
\end{aligned}
$$

then,

$$
\psi\left(d\left(f^{n} x_{i-1}, f^{n} x_{i}\right)\right) \leq \frac{\alpha+\beta}{1-\gamma} \psi\left(d\left(f^{n-1} x_{i-1}, f^{n-1} x_{i}\right)\right) .
$$

Hence, for all $n \in N$

$$
\begin{equation*}
\psi\left(d\left(f^{n} x_{i-1}, f^{n} x_{i}\right)\right) \leq a^{n} \psi\left(d\left(x_{i-1}, x_{i}\right)\right) \tag{2.1}
\end{equation*}
$$

where $a=\frac{\alpha+\beta}{1-\gamma}$. We know that $\left(f^{n} x_{i}\right)_{i=0}^{l}$ is a path in \tilde{G} from $f^{n} x$ to $f^{n} y$. Using the triangle inequality and (2.1),

$$
\psi\left(d\left(f^{n} x, f^{n} y\right)\right) \leq \sum_{i=1}^{l} \psi\left(d\left(f^{n} x_{i-1}, f^{n} x_{i}\right)\right) \leq a^{n} \sum_{i=1}^{l} \psi\left(d\left(x_{i-1}, x_{i}\right)\right) .
$$

Letting $n \rightarrow \infty$, we get $d\left(f^{n} x, f^{n} y\right) \rightarrow 0$.

Theorem 2.9. Let (X, d) be a complete metric space endowed with a graph G, and $f: X \rightarrow X$ be a (G, ψ)-Ciric-Reich-Rus contraction such that the graph G has the f-path property and f be orbitally G-continuous. Let the triple (X, d, G) has the following condition:
For any $\left(x_{n}\right)_{n \in N}$ in X, if $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in N$, then there is a subsequence $\left(x_{k_{n}}\right)_{n \in N}$ with $\left(x_{k_{n}}, x\right) \in E(G)$ for all $n \in N$. Let there exists $z \in X$ such that $z \in X^{f}$, then the following statements hold:
(1) $\left.f\right|_{[z]_{\tilde{G}}}$ is a Picard operator;
(2) if G is weakly connected, then f is a Picard operator.

Proof . (1) Using (iii) Theorem [2.], there exists $x^{*}(z) \in[z]_{\tilde{G}}$ such that $\lim _{n \rightarrow \infty} f^{n}(z)=x^{*}(z)$, and $x^{*}(z)$ is a fixed point of f. Now if $y \in[z]_{\tilde{G}}$ and $\lim _{n \rightarrow \infty} f^{n}(y)=$ $x^{*}(y)$. Then by Lemma R.8 two sequences $\left(f^{n} z\right)_{n \in N}$ and $\left(f^{n} y\right)_{n \in N}$ are equivalent. Since both are convergent sequence, then they are Cauchy sequences. Hence they are Cauchy equivalent. This means $x^{*}(y)=x^{*}(z)$.
(2) Since $z \in X^{f}$ and G is weakly connected, we have $X=[z]_{\tilde{G}}$. Then we only need to apply (1).

Definition 2.10. [?] We say that mapping $f: X \rightarrow X$ is a (G, ψ)-contraction if the following hold:
(i) f preserves edges of G, i.e, for all $x, y \in X$ if $(x, y) \in E(G) \quad$ then $\quad(f x, f y) \in E(G))$;
(ii) f decreases the weight of G, that is, there exists $c \in(0,1)$ such that for all $x, y \in X$ if

$$
(x, y) \in E(G) \quad \text { then } \quad \psi(d(f x, f y)) \leq c \psi(d(x, y))
$$

In the following example we show that (G, ψ)-Ciric-Reich-Rus contraction is a generalization of (G, ψ)-contraction.

Example 2.11. Let $X=[0,1]$ and $d(x, y)=|x-y|$. Define the graph G by $E(G)=\{(0,0),(0,1)\} \bigcup\{(x, y) \in(0,1] \times[0,1] \quad x \geqslant y\}$.
$f: X \rightarrow X$ and

$$
f x= \begin{cases}\frac{x}{2}, & x \in(0,1] \\ \frac{3}{4}, & x=0\end{cases}
$$

G is weakly connected, and f is a (G, ψ)-Ciric-Reich-Rus contraction with constants, $\alpha=\frac{1}{8}, \beta=\frac{3}{4}, \gamma=\frac{1}{16}, \psi(w)=\frac{w}{2}$. But f is not (G, ψ)-contraction, because if we consider

$$
\psi\left(d\left(f(0), f\left(\frac{1}{2}\right)\right) \leq c \psi\left(d\left(0, \frac{1}{2}\right)\right.\right.
$$

Then we have $\frac{1}{4} \leq c \frac{1}{4}$ which is a contradiction since $c \in[0,1)$.
Definition 2.12. The mapping $f: X \rightarrow X$ is called $a(G, \psi)-$ Kannan mapping if:
(i) for all $x, y \in X$ if $(x, y) \in E(G)$ then $(f x, f y) \in E(G))$;
(ii) there exists a constant $a \in(0,1)$ such that for all $x, y \in X,(x, y) \in E(G)$ then,

$$
\psi(d(f x, f y)) \leq a[\psi(d(x, f x))+\psi(d(y, f y))] .
$$

Corollary 2.13. Let (X, d) be a complete metric space endowed with a graph G, and $f: X \rightarrow X$ be a (G, ψ) - contraction such that the graph G has the f-path property and f be orbitally G-continuous. Let the triple (X, d, G) has the following condition:
For any $\left(x_{n}\right)_{n \in N}$ in X, if $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in N$, then there is a subsequence $\left(x_{k_{n}}\right)_{n \in N}$ with $\left(x_{k_{n}}, x\right) \in E(G)$ for all $n \in N$. Let there exists $z \in X$ such that $z \in X^{f}$, then the following statements hold:
(1) $\left.f\right|_{[z]_{\tilde{G}}}$ is a Picard operator;
(2) if G is weakly connected, then f is a Picard operator.

Proof. If f is a (G, ψ)-contraction with constant $c \in[0,1)$, then f is a
(\tilde{G}, ψ)-Ciric-Reich-Rus contraction with constants $\alpha=c, \beta=\gamma=0$. Hence according to Theorem ??, f is a Picard operator.

Corollary 2.14. Let (X, d) be a complete metric space endowed with a graph G, and $f: X \rightarrow X$ be a (G, ψ)-Kannan mapping such that the graph G has the f-path property and f be orbitally G-continuous. Let the triple (X, d, G) has the following condition:
For any $\left(x_{n}\right)_{n \in N}$ in X, if $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in N$, then there is a subsequence $\left(x_{k_{n}}\right)_{n \in N}$ with $\left(x_{k_{n}}, x\right) \in E(G)$ for all $n \in N$. Let there exists $z \in X$ such that $z \in X^{f}$, then the following statements hold:
(1) $\left.f\right|_{[z]_{\bar{G}}}$ is a Picard operator;
(2) if G is weakly connected, then f is a Picard operator.

Proof. If f is a $(G, \psi)-$ Kannan with constant $a \in[0,1)$, then f is a
$(\tilde{G}, \psi)-$ Ciric - Reich - Rus contraction with constants $\alpha=0, \beta=\gamma=a$. Hence according to Theorem ??, f is a Picard operator.

References

[1] Alimohammadi, D. Nonexpansive mappings on complex C^{*}-algebras and their fixed points. Int. J. Nonlinear Anal. Appl., 7 (2016), 21-29.
[2] Bao, B, Xu, Sh, Shi, L, Rajic, V.C. Fixed point theorems on generalized c-distance in ordered cone b-metric spaces. Int. J. Nonlinear Anal. Appl., 6 (2016), 9-22.
[3] Beloul, S. Some fixed point theorem for nonexpansive type single valued mappings. Int. J. Nonlinear Anal. Appl., 7 (2016), 53-62.
[4] Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal., 75 (2012), 3895-3901.
[5] Ciric, L.B. A generalization of Banach's contraction principle. Proc. Amer. Math. Soc., 45 (1974), 267-273.
[6] Gwozdz, LG, Jachymski, J. IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem. J. Math. Anal. Appl., 356 (2009), 453-463.
[7] Granas, A, Dugundji, J. Fixed point theory. Springer, new York (2003).
[8] Hadian Dehkordi, M, Ghods, M. Common fixed point of multivalued graph contraction in metric spaces. Int. J. Nonlinear Anal. Appl., 7 (2016), 225-230.
[9] Jachymski, J. The contraction principle for mappings on a metric space endowed with a graph. Proc. Amer. Math. Soc. , 136 (2008), 1359-1373.
[10] Jhade, P.K, Saluja, A.S. Common fixed point theorem for nonexpansive type single valued mappings. Int. J. Nonlinear Anal. Appl., 7 (2016), 45-51.
[11] Kadelburg, Z, Radenovic, S. Remarkes on some recent M. Borcat's results in partially ordered metric spaces. Int. J. Nonlinear Anal. Appl., 6 (2016), 96-104.
[12] Manro, S. A Common Fixed Point Theorem for Weakly Compatible Maps Satisfying Common Property (E.A.) and Implicit relation in Intuitionistic Fuzzy Metric Spaces. Int. J. Nonlinear Anal. Appl., 6 (2016), 1-8.
[13] Mohant, S.K, Maitra, R. Coupled Coincidence Point Theorems for Maps Under a New Invariant Set ordered Cone Metric Spaces. Int. J. Nonlinear Anal. Appl., 6 (2016), 140-152.
[14] Moosaei, M. On fixed points of fundamentally nonexpansive mappings in Banach spaces. Int. J. Nonlinear Anal. Appl., 7 (2016), 219-224.
[15] Moradi, S, Mohammadi Anjedani, M, Analoei, E. On Existence and Uniqueness of Solutions of a Nonlinear Volterra- Fredholm Integral Equation. Int. J. Nonlinear Anal. Appl., 6 (2016), 62-68.
[16] Naeimi Sadigh, A, Ghods, S. Coupled coincidence point in ordered cone metric spaces with examples in game theory. Int. J. Nonlinear Anal. Appl., 7 (2016), 183-194.
[17] Nicolae, A, O'Regan, D, Petrusel, A. Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph. Georgian Math. J. ,18 (2011), 307-327.
[18] Ozturk, M, Girgin, E. On some fixed-point theorems for ψ-contraction on metric space involving a graph. J. Ineq. Appl. ,39 (2014).
[19] Petrusel, GR, Chifu, CI. Generalized contractions in metric spaces endowed with a graph. Fixed Point Theory Appl., 161 (2012).
[20] Petrusel, A, Rus, I.A. Fixed point theorems in ordered L-spaces. Proc. Amer. Math. Soc. ,134 (2006), 411-418.
[21] Rashwan, R.A, Saleh, S.M. Some common fixed point theorems for four (ψ, ϕ)-weakly contractive mappings satisfying rational expressions in ordered partial metric spaces. Int. J. Nonlinear Anal. Appl., 7 (2016), 111-130.
[22] Reich, S. Fixed points of contractive functions. Boll. Unione Math. Ital., 5 (1972), 26-42.

[^0]: *Corresponding author
 Email addresses: mirzaeeshahram@gmail.com (Shahram Mirzaee), meshaghi@semnan.ac.ir (Madjid Eshaghi Gordji)

