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Abstract

In this paper, we propose a new method, with different approach and economical computing, that presents
explicit formulas for the exact solutions of a large class DAEs in Hessenberg forms. First, we illustrate the
method for linear time-varying DAEs in Hessenberg forms, in order to show the different approach and also
the advantages of the method in computing, that make it economical. Then, we describe that the method is
efficient for larger classes including special case of non-linear DAEs in Hessenberg forms. Some examples
are given to illustrate the proposed method.
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1. Introduction

Differential Algebraic Equations (DAEs) arise in several areas of sciences and engineering. Specially, in
last two decades, lots of activities are done for improving the theory and computations of DAEs. In this
paper, we are interested in a large class of DAEs in Hessenberg forms of arbitrary size r, that can be defined,
both for linear time-varying and non-linear DAEs.

The Hessenberg forms arise in many applications for the higher index DAEs. Many of the mechanics
and variational problems, are of size two and three [22], and also, some beam deflection problems are of size
four [10]. Moreover, according to precise definition of solvability in [4], which is equivalent to existence
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and uniqueness of the solutions, it has proved that DAEs in Hessenberg forms of size r, are solvable both
for linear time-varying and non-linear DAEs.

Linear time-varying DAEs
A(t)x′+B(t)x = f (t), (1.1)

with singular A, are better choices, than non-linear DAEs, to show our different approach, in comparison
with the other approaches. First, we give an overview of existing approaches for solving linear time-varying
DAEs. Linear DAEs with constant coefficients are completely studied. In fact, a comprehensive overview
of solvability (or solution concepts) of these DAEs is described in [17], while this description for linear
time-varying, according to their additional difficulties, such as non-constant rank, inconsistent initial value
and etc, is briefly.

Several methods, both numerical and analytic, have been proposed for solving linear time-varying DAEs
[6]-[9], [18], [20], [23]. Generally, the basic idea in all these methods, is based on transforming the DAEs to
equivalent underlying Ordinary Differential Equations (ODEs), but with different approaches. For example,
systems transferable to Standard Canonical Form (SCF) [5], derivative array approach [18], and differenti-
ation index [19], are some of the most common approaches. However, all of these approaches, have been
proved, in some sense, are equivalent (see [18] for more details).

All these transformations include changing coordinates x = Qy and pre-multiplying by P where P and
Q are invertible square matrices that both of them must be constructed. although, our method is also
based on transformation that includes changing coordinates x = Qy and pre-multiplying by P, that will
be described in details in next section, but our proposed method is based on transforming the DAEs to
equivalent underlying linear systems of algebraic (not differential) equations. Moreover, other approaches
need to prove the existence of such matrices (P, Q) and during the proof, or after that, in order to compute
x, they must ”construct” P and Q. The construction of P and Q is their main problem in computing, while
we just ”determine” P and Q in our method and computing. The details, will be illustrated in next section.

2. PRELIMINARIES AND MAIN RESULTS

In this section, first, we define linear time-varying DAEs in Hessenberg forms of size r. Then, we illustrate
the computations needed to transform it to linear system of equations in details. Presenting the exact
solutions and computing them in practice, will be our next steps. In order to show that computations are as
economical as possible, some of the advantages in computing, according to their necessity are mentioned.
However, obvious ones, such as memory-consuming or time-consuming, computing simultaneously, shrink
from unnecessary calculations and etc, are not mentioned. It should be noted that, the size of all vectors and
matrices should be chosen such that all the product matrices be well-defined.

Definition 2.1. The DAE (1.1) is in Hessenberg form of size r if it can be written as
I 0 . . 0
0 I . . .
. . I . .
. . . I .
0 . . . 0




x′1
.
.
.
x′r

+


B1,1 ∗ ∗ B1,r−1 B1,r
B2,1 ∗ ∗ B2,r−1 0
0 ∗ ∗ ∗ .
. . ∗ ∗ .
0 . 0 Br,r−1 0




x1
.
.
.
xr

=


f1
.
.
.
fr

 . (2.1)

where x = [x1,x2, ...,xr]
T , and xi, for i = 1,2, ...,r, are vectors. Also, Bi, j are matrices, and the product

matrix C = Br,r−1Br−1,r−2...B2,1B1,r is non-singular for all t. It should be noted that the Bi+1,i matrices
do not need, in general, to be square or even invertible, but their sizes must let the product materix C =
Br,r−1Br−1,r−2...B2,1B1,r be well-defined and invertible matrix. In fact, it is only the product matrix C that
needs to be square and non-singular [4]. Since, the Hessenberg forms of size two and three are the most
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common, and beside, the proposed algorithm for general Hessenberg form of arbitrary size r, may be needed
to be more clarified, in the first example of last section will, we will apply the method for size 3 with all
details, but here, we illustrate the proposed method for general Hessenberg form of arbitrary size r

First, we rewrite (2.1) by breaking it in to 3 parts as follows

B1,rxr = f1 − x′1 −
r−1

∑
j=1

B1, jx j = f̃1, (2.2)

Bi+1,ixi = fi+1 − x′i+1 −
r−2

∑
j=i

Bi, jx j = f̃i+1, i = 1, ...,r−2, (2.3)

Br,r−1xr−1 = fr = f̃r. (2.4)

For the remainder of this paper, we work with equations (2.2)-(2.4), instead of (2.1). As an obvious
benefit, this kind of representation clearly shows that the Bi+1,i matrices, as the coefficients of the unknowns,
are exactly those matrices that appear in the product matrix C = Br,r−1Br−1,r−2...B2,1B1,r. In fact, since our
only certain information is that, C is non-singular for all t, our approach is based on transforming all the
coefficients Bi+1,i to C. In order to achieve this aim, we are going to determine appropriate matrices like
Pi and Qi, independent of structure of the Bi+1,i matrices, such that, changing coordinates xi = Qiyi and
pre-multiplying by Pi, are both well-defined and also transform (2.2)-(2.4) to

Cyr = gr, (2.5)
Cyi = gi, i = 2, ...,r−2, (2.6)
Cyr−1 = gr−1, (2.7)

where gi are the updated versions of right hand sides of (2.2)-(2.4), after the transformation. Obviously,
this work shows that, since the transformation is independent of the structure of the Bi+1,i matrices, it is not
involved with any of the existing and related difficulties, both in theory and computing, in comparison with
other approaches.

Now, according to (2.2)-(2.4) and the structure of C, consider the following presentations of the product
matrix C

C = (Br,r−1Br−1,r−2...B21)B1r, (2.8)
C = (Br,r−1Br−1,r−2...Bi+2,i+1)Bi+1,i(Bi,i−1...B1r), (2.9)
C = Br,r−1(Br−1,r−2...B2,1B1,r). (2.10)

Equations (2.8)-(2.10) show that the Qi matrices should be constructed recursively as follows

Q1 = B1,r, (2.11)
Qi+1 = Bi+1,iQi, i = 1, ...,r−2, (2.12)
Qr = I. (2.13)

After this step, (2.2)-(2.4) become

B1,rQryr = f1 − x′1 −
r−1

∑
j=1

B1, jx j, (2.14)

Bi+1,iQiyi = fi+1 − x′i+1 −
r−2

∑
j=i

Bi, jx j, i = 1, ...,r−2, (2.15)

Br,r−1Qr−1yr−1 = fr. (2.16)
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It should be noted that, since we will use backward substitution, there is no need to substitute xi with
Qiyi in the right hand side, in this step.

The process for Pi is almost the same, but in different order. Again, according to (2.8)-(2.10), the Pi
matrices should be constructed as follows

P1 = I, (2.17)
Pi = Pi+1Bi+2,i+1, i = r−2, ...,1, (2.18)
Pr = P1B1,r. (2.19)

The most important point in this step, as an advantage in memory and time consuming, is to note that,
in practice, the Pi matrices DO NOT need to be saved, or even pre-multiplied in the left hand side of (2.2)-
(2.4), since, according to (2.8)-(2.10) we already know that the answer will be Cyi. In fact, the Pi matrices
are constructed just to update the right hand sides of (2.2)-(2.4) as follows

gr = f1 − x′1 −
r−1

∑
j=1

B1 jx j, (2.20)

gi = Pi( fi+1 − x′i+1 −
r−2

∑
j=i

Bi jx j), i = r−2, ...,1, (2.21)

gr−1 = Pr−1 fr. (2.22)

Moreover, even there is no need to define the new vector gi and we just use it to make the description
easier. After this step, (2.2)-(2.4) will be transformed to simple following form

Cyi = gi, i = r−1,r−2, ...,1,r. (2.23)

The method for solving Cyi = gi is, in some sense, arbitrary and depends on our facilities and require-
ments. Now, recalling that xi = Qiyi, according to (2.11)-(2.13), complete the computing of the xi for
i = r − 1,r − 2, ...,1,r. The computations will continue by using backward substitution. The computed
xi = Qiyi, by considering the order of computing, will be substituted in the right hand sides of previous
equations and so on. It is clear that, having the same coefficient for all the equations is another advantage
of our computing.

After the transformation, by solving (2.5)-(2.7) and using backward substitution, we can compute yi and
according to xi = Qiyi, the explicit formulas for the exact solutions can be presented clearly as follows

xi = QiC−1Pigi, i = r−1,r−2, ...,1,r. (2.24)

Of course, this presentation of xi is, in some sense, symbolic. As a matter of fact, as we illustrated,
computing xi in practice, is different. From numerical angle of view, computing C−1 is expensive. So,
instead of computing C−1 directly, we can solve Cyi = gi for computing. In fact, it depends on size of the
product matrix C.

3. generalization

In this section, we want to generalize our method for lager classes of DAEs in Hessenberg form, including
special case of non-linear DAEs in Hessenberg forms. In order to achieve this goal, consider (2.2)-(2.4),
but this time, as follows

B1rxr = f̃1(t,x1,x′1,x2, ...,xr−1), (3.1)

Bi+1,ixi = f̃i+1(t,xi+1,x′i+1,xi+2, ...,xr−1), i = 1, ...,r−2, (3.2)

Br,r−1xr−1 = f̃r(t). (3.3)
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where f̃i, i = 1, ...,r, are non-linear and sufficiently smooth functions of their variables. As we illustrated
in previous section, the process of transforming the DAE to Cyi = gi, is completely independent of the
structure of f̃i, as a function of t, xi and their derivatives, and according to (2.20)-(2.22), for gi, as well.
Since we have used backward substitution, without loss of generality and only under the assumption of
definition 2.1, the method allows us to find the exact solutions of following DAEs that we call them DAEs
in generalized Hessenberg form of size r

B1rxr = F̃1(t,x1, ...,x
(n1)
1 , ...,xr−1, ...,x

(nr−1)
r−1 ), (3.4)

Bi+1,ixi = F̃i+1(t,xi+1, ...,x
(ni+1)
i+1 , ...,xr−1, ...,x

(nr−1)
r−1 ), i = 1, ...,r−2, (3.5)

Br,r−1xr−1 = F̃r(t), (3.6)

where ni ∈ N and F̃i, i = 1, ...,r, are also like f̃i, non-linear and sufficiently smooth functions of their vari-
ables. The second and third examples of last section will ***

4. applications

Applications of DAEs overlap to some extent, but the most famous groups of these applications that are
based on how the equations are derived rather than on the type of equations that result, are: Constrained
Variational Problems, Network Modeling, Model Reduction and Singular Perturbations, Chemical proces
and Discretization of PDEs [4].

Although, the efficiency of proposed method can be shown for any of these five groups with several
examples, we have tried to select some special examples that show this efficiency better.

Example 4.1. Consider the linear DAE in Hessenberg form of size 3

x′1 +B1,1x1 +B1,2x2 +B1,3x3 = f1, (4.1)
x′2 +B2,1x1 +B2,2x2 = f2, (4.2)
B3,2x3 = f3. (4.3)

where C = B3,2B2,1B1,3 is non-singular.
If we rewrite (*) as follows

B1,3x3 = f1 − x′1 −B1,1x1 −B1,2x2, (4.4)
B2,1x1 = f2 − x′2 −B2,2x2, (4.5)
B3,2x3 = f3. (4.6)

then, in order to determine the Pi and Qi matrices that transform the coefficients of the unknowns on the left
hand side to C, it can be easily seen that we should have

Example 4.2. Consider the non-linear following DAE

A(t)x′+B(t)x = f (t), t ̸=−1 (4.7)

Although, it may be difficult to verify that the given system is in generalized Hessenberg form, but if we
rewrite it as
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and by using this fact, that the product matrix

C = B3,2B2,1B1,3 = 3(t +1)3

is non-singular for all t ̸= 1, then it can be easily seen that (*) is in generalized Hessenberg form of size 3.
Now, the same as Example 1, by applying the propsed algorithm, after computing Q− i and Pi matrices, for
i = 1,2,3 from *-* and *-* respectively, we have

A(t) =

 I2×2 0 0
0 I3×3 0
0 0 0

 ,

B(t) =



[
0 0
0 0

] [
0 0 0
0 0 0

] [
t +1

0

]
 t +1 t +2

2t +2 2t +4
t +1 1

  0 0 0
0 0 0
0 0 0

  0
0
0

[
0 0

] [
t +1 t +1 0

] [
0
]

 ,

f (t) =



[
t6 + t5 + t +1

1

]
 t2 +6t +3

5t2 +8t +6
4t3 +2t +2

[
t4 +2t3 + t2 +2t +2

]

 .

Example 4.3. Consider a linear (or linearized) semi-explicit DAEs{
x(m) = ∑m

j=1 A j(t)x( j−1)+B(t)y+q(t)
0 =C(t)x+ r(t),

(4.8)

where A j(t) ∈ Rn×n for j = 1,2, ...,m, B j(t) ∈ Rn×k, C j(t) ∈ Rk×n, q j(t) ∈ Rn, r j(t) ∈ Rk, for n ≥ 2 and
1 ≤ k ≤ n, are smooth real valued functions of t, for t0 ≤ t ≤ t f . Also, E(t) =C(t)B(t) is non-singular for
all t in interested interval.

After Example 1 and 2, it is obvious that the problem is in generalized Hessenberg form. Numerical solu-
tions of this problem, according to its importance, that we will discuss it later in this example, have been
considered in several papers. For example, Direct Method by Using the Operational Matrices of Cheby-
shev Cardinal Functions [13], Homotopy Perturbation Method [27], Adomian Decomposition Method [14],
Sinc-Collocation Method [28], Reducing Index Method [16], Differential Quadrature Method[26], Numer-
ical Tau Method with Schauder Bases [25], Predicted Sequential Regularization Method [21], Projected
Collocation Method [2], Pseudo-Spectral Method [24] and etc, but they are all numerical.

In order to solve the problem with our proposed method, let x = B(t)u in second equation, so E(t)u =
−r(t) that implies u =−E−1(t)r(t), and consequently

x =−B(t)E−1(t)r(t). (4.9)

Now, by substituting the calculeted x in first equation, pre-multiplying in C(t) and then in E−1(t), we
have

y = E−1(t)C(t)(x(m)−
m

∑
j=1

A j(t)x( j−1)−q(t)). (4.10)
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Now, consider the special case of (32) for m = 1, that is{
x′ = A(t)x+B(t)y+q(t)
0 =C(t)x+ r(t), (4.11)

The correctness of our explicit representation of the solutions for this special case, only for y, has been
proved, for n = 2 and k = 1, in [3] and, for n = 3 and k = 2, in [15]. As we mentioned in the begining of this
section, one of the most importatnt applications of DAEs is in solving discretized (or semi-discretized) PDEs
that achieved by using method of line (MOL). For example, the incompressible Navier-Stokes equations can
be formulated as (4.11) by semi-discretization in space [29].

5. Conclusions

In this paper, we have proposed a new method, with different approach and economical computing, that
presents explicit formulas for the exact solutions of a large class of DAEs in Hessenberg forms. Frist,
we have illustrated the method for linear time-varying DAEs in Hessenberg forms, in order to show the
different approach and also the advantages of the method in computing, that make it economical. Then, we
have described that the method is efficient for larger classes including special case of non-linear DAEs in
Hessenberg forms.
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