A new type of approximation for cubic functional equations in Lipschitz spaces

Mahshid Dashti*, Hamid Khodaei
Department of Mathematics, Faculty of Mathematical Sciences and Statistics, Malayer University, Malayer, Iran
(Communicated by Madjid Eshaghi Gordji)

Abstract

Let \mathcal{G} be an abelian group with a metric d, \mathcal{E} be a normed space and $f: \mathcal{G} \rightarrow \mathcal{E}$ be a given function. We define difference $\mathcal{C}_{3,1} f$ by the formula $$
\mathcal{C}_{3,1} f(x, y)=3 f(x+y)+3 f(x-y)+48 f(x)-f(3 x+y)-f(3 x-y)
$$ for every $x, y \in \mathcal{G}$. Under some assumptions about f and $\mathcal{C}_{3,1} f$, we show that if $\mathcal{C}_{3,1} f$ is Lipschitz, then there exists a cubic function $\mathcal{C}: \mathcal{G} \rightarrow \mathcal{E}$ such that $f-\mathcal{C}$ is Lipschitz with the same constant. Moreover, we study the approximation of the equality $\mathcal{C}_{3,1} f(x, y)=0$ in the Lipschitz norms.

Keywords: Approximation; d-Lipschitz; Left invariant mean; Cubic difference; Lipschitz norm. 2010 MSC: 39B82, 39B72, 39B52.

1. Introduction

The approximation of the Cauchy and Jensen functional equations in the Lipschitz norms were studied by Tabor [[23, [24]. Czerwik and Dłutek [7] studied the approximation of the quadratic functional equations in Lipschitz spaces. The concept of stability in Lipschitz spaces of several functional equations such as bi-quadratic, tri-quadratic, cubic, bi-cubic and quartic functional equations has been studied by Nikoufar et al.; see for instance [$[6,8]$ and [i5]-[19].

Let \mathcal{G} be an abelian group and \mathcal{E} be a vector space. A cubic ($\{2,1\}$-cubic) difference and a $\{3,1\}$-cubic difference of a function $f: \mathcal{G} \rightarrow \mathcal{E}$ are defined by

$$
\mathcal{C}_{2,1} f(x, y)=f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)
$$

[^0]Received: May 2019 Revised: January 2020
and

$$
\mathcal{C}_{3,1} f(x, y)=f(3 x+y)+f(3 x-y)-3 f(x+y)-3 f(x-y)-48 f(x),
$$

respectively. The equality $\mathcal{C}_{2,1} f(x, y)=0$ is called a cubic functional equation and every solution of the last functional equation is said to be a cubic function; see [TIT]. The stability of cubic functional equation in Banach spaces and Lipschitz spaces were investigated by Jun and Kim [iI]] and Ebadian et al. [$[8]$, respectively.

Also, the equality $\mathcal{C}_{3,1} f(x, y)=0$ is called a $\{3,1\}$-cubic functional equation. Park and Jung [22$]$ proved that the $\{3,1\}$-cubic functional equation is equivalent to cubic functional equation and investigated the stability of $\{3,1\}$-cubic functional equation on abelian groups to a Banach space.

In this present paper, under some assumptions about f and $\mathcal{C}_{3,1} f$, we show that if $\mathcal{C}_{3,1} f$ is Lipschitz, then there exists a cubic function $\mathcal{C}: \mathcal{G} \rightarrow \mathcal{E}$ such that $f-\mathcal{C}$ is Lipschitz with the same constant. We also investigate the approximation of $\{3,1\}$-cubic functional equation in the Lipschitz norms. Finally, we bring several open problems related to this concept.

2. Main results

All over this paper, we use notations \mathcal{G} and \mathcal{E} for arbitrary Abelian group and vector space, unless they are otherwise specified. Let $S(\mathcal{E})$ be a given family of subsets of \mathcal{E}. We say that this family is linearly invariant (see [I]) if it is closed under the addition and scalar multiplication defined as usual sense and translation invariant, i.e., $x+A \in S(\mathcal{E})$, for all $x \in \mathcal{E}$ and $A \in S(\mathcal{E})$. One can easily check that due to properties of $S(\mathcal{E})$ it contains all singleton subsets of \mathcal{E}. In the special case, for a normed vector space \mathcal{E}, the family of all closed balls with center at zero is denoted by $C B(\mathcal{E})$.

By $B(\mathcal{G}, S(\mathcal{E}))$ we denote the family of all functions $f: \mathcal{G} \rightarrow \mathcal{E}$ with $\operatorname{Im} f \subset V$ for some $V \in S(\mathcal{E})$. It is easy to verify that $B(\mathcal{G}, S(\mathcal{E}))$ is a vector space.

Definition 2.1. [2:3] We say that $B(\mathcal{G}, S(\mathcal{E}))$ admits a left invariant mean (LIM, in short) if the family $S(\mathcal{E})$ is linearly invariant and there exists a linear operator $M: B(\mathcal{G}, S(\mathcal{E})) \rightarrow \mathcal{E}$ such that
(i) if $\operatorname{Im}(f) \subset V$ for some $V \in S(\mathcal{E})$, then $M[F] \in V$;
(ii) if $f \in B(\mathcal{G}, S(\mathcal{E}))$ and $a \in \mathcal{G}$, then $M\left[f^{a}\right]=M[f]$, where $f^{a}(\cdot)=f(\cdot+a)$.

Definition 2.2. [7, [2.] Let $\mathbf{d}: \mathcal{G} \times \mathcal{G} \rightarrow S(\mathcal{E})$ be a set-valued function such that for each $x, y, a \in G$,

$$
\mathbf{d}(x+a, y+a)=\mathbf{d}(a+x, a+y)=\mathbf{d}(x, y)
$$

and a function $f: \mathcal{G} \rightarrow \mathcal{E}$ is said to be \mathbf{d}-Lipschitz if

$$
f(x)-f(y) \in \mathbf{d}(x, y)
$$

Theorem 2.3. Assume that $S(\mathcal{E})$ is a linearly invariant family such that $B(\mathcal{G}, S(\mathcal{E}))$ admits LIM. If $f: \mathcal{G} \rightarrow \mathcal{E}$ is an odd function and $\mathcal{C}_{3,1} f(., y): \mathcal{G} \rightarrow \mathcal{E}$ is \mathbf{d}-Lipschitz for every $y \in \mathcal{G}$, then there exists a cubic function $\mathcal{C}: \mathcal{G} \rightarrow \mathcal{E}$ such that $f-\mathcal{C}$ is $\frac{1}{48} \mathbf{d}$-Lipschitz. Moreover, if $\operatorname{Im}\left(\mathcal{C}_{3,1} f\right) \subset A$ for some $A \in S(\mathcal{E})$, then $\operatorname{Im}(f-\mathcal{C}) \subset \frac{1}{48} A$.

Proof. Let $M: B(\mathcal{G}, S(\mathcal{E})) \rightarrow \mathcal{E}$ be a LIM. We define $C_{(x, z)}^{3}: \mathcal{G} \rightarrow \mathcal{E}$ by

$$
C_{(x, z)}^{3}(y)=\frac{1}{48} \mathcal{C}_{3,1} f(x, y)-\frac{1}{48} \mathcal{C}_{3,1} f(z, y)
$$

for all $x, y, z \in \mathcal{G}$. Consider the function $F_{a}: \mathcal{G} \rightarrow \mathcal{E}$ given by

$$
F_{a}(y)=\frac{1}{48} f(3 a+y)+\frac{1}{48} f(3 a-y)-\frac{1}{16} f(a+y)-\frac{1}{16} f(a-y)
$$

for all $a, y \in \mathcal{G}$. By the oddness of f, we have $\frac{1}{48} \mathcal{C}_{3,1} f(0, y)=f(0)$. We will prove that $F_{a} \in$ $B(\mathcal{G}, S(\mathcal{E}))$. In fact, for each $y, a \in \mathcal{G}$ we have

$$
\begin{aligned}
F_{x}(y) & =\frac{1}{48} f(3 x+y)+\frac{1}{48} f(3 x-y)-\frac{1}{16} f(x+y)-\frac{1}{16} f(x-y) \\
& =\frac{1}{48} \mathcal{C}_{3,1} f(0, y)-\frac{1}{48} \mathcal{C}_{3,1} f(x, y)+f(x)-f(0) \\
& =C_{(0, x)}^{3}(y)+f(x)-f(0) .
\end{aligned}
$$

Since $\operatorname{Im}\left(C_{(x, z)}^{3}\right) \subset \frac{1}{48} \mathbf{d}(x, z)$ for all $y, z \in \mathcal{G}$, it follows that $F_{a} \in B(\mathcal{G}, S(\mathcal{E}))$ for all $a \in \mathcal{G}$. Thus we may define $\mathcal{C}: \mathcal{G} \rightarrow \mathcal{E}$ by the formula

$$
\mathcal{C}(x)=M\left(F_{x}\right), \quad(x \in \mathcal{G})
$$

We will verify that $f-\mathcal{C}$ is $\frac{1}{48} \mathbf{d}$-Lipschitz. By properties of the mean M, it is easy to see that if $f: \mathcal{G} \rightarrow \mathcal{E}$ is constant, then $M(f)=\operatorname{Im} f$. Furthermore,

$$
\begin{aligned}
(f(x)-\mathcal{C}(x))-(f(z)-\mathcal{C}(z)) & =\left(f(x)-M\left(F_{x}\right)\right)-\left(f(z)-M\left(F_{z}\right)\right) \\
& =\left(M(f(x))-M\left(F_{x}\right)\right)-\left(M(f(z))-M\left(F_{z}\right)\right) \\
& =M\left((f(x))-\left(F_{x}\right)\right)-M\left((f(z))-\left(F_{z}\right)\right) \\
& =M\left(\frac{1}{48} \mathcal{C}_{3,1} f(x, \cdot)-\frac{1}{48} \mathcal{C}_{3,1} f(z, \cdot)\right) \\
& =M\left(C_{(x, z)}^{3}(\cdot)\right)
\end{aligned}
$$

for all $x, z \in \mathcal{G}$. So, $f-\mathcal{C}$ is $\frac{1}{48} \mathbf{d}$-Lipschitz. Now, we show that \mathcal{C} is a cubic function. We have the equalities

$$
\begin{aligned}
& \mathcal{C}(3 x+z)+\mathcal{C}(3 x-z) \\
& =M\left[F_{3 x+z}(y)\right]+M\left[F_{3 x-z}(y)\right] \\
& =M\left[\frac{1}{48} f(9 x+3 z+y)+\frac{1}{48} f(9 x+3 z-y)-\frac{1}{16} f(3 x+y+z)-\frac{1}{16} f(3 x+z-y)\right] \\
& \quad+M\left[\frac{1}{48} f(9 x-3 z+y)+\frac{1}{48} f(9 x-3 z-y)-\frac{1}{16} f(3 x-z+y)-\frac{1}{16} f(3 x-z-y)\right] .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& 3 \mathcal{C}(x+z)+3 \mathcal{C}(x-z)+48 \mathcal{C}(x) \\
& =3 M\left[F_{x+z}(y)\right]+3 M\left[F_{x-z}(y)\right]+48 M\left[F_{x}(y)\right] \\
& =M\left[F_{x+z}(y+6 x)\right]+M\left[F_{x+z}(y-6 x)\right]+M\left[F_{x+z}(y)\right] \\
& +M\left[F_{x-z}(y+6 x)\right]+M\left[F_{x-z}(y-6 x)\right]+M\left[F_{x-z}(y)\right] \\
& +3 M\left[F_{x}(y+4 x+z)\right]+3 M\left[F_{x}(y+4 x-z)\right] \\
& +3 M\left[F_{x}(y-4 x+z)\right]+3 M\left[F_{x}(y-4 x-z)\right] \\
& +6 M\left[F_{x}(y+2 x+z)\right]+6 M\left[F_{x}(y+2 x-z)\right] \\
& +6 M\left[F_{x}(y-2 x+z)\right]+6 M\left[F_{x}(y-2 x-z)\right] \\
& +6 M\left[F_{x}(y+z)\right]+6 M\left[F_{x}(y-z)\right] \\
& =M\left[\frac{1}{48} f(9 x+3 z+y)+\frac{1}{48} f(-3 x+3 z-y)-\frac{1}{16} f(7 x+z+y)-\frac{1}{16} f(-5 x+z-y)\right] \\
& +M\left[\frac{1}{48} f(-3 x+3 z+y)+\frac{1}{48} f(9 x+3 z-y)-\frac{1}{16} f(-5 x+z+y)-\frac{1}{16} f(7 x+z-y)\right] \\
& +M\left[\frac{1}{48} f(3 x+3 z+y)+\frac{1}{48} f(3 x+3 z-y)-\frac{1}{16} f(x+z+y)-\frac{1}{16} f(x+z-y)\right] \\
& +M\left[\frac{1}{48} f(9 x-3 z+y)+\frac{1}{48} f(-3 x-3 z-y)-\frac{1}{16} f(-5 x-z-y)-\frac{1}{16} f(7 x-z+y)\right] \\
& +M\left[\frac{1}{48} f(-3 x-3 z+y)+\frac{1}{48} f(9 x-3 z-y)-\frac{1}{16} f(-5 x-z-y)-\frac{1}{16} f(7 x-z-y)\right] \\
& +M\left[\frac{1}{48} f(3 x-3 z+y)+\frac{1}{48} f(3 x-3 z-y)-\frac{1}{16} f(x-z+y)-\frac{1}{16} f(x-z-y)\right] \\
& +3 M\left[\frac{1}{48} f(7 x+y+z)+\frac{1}{48} f(-x-y-z)-\frac{1}{16} f(5 x+y+z)-\frac{1}{16} f(-3 x-y-z)\right] \\
& +3 M\left[\frac{1}{48} f(7 x+y-z)+\frac{1}{48} f(-x-y+z)-\frac{1}{16} f(5 x+y-z)-\frac{1}{16} f(-3 x-y+z)\right] \\
& +3 M\left[\frac{1}{48} f(-x+y+z)+\frac{1}{48} f(7 x-y-z)-\frac{1}{16} f(-3 x+y+z)-\frac{1}{16} f(5 x-y-z)\right] \\
& +3 M\left[\frac{1}{48} f(-x+y-z)+\frac{1}{48} f(7 x-y+z)-\frac{1}{16} f(-3 x+y-z)-\frac{1}{16} f(5 x-y+z)\right] \\
& +6 M\left[\frac{1}{48} f(5 x+y+z)+\frac{1}{48} f(x-y-z)-\frac{1}{16} f(3 x+y+z)-\frac{1}{16} f(-x-y-z)\right] \\
& +6 M\left[\frac{1}{48} f(x+y+z)+\frac{1}{48} f(5 x-y-z)-\frac{1}{16} f(-x+y+z)-\frac{1}{16} f(3 x-y-z)\right] \\
& +6 M\left[\frac{1}{48} f(x+y-z)+\frac{1}{48} f(5 x-y+z)-\frac{1}{16} f(-x+y-z)-\frac{1}{16} f(3 x-y+z)\right] \\
& +6 M\left[\frac{1}{48} f(5 x+y-z)+\frac{1}{48} f(x-y+z)-\frac{1}{16} f(3 x+y-z)-\frac{1}{16} f(-x-y+z)\right] \\
& +6 M\left[\frac{1}{48} f(3 x+y+z)+\frac{1}{48} f(3 x-y-z)-\frac{1}{16} f(x+y+z)-\frac{1}{16} f(x-y-z)\right] \\
& +6 M\left[\frac{1}{48} f(3 x+y-z)+\frac{1}{48} f(3 x-y+z)-\frac{1}{16} f(x+y-z)-\frac{1}{16} f(x-y+z)\right] \text {. }
\end{aligned}
$$

By properties of the linear operator M and oddness of f, one gets

$$
3 \mathcal{C}(x+z)+3 \mathcal{C}(x-z)+48 \mathcal{C}(x)=\mathcal{C}(3 x+z)+\mathcal{C}(3 x-z)
$$

To finish the proof, assume that $\operatorname{ImC}_{3,1}(f) \subset A$ for some $A \in S(\mathcal{E})$. Then we have

$$
\operatorname{Im}\left(\frac{1}{48} \mathcal{C}_{3,1}(f)\right) \subset \frac{1}{48} A .
$$

So, $f(y)-\mathcal{C}(y)=M\left(\frac{1}{48} \mathcal{C}_{3,1} f(y,).\right) \in \frac{1}{48} A$, for all $y \in G$. Thus,

$$
\operatorname{Im}(f-\mathcal{C}) \subset \frac{1}{48} A
$$

as required.
Corollary 2.4. Let $(\mathcal{E},\|\|$.$) be a normed space. Assume that S(\mathcal{E})$ is a family of closed balls such that $B(\mathcal{G}, S(\mathcal{E}))$ admits LIM. Let $f: \mathcal{G} \rightarrow \mathcal{E}$ be an odd function and $g: \mathcal{G} \rightarrow \mathbb{R}_{+}$satisfy the inequality

$$
\left\|\mathcal{C}_{3,1} f(y, z)-\mathcal{C}_{3,1} f(z, x)\right\| \leq g(y-z)
$$

for all $x, y, z \in \mathcal{G}$. Then there is a cubic function $\mathcal{C}: \mathcal{G} \rightarrow \mathcal{E}$ with

$$
\|(f(x)-\mathcal{C}(x))-(f(y)-\mathcal{C}(y))\| \leq \frac{1}{48} g(x-y)
$$

for all $x, y \in \mathcal{G}$.
Proof. We put $\mathbf{d}(x, y)=g(x-y) B(0,1)$ for all $x, y \in \mathcal{G}$, where $B(0,1)$ is the closed unit ball with center at zero, and make use of Theorem [2.3].

3. The approximation in the Lipschitz norms

In this section, we study the approximation of the $\{3,1\}$-cubic functional equation in the Lipschitz norms. Before that, we recall the following definition.

Definition 3.1. [2.9] Let $(\mathcal{E},\|\|$.$) be a normed space.$
(i) A function $f: \mathcal{G} \rightarrow \mathcal{E}$ is called Lipschitz function if

$$
\|f(x)-f(y)\| \leq L d(x, y)
$$

for all $x, y \in \mathcal{G}$ and for a constant $L \in \mathbb{R}_{+}$. We denote the smallest constant possesing this property by $\operatorname{lip}(f)$. Let $\operatorname{Lip}(\mathcal{G}, \mathcal{E})$ be the space of all bounded Lipschitz functions with the norm

$$
\|f\|_{L i p}:=\|f\|_{\text {sup }}+l i p(f)
$$

for all $f \in \operatorname{Lip}(\mathcal{G}, \mathcal{E})$. Moreover, by $\operatorname{Lip}_{0}(\mathcal{G}, \mathcal{E})$ we denote the space of all Lipschitz functions $f: \mathcal{G} \rightarrow \mathcal{E}$ with the norm defined by the formula

$$
\|f\|_{0}=\|f(0)\|+\operatorname{lip}(f) .
$$

(ii) A function $\omega: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is the module of continuity of the function $f: \mathcal{G} \rightarrow \mathcal{E}$, if for every $\delta>0$ and $x, y \in \mathcal{G}$,

$$
d(x, y) \leq \delta \quad \Rightarrow \quad\|f(x)-f(y)\| \leq \omega(\delta)
$$

(iii) A group $\left(\mathcal{G}, d, d^{\prime}\right)$ is said to be a metric pair if d is a metric in abelian group \mathcal{G} and d^{\prime} is a metric in $\mathcal{G} \times \mathcal{G}$ such that

$$
d^{\prime}((a, x),(a, y))=d^{\prime}((x, a),(y, a))=d(x, y)
$$

for all $a, x, y \in \mathcal{G}$.
Theorem 3.2. Let $\left(\mathcal{G}, d, d^{\prime}\right)$ be a metric pair and let $(\mathcal{E},\|\|$.$) be a normed space. Assume that S(\mathcal{E})$ is a family of closed balls such that $B(\mathcal{G}, S(\mathcal{E}))$ admits LIM. Let $f: \mathcal{G} \rightarrow \mathcal{E}$ be an odd function. If $\mathcal{C}_{3,1} f \in \operatorname{Lip}(\mathcal{G} \times \mathcal{G}, \mathcal{E})$, then there is a cubic function $\mathcal{C}: \mathcal{G} \rightarrow \mathcal{E}$ such that $f-\mathcal{C} \in \operatorname{Lip}(\mathcal{G}, \mathcal{E})$ and

$$
\|f-\mathcal{C}\|_{L i p} \leq \frac{1}{48}\left\|\mathcal{C}_{3,1} f\right\|_{L i p}
$$

Furthermore, if $\mathcal{C}_{3,1} f \in \operatorname{Lip}^{0}(\mathcal{G} \times \mathcal{G}, \mathcal{E})$, then there is a cubic function $\mathcal{C}: \mathcal{G} \rightarrow \mathcal{E}$ such that $f-\mathcal{C} \in$ $\operatorname{Lip}^{0}(\mathcal{G}, \mathcal{E})$ and

$$
\|f-\mathcal{C}\|_{L i p^{0}} \leq \frac{1}{48}\left\|\mathcal{C}_{3,1} f\right\|_{L i p^{0}}
$$

Proof. Suppose that $\mathcal{C}_{3,1} f \in \operatorname{Lip}(\mathcal{G} \times \mathcal{G}, \mathcal{E})$. Let $\omega: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be defined by $\omega(x):=\operatorname{lip}\left(\mathcal{C}_{3,1} f\right) x$, for all $x \in \mathcal{G}$. Since $\mathcal{C}_{3,1} f \in \operatorname{Lip}(\mathcal{G} \times \mathcal{G}, \mathcal{E})$, it follows that

$$
\left\|\mathcal{C}_{3,1} f(x, y)-\mathcal{C}_{3,1} f(m, k)\right\| \leq \operatorname{lip}\left(\mathcal{C}_{3,1} f\right) d^{\prime}((x, y),(m, k))=\omega\left(d^{\prime}((x, y),(m, k))\right)
$$

for all $x, y, m, k \in \mathcal{G}$. This means that ω is the module of continuity of the function $\mathcal{C}_{3,1} f$. Define $\mathrm{d}: \mathcal{G} \times \mathcal{G} \rightarrow S(\mathcal{E})$ by the formula

$$
\mathbf{d}(x, y):=\left\{\inf _{r \geq d(x, y)} \omega(r)\right\} B(0,1)
$$

for all $x, y \in \mathcal{G}$. Since ω is the module of continuity, it follows that

$$
\left\|\mathcal{C}_{3,1} f(y, x)-\mathcal{C}_{3,1} f(z, x)\right\| \leq \inf _{r \geq d^{\prime}((y, x),(z, x))} \omega(r)=\inf _{r \geq d(y, z)} \omega(r)
$$

for all $x, y, z \in \mathcal{G}$. This means that $\mathcal{C}_{3,1} f(., x)$ is a d-Lipschitz function. Then by Theorem [2.3], there exists a new type cubic function $\mathcal{C}: \mathcal{G} \rightarrow \mathcal{E}$ such that

$$
(f(x)-\mathcal{C}(x))-(f(y)-\mathcal{C}(y)) \in\left(\frac{1}{48}\right) \mathbf{d}(x, y)
$$

for all $x, y \in \mathcal{G}$. Consequently,

$$
\begin{aligned}
\|(f(x)-\mathcal{C}(x))-(f(y)-\mathcal{C}(y))\| & \leq \inf _{r \geq d(x, y)}\left(\frac{1}{48}\right) \omega(r) \\
& \leq\left(\frac{1}{48}\right) \omega(d(x, y)) \\
& =\left(\frac{1}{48}\right) \operatorname{lip}\left(\mathcal{C}_{3,1} f\right) d(x, y)
\end{aligned}
$$

for all $x, y \in \mathcal{G}$. So, $f-\mathcal{C}$ is a Lipschitz function and $\operatorname{lip}(f-\mathcal{C}) \leq\left(\frac{1}{48}\right) \operatorname{lip}\left(\mathcal{C}_{3,1} f\right)$. Since $\mathcal{C}_{3,1} f \in$ $\operatorname{Lip}(\mathcal{G} \times \mathcal{G}, \mathcal{E})$, we have $\mathcal{C}_{3,1} f \in B(\mathcal{G} \times \mathcal{G}, \mathcal{E})$ and we obtain

$$
\|f-\mathcal{C}\|_{\sup } \leq \frac{1}{48}\left\|C_{k} f\right\|_{\text {sup }}
$$

That is $f-\mathcal{C} \in \operatorname{Lip}(\mathcal{G}, \mathcal{E})$. So,

$$
\|f-\mathcal{C}\|_{L i p} \leq \frac{1}{48}\left\|\mathcal{C}_{3,1} f\right\|_{L i p}
$$

Now, suppose that $\mathcal{C}_{3,1} f \in \operatorname{Lip}^{0}(\mathcal{G} \times \mathcal{G}, \mathcal{E})$. By the same way, one can obtain a new type cubic function $\mathcal{C}: \mathcal{G} \rightarrow \mathcal{E}$ such that $f-\mathcal{C}$ is Lipschitz and

$$
\operatorname{lip}(f-\mathcal{C}) \leq\left(\frac{1}{48}\right) \operatorname{lip}\left(\mathcal{C}_{3,1} f\right)
$$

Since $C(0)=0$, we have

$$
\begin{aligned}
\|f-\mathcal{C}\|_{L i p^{0}} & =\|f(0)-\mathcal{C}(0)\|+\operatorname{lip}(f-\mathcal{C}) \\
& \leq \frac{1}{48}\left\|\mathcal{C}_{3,1} f(0,0)\right\|+\left(\frac{1}{48}\right) \operatorname{lip}\left(\mathcal{C}_{3,1} f\right) \\
& \leq \frac{1}{48}\left\|\mathcal{C}_{3,1} f\right\|_{L i p^{0}},
\end{aligned}
$$

as, required.

4. Open research problems

Problem A.

A functional equation is said to be $\{m, k, r, s\}$-additive if $f: \mathcal{G} \rightarrow \mathcal{E}$ satisfies the functional equation

$$
\mathcal{A}_{m, k, r, s} f(x, y):=f(m x+k y)-r f(x)-s f(y)=0
$$

for some real numbers $m>0, k>0, r, s$ with $m+k=r+s \neq 1$. Furthermore, the equalities $\mathcal{A}_{1,1,1,1} f(x, y)=0$ and $\mathcal{A}_{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}} f(x, y)=0$ are the additive and Jensen functional equations, and every solution of these functional equations are additive and Jensen functions, respectively.

The stability of the $\{m, k, r, s\}$-additive functional equation was studied by Lu and Park [14].
Tabor [2.3] proved that if the function $\mathcal{A}_{1,1,1,1} f$ is Lipschitz, then there exists an additive function $A: \mathcal{G} \rightarrow \mathcal{E}$ such that $f-A$ is Lipschitz with the same constant. He also proved analogous results for the Jensen functions.

Let us note that, a mapping $F: G^{n} \rightarrow E$ is said to be multi $\{m, k, r, s\}$-additive if it satisfies the $\{m, k, r, s\}$-additive equation in each of its n arguments, that is

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{i-1}, m x_{i}+k y_{i}, x_{i+1}, \ldots, x_{n}\right)= & r F\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) \\
& +\operatorname{sF}\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

where $i \in\{1, \ldots, n\}, x_{1}, \ldots, x_{i-1}, x_{i}, y_{i}, x_{i+1}, \ldots, x_{n} \in G$. In the special case, a multi $\{1,1,1,1\}$-additive ($\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$-additive) mapping is said to be a multi additive (multi Jensen) mapping.

The stability of multi additive mappings in Banach spaces and complete non-Archimedean spaces were investigated by Ciepliński $[\boxed{Z}, 3,3,4]$.
(i) Is the Tabor's result true for the $\{m, k, r, s\}$-additive functional equation?
(ii) Is the Tabor's result true for multi Jensen mappings?
(iii) Is the Tabor's result true for multi $\{m, k, r, s\}$-additive mappings?

Problem B.

A functional equation is said to be $\{m, k\}$-quadratic if $f: \mathcal{G} \rightarrow \mathcal{E}$ satisfies the functional equation

$$
\mathcal{Q}_{m, k} f(x, y):=f(m x+k y)+f(m x-k y)-2 m^{2} f(x)-2 k^{2} f(y)=0
$$

for any fixed integers m, k with $m, k \neq 0$. In a special case, the equality $\mathcal{Q}_{1,1} f(x, y)=0$ is called a quadratic functional equation, and every solution of the last functional equation is said to be a quadratic function. Eshaghi and second author [g], studied the stability of the $\{m, k\}$-quadratic functional equation in Banach spaces. Czerwik and Dłutek [7] studied the stability of the quadratic functional equation in Lipschitz spaces.

A mapping $F: G^{n} \rightarrow E$ is said to be multi $\{m, k\}$-quadratic if it satisfies the $\{m, k\}$-quadratic equation in each of its n arguments, that is

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{i-1}, m x_{i}+k y_{i}, x_{i+1}, \ldots, x_{n}\right)+F\left(x_{1}, \ldots, x_{i-1}, m x_{i}-k y_{i}, x_{i+1}, \ldots, x_{n}\right) \\
& =2 m^{2} F\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)+2 k^{2} F\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

where $i \in\{1, \ldots, n\}, x_{1}, \ldots, x_{i-1}, x_{i}, y_{i}, x_{i+1}, \ldots, x_{n} \in G$. In the special case, a multi $\{1,1\}$-quadratic mapping is said to be a multi quadratic mapping.

Park [2I] and Ciepliński [5] proved the stability of the multi quadratic mappings in Banach spaces and complete non-Archimedean spaces, respectively.
(i) Is the Czerwik and Dłutek's result true for the $\{1, k\}$-quadratic functional equation? (Yes, it is solved by Chahbi et al. [6].)
(ii) Is the Czerwik and Dłutek's result true for the $\{m, k\}$-quadratic functional equation?
(iii) Is the Czerwik and Dłutek's result true for the multi quadratic mappings? (Yes, it is solved by Nikoufar [20]].)
(iv) Is the Czerwik and Dłutek's result true for the multi $\{m, k\}$-quadratic mappings?

Problem C.

A functional equation is said to be $\{m, k\}$-cubic if $f: \mathcal{G} \rightarrow \mathcal{E}$ satisfies the functional equation

$$
\begin{aligned}
\mathcal{C}_{m, k} f(x, y):= & f(m x+k y)+f(m x-k y) \\
& -m k^{2} f(x+y)-m k^{2} f(x-y)-2 m\left(m^{2}-k^{2}\right) f(x) \\
= & 0
\end{aligned}
$$

for any fixed integers m, k with $m \neq \pm 1,0, k \neq 0$ and $m \neq \pm k$. In a special case, the equality $\mathcal{C}_{2,1} f(x, y)=0$ is called a cubic functional equation, and every solution of the last functional equation is said to be a cubic function; see [[1], [13].

The stability of cubic functional equation in Banach spaces and Lipschitz spaces were investigated by Jun and Kim [[0]] and Ebadian et al. [8], respectively.

A mapping $F: G^{n} \rightarrow E$ is said to be multi $\{m, k\}$-cubic if it satisfies the $\{m, k\}$-cubic equation in each of its n arguments, that is

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{i-1}, m x_{i}+k y_{i}, x_{i+1}, \ldots, x_{n}\right)+F\left(x_{1}, \ldots, x_{i-1}, m x_{i}-k y_{i}, x_{i+1}, \ldots, x_{n}\right) \\
& =m k^{2} F\left(x_{1}, \ldots, x_{i-1}, x_{i}+y_{i}, x_{i+1}, \ldots, x_{n}\right)+m k^{2} F\left(x_{1}, \ldots, x_{i-1}, x_{i}-y_{i}, x_{i+1}, \ldots, x_{n}\right) \\
& \quad+2 m\left(m^{2}-k^{2}\right) F\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

where $i \in\{1, \ldots, n\}, x_{1}, \ldots, x_{i-1}, x_{i}, y_{i}, x_{i+1}, \ldots, x_{n} \in G$.
(i) Is Ebadian et al.'s result true for $\{m, 1\}$-cubic functional equation? (In the special case, the $\{3,1\}$-cubic functional equation, we responded positively to this question in Theorem 2.3 in this paper.)
(ii) Is Ebadian et al.'s result true for $\{m, k\}$-cubic functional equation?
(iii) Is Ebadian et al.'s result true for multi $\{m, k\}$-cubic mappings?

Problem D.

A functional equation is said to be $\{m, k\}$-quartic if $f: \mathcal{G} \rightarrow \mathcal{E}$ satisfies the functional equation

$$
\begin{aligned}
\mathfrak{Q}_{m, k} f(x, y):= & f(m x+k y)+f(m x-k y)-2 m^{2}\left(m^{2}-k^{2}\right) f(x) \\
& -(m k)^{2}[f(x+y)+f(x-y)]+2 k^{2}\left(m^{2}-k^{2}\right) f(y) \\
= & 0,
\end{aligned}
$$

where $m, k \neq 0, m \neq \pm k$. In a special case, the equality $\mathfrak{Q}_{2,1} f(x, y)=0$ is called a quartic functional equation, and every solution of the last functional equation is said to be a quartic function [$[2]$].

The stability of $\{m, k\}$-quartic functional equation in Banach spaces was investigated by Kang [12]. Nikoufar [15, [16] studied the stability of the quartic functional equation in the Lipschitz norms.

A mapping $F: G^{n} \rightarrow E$ is said to be multi $\{m, k\}$-quartic if it satisfies the $\{m, k\}$-quartic equation in each of its n arguments, that is

$$
\begin{aligned}
& F\left(x_{1}, \ldots, x_{i-1}, m x_{i}+k y_{i}, x_{i+1}, \ldots, x_{n}\right)+F\left(x_{1}, \ldots, x_{i-1}, m x_{i}-k y_{i}, x_{i+1}, \ldots, x_{n}\right) \\
& =(m k)^{2}\left[F\left(x_{1}, \ldots, x_{i-1}, x_{i}+y_{i}, x_{i+1}, \ldots, x_{n}\right)+F\left(x_{1}, \ldots, x_{i-1}, x_{i}-y_{i}, x_{i+1}, \ldots, x_{n}\right)\right] \\
& \quad+2 m^{2}\left(m^{2}-k^{2}\right) F\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)-2 k^{2}\left(m^{2}-k^{2}\right) F\left(x_{1}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right),
\end{aligned}
$$

where $i \in\{1, \ldots, n\}, x_{1}, \ldots, x_{i-1}, x_{i}, y_{i}, x_{i+1}, \ldots, x_{n} \in G$.
(i) Is the Nikoufar's result true for $\{m, k\}$-quartic functional equation?
(ii) Is the Nikoufar's result true for multi $\{m, k\}$-quartic mappings?

References

[1] R. Badora, On some generalized invariant means and their application to the stability of the Hyers-Ulam type, Ann. Polon. Math. 58 (1993) 147-159.
[2] K. Ciepliński, Generalized stability of multi-additive mappings, Appl .Math. Lett. 23 (2010) 1291-1294.
[3] K. Ciepliński, Stability of the multi-Jensen equation, J. Math. Anal. Appl. 363 (2010) 249-254.
[4] K. Ciepliński, Stability of multi-additive mappings in non-Archimedean normed spaces, J. Math. Anal. Appl. 373 (2011) 376-383.
[5] K. Ciepliński, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl. 62 (2011) 3418-3426.
[6] A. Chahbi, IZ. EL-Fassi and S. Kabbaj, Lipschitz stability of the k-quadratic functional equation, Quaestiones Math. (2017) 991-1001.
[7] S. Czerwik and K. Dłutek, Stability of the quadratic functional equation in Lipschitz spaces, J. Math. Anal. Appl. 293 (2004) 79-88.
[8] A. Ebadian, N. Ghobadipour, I.Nikoufar and M. Eshaghi, Approximation of the Cubic Functional Equations in Lipschitz Spaces, Anal. Theory Appl. 30 (2014) 354-362.
[9] M. Eshaghi and H. Khodaei, On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abst. Appl. Anal. (2009) Art. ID 923476.
[10] K.W. Jun and H.M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002) 867-878.
[11] K.W. Jun, H.M. Kim and I.S. Chang, On the HyersUlam stability of an EulerLagrange type cubic functional equation, J. Comput. Anal. Appl. 7 (2005) 21-33.
[12] D. Kang,
On the Stability of Generalized Quartic Mappings in Quasi- β-Normed Spaces, J. Inequal. Appl. (2010) Art. ID 198098.
[13] H. Koh and D. Kang, Approximate Generalized Cubic -Derivations, J. Funct. Spaces (2014) Art. ID 757956.
[14] G. Lua and C. Park, Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett. 24, (2011) 1312-1316.
[15] I. Nikoufar, Quartic functional equations in Lipschitz spaces, Rend. Circ. Mat. Palermo 64 (2015) 171-176.
[16] I. Nikoufar, Erratum to: Quartic functional equations in Lipschitz spaces, Rend. Circ. Mat. Palermo 65 (2016) 345-350.
[17] I. Nikoufar, Lipschitz criteria for bi-quadratic functional equations, Commun. Korean Math. Soc. 31 (2016) 819-825.
[18] I. Nikoufar, Approximate tri-quadratic functional equations via Lipschitz conditions, Math. Bohemica 142 (2017) 337-344.
[19] I. Nikoufar, Behavior of bi-cubic functions in Lipschitz spaces, Lobachevskii J. Math. 39 (2018) 803-808.
[20] I. Nikoufar, Stability of multi-quadratic functions in Lipschitz spaces, Iran J. Sci. Technol. Trans. Sci. 43 (2019) 621-625.
[21] C. Park, Multi-quadratic functional equations in Banach spaces, Proc. Amer. Math. Soc. 131 (2003) 2501-2504.
[22] K.H. Park and Y.S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc. 41 (2004) 347-357.
[23] J. Tabor, Lipschitz stability of the Cauchy and Jensen equations, Results Math. 32 (1997) 133-144.
[24] J. Tabor, Superstability of the Cauchy, Jensen and isometry equations, Results Math. 35 (1999) 355-379.

[^0]: *Corresponding author
 Email addresses: m.dashti@malayeru.ac.ir, dashti.mahshid@gmail.com (Mahshid Dashti*), hkhodaei@malayeru.ac.ir, hkhodaei.math@gmail.com (Hamid Khodaei)

