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Abstract

Let G be an abelian group with a metric d, E be a normed space and f : G → E be a given function.
We define difference C3,1f by the formula

C3,1f(x, y) = 3f(x + y) + 3f(x− y) + 48f(x) − f(3x + y) − f(3x− y)

for every x, y ∈ G. Under some assumptions about f and C3,1f , we show that if C3,1f is Lipschitz,
then there exists a cubic function C : G → E such that f − C is Lipschitz with the same constant.
Moreover, we study the approximation of the equality C3,1f(x, y) = 0 in the Lipschitz norms.
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1. Introduction

The approximation of the Cauchy and Jensen functional equations in the Lipschitz norms were stud-
ied by Tabor [23, 24]. Czerwik and D lutek [7] studied the approximation of the quadratic functional
equations in Lipschitz spaces. The concept of stability in Lipschitz spaces of several functional equa-
tions such as bi-quadratic, tri-quadratic, cubic, bi-cubic and quartic functional equations has been
studied by Nikoufar et al.; see for instance [6, 8] and [15]-[19].

Let G be an abelian group and E be a vector space. A cubic ({2, 1}-cubic) difference and a
{3, 1}-cubic difference of a function f : G → E are defined by

C2,1f(x, y) = f(2x + y) + f(2x− y) − 2f(x + y) − 2f(x− y) − 12f(x)
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and
C3,1f(x, y) = f(3x + y) + f(3x− y) − 3f(x + y) − 3f(x− y) − 48f(x),

respectively. The equality C2,1f(x, y) = 0 is called a cubic functional equation and every solution of
the last functional equation is said to be a cubic function; see [10]. The stability of cubic functional
equation in Banach spaces and Lipschitz spaces were investigated by Jun and Kim [10] and Ebadian
et al. [8], respectively.

Also, the equality C3,1f(x, y) = 0 is called a {3, 1}-cubic functional equation. Park and Jung
[22] proved that the {3, 1}-cubic functional equation is equivalent to cubic functional equation and
investigated the stability of {3, 1}-cubic functional equation on abelian groups to a Banach space.

In this present paper, under some assumptions about f and C3,1f , we show that if C3,1f is
Lipschitz, then there exists a cubic function C : G → E such that f − C is Lipschitz with the same
constant. We also investigate the approximation of {3, 1}-cubic functional equation in the Lipschitz
norms. Finally, we bring several open problems related to this concept.

2. Main results

All over this paper, we use notations G and E for arbitrary Abelian group and vector space, unless
they are otherwise specified. Let S(E) be a given family of subsets of E . We say that this family is
linearly invariant (see [1]) if it is closed under the addition and scalar multiplication defined as usual
sense and translation invariant, i.e., x+A ∈ S(E), for all x ∈ E and A ∈ S(E). One can easily check
that due to properties of S(E) it contains all singleton subsets of E . In the special case, for a normed
vector space E , the family of all closed balls with center at zero is denoted by CB(E).

By B (G, S(E)) we denote the family of all functions f : G → E with Imf ⊂ V for some V ∈ S(E).
It is easy to verify that B (G, S(E)) is a vector space.

Definition 2.1. [23] We say that B (G, S(E)) admits a left invariant mean (LIM, in short) if the
family S(E) is linearly invariant and there exists a linear operator M : B (G, S(E)) → E such that

(i) if Im(f) ⊂ V for some V ∈ S(E), then M [F ] ∈ V ;

(ii) if f ∈ B(G, S(E)) and a ∈ G, then M [fa] = M [f ], where fa(·) = f(· + a).

Definition 2.2. [7, 23] Let d : G×G → S(E) be a set-valued function such that for each x, y, a ∈ G,

d(x + a, y + a) = d(a + x, a + y) = d(x, y)

and a function f : G → E is said to be d-Lipschitz if

f(x) − f(y) ∈ d(x, y).

Theorem 2.3. Assume that S(E) is a linearly invariant family such that B(G, S(E)) admits LIM.
If f : G → E is an odd function and C3,1f(., y) : G → E is d-Lipschitz for every y ∈ G, then there
exists a cubic function C : G → E such that f − C is 1

48
d-Lipschitz. Moreover, if Im(C3,1f) ⊂ A for

some A ∈ S(E), then Im(f − C) ⊂ 1
48
A.

Proof . Let M : B(G, S(E)) → E be a LIM. We define C3
(x,z) : G → E by

C3
(x,z)(y) =

1

48
C3,1f(x, y) − 1

48
C3,1f(z, y)
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for all x, y, z ∈ G. Consider the function Fa : G → E given by

Fa(y) =
1

48
f(3a + y) +

1

48
f(3a− y) − 1

16
f(a + y) − 1

16
f(a− y)

for all a, y ∈ G. By the oddness of f , we have 1
48
C3,1f(0, y) = f(0). We will prove that Fa ∈

B(G, S(E)). In fact, for each y, a ∈ G we have

Fx(y) =
1

48
f(3x + y) +

1

48
f(3x− y) − 1

16
f(x + y) − 1

16
f(x− y)

=
1

48
C3,1f(0, y) − 1

48
C3,1f(x, y) + f(x) − f(0)

= C3
(0,x)(y) + f(x) − f(0).

Since Im(C3
(x,z)) ⊂

1
48
d(x, z) for all y, z ∈ G, it follows that Fa ∈ B(G, S(E)) for all a ∈ G. Thus we

may define C : G → E by the formula

C(x) = M(Fx), (x ∈ G).

We will verify that f − C is 1
48

d-Lipschitz. By properties of the mean M , it is easy to see that if
f : G → E is constant, then M(f) = Imf . Furthermore,

(f(x) − C(x)) − (f(z) − C(z)) = (f(x) −M(Fx)) − (f(z) −M(Fz))

= (M(f(x)) −M(Fx)) − (M(f(z)) −M(Fz))

= M((f(x)) − (Fx)) −M((f(z)) − (Fz))

= M(
1

48
C3,1f(x, ·) − 1

48
C3,1f(z, ·))

= M(C3
(x,z)(·))

for all x, z ∈ G. So, f − C is 1
48

d-Lipschitz. Now, we show that C is a cubic function. We have the
equalities

C(3x + z) + C(3x− z)

= M [F3x+z(y)] + M [F3x−z(y)]

= M

[
1

48
f(9x + 3z + y) +

1

48
f(9x + 3z − y) − 1

16
f(3x + y + z) − 1

16
f(3x + z − y)

]
+ M

[
1

48
f(9x− 3z + y) +

1

48
f(9x− 3z − y) − 1

16
f(3x− z + y) − 1

16
f(3x− z − y)

]
.
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On the other hand,

3C(x + z) + 3C(x− z) + 48C(x)

= 3M [Fx+z(y)] + 3M [Fx−z(y)] + 48M [Fx(y)]

= M [Fx+z(y + 6x)] + M [Fx+z(y − 6x)] + M [Fx+z(y)]

+ M [Fx−z(y + 6x)] + M [Fx−z(y − 6x)] + M [Fx−z(y)]

+ 3M [Fx(y + 4x + z)] + 3M [Fx(y + 4x− z)]

+ 3M [Fx(y − 4x + z)] + 3M [Fx(y − 4x− z)]

+ 6M [Fx(y + 2x + z)] + 6M [Fx(y + 2x− z)]

+ 6M [Fx(y − 2x + z)] + 6M [Fx(y − 2x− z)]

+ 6M [Fx(y + z)] + 6M [Fx(y − z)]

= M

[
1

48
f(9x + 3z + y) +

1

48
f(−3x + 3z − y) − 1

16
f(7x + z + y) − 1

16
f(−5x + z − y)

]
+ M

[
1

48
f(−3x + 3z + y) +

1

48
f(9x + 3z − y) − 1

16
f(−5x + z + y) − 1

16
f(7x + z − y)

]
+ M

[
1

48
f(3x + 3z + y) +

1

48
f(3x + 3z − y) − 1

16
f(x + z + y) − 1

16
f(x + z − y)

]
+ M

[
1

48
f(9x− 3z + y) +

1

48
f(−3x− 3z − y) − 1

16
f(−5x− z − y) − 1

16
f(7x− z + y)

]
+ M

[
1

48
f(−3x− 3z + y) +

1

48
f(9x− 3z − y) − 1

16
f(−5x− z − y) − 1

16
f(7x− z − y)

]
+ M

[
1

48
f(3x− 3z + y) +

1

48
f(3x− 3z − y) − 1

16
f(x− z + y) − 1

16
f(x− z − y)

]
+ 3M

[
1

48
f(7x + y + z) +

1

48
f(−x− y − z) − 1

16
f(5x + y + z) − 1

16
f(−3x− y − z)

]
+ 3M

[
1

48
f(7x + y − z) +

1

48
f(−x− y + z) − 1

16
f(5x + y − z) − 1

16
f(−3x− y + z)

]
+ 3M

[
1

48
f(−x + y + z) +

1

48
f(7x− y − z) − 1

16
f(−3x + y + z) − 1

16
f(5x− y − z)

]
+ 3M

[
1

48
f(−x + y − z) +

1

48
f(7x− y + z) − 1

16
f(−3x + y − z) − 1

16
f(5x− y + z)

]
+ 6M

[
1

48
f(5x + y + z) +

1

48
f(x− y − z) − 1

16
f(3x + y + z) − 1

16
f(−x− y − z)

]
+ 6M

[
1

48
f(x + y + z) +

1

48
f(5x− y − z) − 1

16
f(−x + y + z) − 1

16
f(3x− y − z)

]
+ 6M

[
1

48
f(x + y − z) +

1

48
f(5x− y + z) − 1

16
f(−x + y − z) − 1

16
f(3x− y + z)

]
+ 6M

[
1

48
f(5x + y − z) +

1

48
f(x− y + z) − 1

16
f(3x + y − z) − 1

16
f(−x− y + z)

]
+ 6M

[
1

48
f(3x + y + z) +

1

48
f(3x− y − z) − 1

16
f(x + y + z) − 1

16
f(x− y − z)

]
+ 6M

[
1

48
f(3x + y − z) +

1

48
f(3x− y + z) − 1

16
f(x + y − z) − 1

16
f(x− y + z)

]
.
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By properties of the linear operator M and oddness of f , one gets

3C(x + z) + 3C(x− z) + 48C(x) = C(3x + z) + C(3x− z).

To finish the proof, assume that ImC3,1(f) ⊂ A for some A ∈ S(E). Then we have

Im(
1

48
C3,1(f)) ⊂ 1

48
A.

So, f(y) − C(y) = M( 1
48
C3,1f(y, .)) ∈ 1

48
A, for all y ∈ G. Thus,

Im(f − C) ⊂ 1

48
A,

as required. □

Corollary 2.4. Let (E , ∥ . ∥) be a normed space. Assume that S(E) is a family of closed balls such
that B(G, S(E)) admits LIM . Let f : G → E be an odd function and g : G → R+ satisfy the inequality

∥ C3,1f(y, z) − C3,1f(z, x) ∥≤ g(y − z)

for all x, y, z ∈ G. Then there is a cubic function C : G → E with

∥ (f(x) − C(x)) − (f(y) − C(y)) ∥≤ 1

48
g(x− y)

for all x, y ∈ G.

Proof . We put d(x, y) = g(x− y)B(0, 1) for all x, y ∈ G, where B(0, 1) is the closed unit ball with
center at zero, and make use of Theorem 2.3. □

3. The approximation in the Lipschitz norms

In this section, we study the approximation of the {3, 1}-cubic functional equation in the Lipschitz
norms. Before that, we recall the following definition.

Definition 3.1. [23] Let (E , ∥ . ∥) be a normed space.

(i) A function f : G → E is called Lipschitz function if

∥ f(x) − f(y) ∥≤ Ld(x, y)

for all x, y ∈ G and for a constant L ∈ R+. We denote the smallest constant possesing this
property by lip(f). Let Lip(G, E) be the space of all bounded Lipschitz functions with the norm

∥ f ∥Lip:=∥ f ∥sup +lip(f)

for all f ∈ Lip(G, E). Moreover, by Lip0(G, E) we denote the space of all Lipschitz functions
f : G → E with the norm defined by the formula

∥ f ∥0=∥ f(0) ∥ +lip(f).
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(ii) A function ω : R+ → R+ is the module of continuity of the function f : G → E , if for every
δ > 0 and x, y ∈ G,

d(x, y) ≤ δ ⇒ ∥ f(x) − f(y) ∥≤ ω(δ).

(iii) A group (G, d, d′) is said to be a metric pair if d is a metric in abelian group G and d′ is a
metric in G × G such that

d′((a, x), (a, y)) = d′((x, a), (y, a)) = d(x, y)

for all a, x, y ∈ G.

Theorem 3.2. Let (G, d, d′) be a metric pair and let (E , ∥ . ∥) be a normed space. Assume that S(E)
is a family of closed balls such that B(G, S(E)) admits LIM . Let f : G → E be an odd function. If
C3,1f ∈ Lip(G × G, E), then there is a cubic function C : G → E such that f − C ∈ Lip(G, E) and

∥ f − C ∥Lip≤
1

48
∥ C3,1f ∥Lip .

Furthermore, if C3,1f ∈ Lip0(G × G, E), then there is a cubic function C : G → E such that f − C ∈
Lip0(G, E) and

∥ f − C ∥Lip0≤
1

48
∥ C3,1f ∥Lip0 .

Proof . Suppose that C3,1f ∈ Lip(G × G, E). Let ω : R+ → R+ be defined by ω(x) := lip(C3,1f)x,
for all x ∈ G. Since C3,1f ∈ Lip(G × G, E), it follows that

∥ C3,1f(x, y) − C3,1f(m, k) ∥≤ lip(C3,1f)d′((x, y), (m, k)) = ω(d′((x, y), (m, k)))

for all x, y,m, k ∈ G. This means that ω is the module of continuity of the function C3,1f . Define
d : G × G → S(E) by the formula

d(x, y) := { inf
r≥d(x,y)

ω(r)}B(0, 1)

for all x, y ∈ G. Since ω is the module of continuity, it follows that

∥ C3,1f(y, x) − C3,1f(z, x) ∥≤ inf
r≥d′((y,x),(z,x))

ω(r) = inf
r≥d(y,z)

ω(r)

for all x, y, z ∈ G. This means that C3,1f(., x) is a d-Lipschitz function. Then by Theorem 2.3, there
exists a new type cubic function C : G → E such that

(f(x) − C(x)) − (f(y) − C(y)) ∈ (
1

48
)d(x, y)

for all x, y ∈ G. Consequently,

∥ (f(x) − C(x)) − (f(y) − C(y)) ∥ ≤ inf
r≥d(x,y)

(
1

48
)ω(r)

≤ (
1

48
)ω(d(x, y))

= (
1

48
)lip(C3,1f)d(x, y)
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for all x, y ∈ G. So, f − C is a Lipschitz function and lip(f − C) ≤ ( 1
48

)lip(C3,1f). Since C3,1f ∈
Lip(G × G, E), we have C3,1f ∈ B(G × G, E) and we obtain

∥ f − C ∥sup≤
1

48
∥ Ckf ∥sup .

That is f − C ∈ Lip(G, E). So,

∥ f − C ∥Lip≤
1

48
∥ C3,1f ∥Lip .

Now, suppose that C3,1f ∈ Lip0(G × G, E). By the same way, one can obtain a new type cubic
function C : G → E such that f − C is Lipschitz and

lip(f − C) ≤ (
1

48
)lip(C3,1f).

Since C(0) = 0, we have

∥ f − C ∥Lip0 =∥ f(0) − C(0) ∥ +lip(f − C)

≤ 1

48
∥ C3,1f(0, 0) ∥ +(

1

48
)lip(C3,1f)

≤ 1

48
∥ C3,1f ∥Lip0 ,

as, required. □

4. Open research problems

Problem A.

A functional equation is said to be {m, k, r, s}-additive if f : G → E satisfies the functional equation

Am,k,r,sf(x, y) := f(mx + ky) − rf(x) − sf(y) = 0

for some real numbers m > 0, k > 0, r, s with m + k = r + s ̸= 1. Furthermore, the equalities
A1,1,1,1f(x, y) = 0 and A 1

2
, 1
2
, 1
2
, 1
2
f(x, y) = 0 are the additive and Jensen functional equations, and

every solution of these functional equations are additive and Jensen functions, respectively.
The stability of the {m, k, r, s}-additive functional equation was studied by Lu and Park [14].
Tabor [23] proved that if the function A1,1,1,1f is Lipschitz, then there exists an additive function

A : G → E such that f − A is Lipschitz with the same constant. He also proved analogous results
for the Jensen functions.

Let us note that, a mapping F : Gn → E is said to be multi {m, k, r, s}-additive if it satisfies the
{m, k, r, s}-additive equation in each of its n arguments, that is

F (x1, ..., xi−1,mxi + kyi, xi+1, ..., xn) =rF (x1, ..., xi−1, xi, xi+1, ..., xn)

+ sF (x1, ..., xi−1, yi, xi+1, ..., xn),

where i ∈ {1, ..., n}, x1, ..., xi−1, xi, yi, xi+1, ..., xn ∈ G. In the special case, a multi {1, 1, 1, 1}-additive
({1

2
, 1
2
, 1
2
, 1
2
}-additive) mapping is said to be a multi additive (multi Jensen) mapping.

The stability of multi additive mappings in Banach spaces and complete non-Archimedean spaces
were investigated by Ciepliński [2, 3, 4].
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(i) Is the Tabor’s result true for the {m, k, r, s}-additive functional equation?

(ii) Is the Tabor’s result true for multi Jensen mappings?

(iii) Is the Tabor’s result true for multi {m, k, r, s}-additive mappings?

Problem B.

A functional equation is said to be {m, k}-quadratic if f : G → E satisfies the functional equation

Qm,kf(x, y) := f(mx + ky) + f(mx− ky) − 2m2f(x) − 2k2f(y) = 0

for any fixed integers m, k with m, k ̸= 0. In a special case, the equality Q1,1f(x, y) = 0 is called
a quadratic functional equation, and every solution of the last functional equation is said to be a
quadratic function. Eshaghi and second author [9], studied the stability of the {m, k}-quadratic
functional equation in Banach spaces. Czerwik and D lutek [7] studied the stability of the quadratic
functional equation in Lipschitz spaces.

A mapping F : Gn → E is said to be multi {m, k}-quadratic if it satisfies the {m, k}-quadratic
equation in each of its n arguments, that is

F (x1, ..., xi−1,mxi + kyi, xi+1, ..., xn) + F (x1, ..., xi−1,mxi − kyi, xi+1, ..., xn)

= 2m2F (x1, ..., xi−1, xi, xi+1, ..., xn) + 2k2F (x1, ..., xi−1, yi, xi+1, ..., xn),

where i ∈ {1, ..., n}, x1, ..., xi−1, xi, yi, xi+1, ..., xn ∈ G. In the special case, a multi {1, 1}-quadratic
mapping is said to be a multi quadratic mapping.

Park [21] and Ciepliński [5] proved the stability of the multi quadratic mappings in Banach spaces
and complete non-Archimedean spaces, respectively.

(i) Is the Czerwik and D lutek’s result true for the {1, k}-quadratic functional equation? (Yes, it is
solved by Chahbi et al. [6].)

(ii) Is the Czerwik and D lutek’s result true for the {m, k}-quadratic functional equation?

(iii) Is the Czerwik and D lutek’s result true for the multi quadratic mappings? (Yes, it is solved by
Nikoufar [20].)

(iv) Is the Czerwik and D lutek’s result true for the multi {m, k}-quadratic mappings?

Problem C.

A functional equation is said to be {m, k}-cubic if f : G → E satisfies the functional equation

Cm,kf(x, y) := f(mx + ky) + f(mx− ky)

−mk2f(x + y) −mk2f(x− y) − 2m(m2 − k2)f(x)

= 0



A new type of approximation for cubic functional equations in Lipschitz spaces11 (2020) No.
1, 291-300 299

for any fixed integers m, k with m ̸= ±1, 0, k ̸= 0 and m ̸= ±k. In a special case, the equality
C2,1f(x, y) = 0 is called a cubic functional equation, and every solution of the last functional equation
is said to be a cubic function; see [11, 13].

The stability of cubic functional equation in Banach spaces and Lipschitz spaces were investigated
by Jun and Kim [10] and Ebadian et al. [8], respectively.

A mapping F : Gn → E is said to be multi {m, k}-cubic if it satisfies the {m, k}-cubic equation
in each of its n arguments, that is

F (x1, ..., xi−1,mxi + kyi, xi+1, ..., xn) + F (x1, ..., xi−1,mxi − kyi, xi+1, ..., xn)

= mk2F (x1, ..., xi−1, xi + yi, xi+1, ..., xn) + mk2F (x1, ..., xi−1, xi − yi, xi+1, ..., xn)

+ 2m(m2 − k2)F (x1, ..., xi−1, xi, xi+1, ..., xn),

where i ∈ {1, ..., n}, x1, ..., xi−1, xi, yi, xi+1, ..., xn ∈ G.

(i) Is Ebadian et al.’s result true for {m, 1}-cubic functional equation? (In the special case, the
{3, 1}-cubic functional equation, we responded positively to this question in Theorem 2.3 in
this paper.)

(ii) Is Ebadian et al.’s result true for {m, k}-cubic functional equation?

(iii) Is Ebadian et al.’s result true for multi {m, k}-cubic mappings?

Problem D.

A functional equation is said to be {m, k}-quartic if f : G → E satisfies the functional equation

Qm,kf(x, y) := f(mx + ky) + f(mx− ky) − 2m2(m2 − k2)f(x)

− (mk)2[f(x + y) + f(x− y)] + 2k2(m2 − k2)f(y)

= 0,

where m, k ̸= 0,m ̸= ±k. In a special case, the equality Q2,1f(x, y) = 0 is called a quartic functional
equation, and every solution of the last functional equation is said to be a quartic function [12].

The stability of {m, k}-quartic functional equation in Banach spaces was investigated by Kang
[12]. Nikoufar [15, 16] studied the stability of the quartic functional equation in the Lipschitz norms.

A mapping F : Gn → E is said to be multi {m, k}-quartic if it satisfies the {m, k}-quartic
equation in each of its n arguments, that is

F (x1, ..., xi−1,mxi + kyi, xi+1, ..., xn) + F (x1, ..., xi−1,mxi − kyi, xi+1, ..., xn)

= (mk)2[F (x1, ..., xi−1, xi + yi, xi+1, ..., xn) + F (x1, ..., xi−1, xi − yi, xi+1, ..., xn)]

+ 2m2(m2 − k2)F (x1, ..., xi−1, xi, xi+1, ..., xn) − 2k2(m2 − k2)F (x1, ..., xi−1, yi, xi+1, ..., xn),

where i ∈ {1, ..., n}, x1, ..., xi−1, xi, yi, xi+1, ..., xn ∈ G.

(i) Is the Nikoufar’s result true for {m, k}-quartic functional equation?

(ii) Is the Nikoufar’s result true for multi {m, k}-quartic mappings?
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