N
MA
= I

(G.1p)—Ciric-Reich-Rus contraction on metric space
endowed with a graph

Shahram Mirzaee?, Madjid Eshaghi Gordji®*

aDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
bDepartment of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran.

(Communicated by Javad Damirchi)

Abstract

In this paper, we introduce the (G, 1)—Ciric-Reich-Rus contraction on metric space endowed with a
graph, such that (X, d) is a metric space, and V(G) is the vertices of G coincides with X. We give
an example to show that our results generalize some known results
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1. Introduction and preliminaries

One of the most attractive areas of the fixed point theory is the existence of fixed points in a
metric space respect to a given graph. Recently Jachymski [? | has given some generalizations of the
Banach Contraction Principle to mappings on a metric space respect to a graph. In order to study
1h—Ciric-Reich-Rus type contraction, we need the following definitions. (see also [? 7?2 7 72?2 7 ?
7?27?7777
Let (X, d) be a metric space, and A be the diagonal of X x X. Let G be a directed graph such that
the set V(G) of its vertices coincides with X, and the set F(G) of its edges contains all loops, i.e.,
E(G) O A. Let G has no parallel edges, so one can identify G with the pair (V(G), E(G)).

By G~! we denote the graph obtained from G by reversing the direction of edges, and call it the
reverse of graph G. Thus,
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B(G) = {(r.y) € X % X|(y,7) € E(C)}.
G is the undirected graph that obtained from G by remove the direction of edges. So we have,

E(G) = E(G)JE(G™).

A path from z to y of length N(N € N) is a sequence (), of N + 1 vertices such that
rg=xz,xn =y and (x,_1,2,) € E(G) fori=1,...,N.
G is weakly connected if G is connected. [z]¢ is the equivalence class of relations R defined on V(G)
by the rule:

2Ry if there is a path in G from z to y.
G, is called the component of G which consists of all edges and vertices which are contained in some
path beginning at x.
If f: X — X is an operator, then

X'={reX:(x fr)} € E(G)},
and the set of all fixed points of f is denoted by

Fr={reX: f(z) ==z}
Definition 1.1. [? | The operator f : X — X is called a G— Cliric-Reich-Rus operator if:
1. for all z,y € X if (v,y) € E(G) then (Tx,Ty) € E(G);

2. There exists o, 8,7 € RT with a+ 8+~ € (0,1), such that for each x,yy € X we have,
d(fz, fy) < ad(z,y) + Bd(w, fx) + vd(y, fy)-
Definition 1.2. [? | The operator f : X — X is called a Picard operator (PO) if:

(i) f has a unique fized point x*;

*

(i1) For all x € X, we have lim,,_,o T"x = x*.
Definition 1.3. [? | The operator f: X — X is called a weakly Picard operator (W PO) if:
(1) Fy # &

(ii) for all x € X, we have lim,_,o, T"z = x*(z).
(x*(x) is the fixed point of f which depened on x )

Definition 1.4. [? | A mapping f : X — X is called orbitally continuous if for all z,y € X and
any sequence (K, )nen of positive integers,
frnx — vy,  dimplise  f(f*2) — fy asn — oco.

Definition 1.5. [7 | A mapping f : X — X is called orbitally G— continuous if for all x,y € X
and any sequence (K, )nen of positive integers,
flow =y, (foa, foriz) € B(G) imply f(fx) = [y asn— oo

Definition 1.6. [? | Let us define the class ¥V = {1 : R* — R | 4 is nondecreasing } which
satisfies the following conditions:
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(i) Y(w) =0 if and only if w = 0;
(ii) for every (w,) € R*, ¥(w,) — 0 if and only if w, — 0;
(iii) for every wy,wy € R, ¥(wi +w2) < ¥(wi) + P(ws).

In the next section, we state two fixed point theorems for (G, ) —Ciric-Reich-Rus type contraction.

2. Main results

In this section, we assume that (X,d) is a metric space, and G is a directed graph such that
V(G) = X, AC E(G) and G has no parallel edges.

Definition 2.1. A mapping f: X — X is called (G,1)) — Ciric — Reich — Rus contraction if:
(i) for all z,y € X if (zv,y) € E(G) then (Tx,Ty) € E(G);

(ii) there exists o, B,y € R", with a + 8+ v € (0,1), such that for each (z,y) € E(G) implies
v(d(fz, fy)) < adp(d(z,y)) + B(d(z, fz)) +¢(d(y, [y))-

The following Lemma is immediately.

Lemma 2.2. If f : X — X is a (G,¥) — Ciric — Reich — Rus contraction then f is both a
(G™',4) — Ciric — Reich — Rus contraction and a (G, ) — Ciric — Reich — Rus contraction.

Lemma 2.3. Let f: X — X be a (G,v) — Ciric — Reich — Rus with the constants «, 3,~. Then,
for given x € X7, there exists r(z) > 0 such that

Y(d(frx, f*r)) < a'r(),
a+p

for all n € N, where a := :

Proof . Assume that x € X/, then by induction, we have (f"z, f**'a) € E(G) for each n € N. So
B, §7740) S (P , £7) + B, ) + e )

Hence (d(f"x, friz)) < Olé+f¢(d(f"_1x,f”a:)) < - < a"(d(x, fr)). Set r(x) := Y(d(x, fz)).

o —

Lemma 2.4. Assume that (X,d) is a complete metric space and f: X — X is a

(G, ) — Ciric — Reich — Rus contraction with the constants o, 3,7. Then, for each x € X7, there
exists ©*(x) € X such that the sequence (f")nen converges to x*(x) as n — oo.

Proof . Let x € X/. By Lemma 23, (d(f"x, f*'x)) < a™r(x). Hence

Yoo o (d(f e, fr ) < oo.Thus Y(d(fmx, f*Tz)) =0  asn— oc.

Then we have d(f"z, f*™z) — 0. So the sequence (f"x)nen s a Cauchy sequence. Since the space
X is complete, there exists x*(x) € X such that the sequence (f"x)nen converges to x*(x) asn — oo.
(I

Theorem 2.5. Let (X,d) be a complete metric space endowed with a graph G, and let the triple
(X,d,G) has the following condition:

For any (xp)nen i X, if x, = x and (2, Tpi1) € E(G) for all n € N, then there is a subsequence
(@, Jnen with (xy,,x) € E(G) for alln € N.

Let f: X — X be a (G,¢) — Ciric — Reich — Rus contraction and f be orbitally G— continuous.
Then the following statements hold.
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(i) Fy # @ if and only if X' + &.
(ii) If X/ # @ and G is weakly connected, then f is a weakly Picard operator.

(iii) For any X' #+ @, f |lz) 8 @ weakly Picard operator.

Proof . First we prove (iii). Let x € X'; by Lemma 4, there exists v* € X such that
lim,, o f"x = 2*. Since v € X/, then f"x € X/ for every n € N. Now assume that (x, fz) €
E(G). By condition (P), there is a subsequence (f* @)nen of (f"@)nen such that (fFrx, z*) €
E(G) for each n € N. Now we have a path in G by using the points x, fz,- - -, f¥z,2* and
hence x* € [z]s. On the other hand since f is orbitally G—continuous, we have x* is a fived
point forf | -

(i) is obtained using (iii), because Fy # @ if X # &. Now suppose that Fy # @. By using the
assumption that A C E(G), we obtain X' # @.

For proving (ii) let * € X/. Because G is weakly connected, we have X = [z]s and (iii)
complete the proof. O

Remark 2.6. Set ¢)(w) = w in Theorem 2, then Theorem 2.2 in [? ] obtain immediately.

In the next we study the case that f : X — X as a (G,v¢) — Ciric — Reich — Rus contraction can
be a Picard operator. So we need the following definition.

Definition 2.7. Let (X, d) be a metric space endowed with a graph G and f : X — X be a mapping.
We say that the graph G has a f—path property, if for any path in G, (z;)X, from z to y such that
To=x,xny =y we have fx;_1 = x; forallt=1,--- N.

Lemma 2.8. Let (X,d) be a metric space endowed with a graph G and f : X — X be a (G,¢) —
Ciric— Reich — Rus contraction such that the graph G has the f—path property. Then for any x € X
and y € [x]s two sequences (f"x)nen and (f"y)nen are equivalent.

Proof . Let x € X, and let y € [x]g; then there exists a path (x;)i_y in G from x to y such that
Ty = x, 1 =y with (r;_1,%;) € E(G) and fx;y = x; for alli =1,--- /1. From Lemma 23, f is a
(G, ) — Ciric — Reich — Rus. Then for alln € N (f"x;_y, f*z;) € E(G), so

Y(A( o, fra:) < ap(d(f" ay, [ ) 4 BUd(f* e, i) + v (d(f g, fra)
= 10( (fr  wiy, [P ) + BU(d(f" iy, [ ) 4+ b (d(f e, fs))

then,
W win, f10)) € T i, 7 )
Hence, for alln € N
V([ i1, [20)) < aY(d(wio1, 23), (2.1)

+ . A . .
a B. We know that (f"x;)\_, is a path in G from fz to f"y. Using the triangle

inequality and (Z1),

where a =

l l

Y(d(f "z, f"y) Z d(f"wicr, fra)) < a" Yy d(d(wi, ).

=1 =1

Letting n — oo, we get d(f"x, f*y) — 0. O
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Theorem 2.9. Let (X,d) be a complete metric space endowed with a graph G, and f : X — X be a
(G, )-Cliric-Reich-Rus contraction such that the graph G has the f—path property and f be orbitally
G —continuous. Let the triple (X,d, G) has the following condition:

For any (xp)neny in X, if v, = x and (x,, x411) € E(G) for all n € N, then there is a subsequence
(g, Jnen with (xy,,2) € E(G) for all n € N. Let there exists z € X such that z € X/, then the
following statements hold:

(1) f |25 is a Picard operator;

(2) if G is weakly connected, then f is a Picard operator.

Proof . (1) Using (iii) Theorem 4, there exists x*(z) € [z]a such that

lim,, o0 f*(2) = 2*(2), and x*(z) is a fived point of f. Now if y € [z]a and lim,,_o f"(y) =
x*(y). Then by Lemma Z8 two sequences (f"z)nen and (f"y)nen are equivalent. Since both
are convergent sequence, then they are Cauchy sequences. Hence they are Cauchy equivalent.
This means z*(y) = z*(2).

(2) Since z € X7 and G is weakly connected, we have X = [z]5. Then we only need to apply
(1). O

Definition 2.10. [? | We say that mapping f : X — X is a (G,)—contraction if the following
hold:

(i) f preserves edges of G, i.e, for all x,y € X if (z,y) € E(G) then (fz,fy) € E(G)),

(ii) [ decreases the weight of G, that is, there exists ¢ € (0,1) such that for all x,y € X if
(z,y) € E(G)  then (d(fz, fy)) < cp(d(z,y)).

In the following example we show that (G,1)—Ciric-Reich-Rus contraction is a generalization of
(G, 1))—contraction.

Example 2.11. Let X = [0,1] and d(z,y) =| x — y | . Define the graph G by
E(G) ={(0,0), (0, 1)} U{(z,y) € (0,1] x [0,1] = >y}

f: X — X and
5, v € (0,1
fx:{g v € (0,1]
4

x = 0.

G is weakly connected, and f is a (G,1)— Ciric-Reich-Rus contraction with constants,

o= %, B = %,7 = 1—16,¢(w) =3 But f is not (G, )—contraction, because if we consider

YL 0), f(3)) < wld, )

Then we have % < ci which is a contradiction since ¢ € [0, 1).

Definition 2.12. The mapping f : X — X is called a (G,1))—Kannan mapping if:
(i) for all x,y € X if (x,y) € E(G) then (fz,[fy) € E(G));
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(ii) there exists a constant a € (0,1) such that for all xz,y € X, (x,y) € E(G) then,
(d(f, fy)) < aly(d(z, fz)) + ¢ (d(y, fy))].

Corollary 2.13. Let (X, d) be a complete metric space endowed with a graph G, and f : X — X be a
(G,v)— contraction such that the graph G has the f—path property and f be orbitally G— continuous.
Let the triple (X,d, G) has the following condition:

For any (xp)nen in X, if x, = © and (v, 2p41) € E(G) for all n € N, then there is a subsequence
(24, Jnen with (x4, 7) € E(G) for all n € N. Let there exists z € X such that z € X/, then the
following statements hold:

(1) f |25 18 a Picard operator;

(2) if G is weakly connected, then f is a Picard operator.

Proof . If f is a (G, 1)~ contraction with constant c € [0,1), then f is a
(G, 1)—Ciric-Reich-Rus contraction with constants « = ¢, = v = 0. Hence according to
Theorem 7, f is a Picard operator. O

Corollary 2.14. Let (X,d) be a complete metric space endowed with a graph G, and f : X — X
be a (G,1)—Kannan mapping such that the graph G has the f—path property and f be orbitally
G—continuous. Let the triple (X, d,G) has the following condition:

For any (zp)nen in X, if x, = © and (zp, 1) € E(G) for all n € N, then there is a subsequence
(2x, )nen with (xy,,2) € E(G) for alln € N. Let there exists = € X such that z € X7, then the
following statements hold:

(1) f i, is a Picard operator;

(2) if G is weakly connected, then f is a Picard operator.

Proof . If f is a (G,v)—Kannan with constant a € [0,1), then f is a
(G, ) — Ciric — Reich — Rus contraction with constants o = 0, 8 = v = a. Hence according to
Theorem 7, f is a Picard operator. O
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