Int. J. Nonlinear Anal. Appl. 11 (2020) No. 1, 291-300 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/IJNAA.2020.4277

A new type of approximation for cubic functional equations in Lipschitz spaces

Mahshid Dashti*, Hamid Khodaei

Department of Mathematics, Faculty of Mathematical Sciences and Statistics, Malayer University, Malayer, Iran

(Communicated by Madjid Eshaghi Gordji)

Abstract

Let \mathcal{G} be an abelian group with a metric d, \mathcal{E} be a normed space and $f : \mathcal{G} \to \mathcal{E}$ be a given function. We define difference $\mathcal{C}_{3,1}f$ by the formula

$$\mathcal{C}_{3,1}f(x,y) = 3f(x+y) + 3f(x-y) + 48f(x) - f(3x+y) - f(3x-y)$$

for every $x, y \in \mathcal{G}$. Under some assumptions about f and $\mathcal{C}_{3,1}f$, we show that if $\mathcal{C}_{3,1}f$ is Lipschitz, then there exists a cubic function $\mathcal{C} : \mathcal{G} \to \mathcal{E}$ such that $f - \mathcal{C}$ is Lipschitz with the same constant. Moreover, we study the approximation of the equality $\mathcal{C}_{3,1}f(x,y) = 0$ in the Lipschitz norms.

Keywords: Approximation; **d**-Lipschitz; Left invariant mean; Cubic difference; Lipschitz norm. 2010 MSC: 39B82, 39B72, 39B52.

1. Introduction

The approximation of the Cauchy and Jensen functional equations in the Lipschitz norms were studied by Tabor [23, 24]. Czerwik and Dłutek [7] studied the approximation of the quadratic functional equations in Lipschitz spaces. The concept of stability in Lipschitz spaces of several functional equations such as bi-quadratic, tri-quadratic, cubic, bi-cubic and quartic functional equations has been studied by Nikoufar et al.; see for instance [6, 8] and [15]-[19].

Let \mathcal{G} be an abelian group and \mathcal{E} be a vector space. A cubic ({2,1}-cubic) difference and a {3,1}-cubic difference of a function $f : \mathcal{G} \to \mathcal{E}$ are defined by

$$\mathcal{C}_{2,1}f(x,y) = f(2x+y) + f(2x-y) - 2f(x+y) - 2f(x-y) - 12f(x)$$

^{*}Corresponding author

Email addresses: m.dashti@malayeru.ac.ir, dashti.mahshid@gmail.com (Mahshid Dashti*), hkhodaei@malayeru.ac.ir, hkhodaei.math@gmail.com (Hamid Khodaei)

and

$$\mathcal{C}_{3,1}f(x,y) = f(3x+y) + f(3x-y) - 3f(x+y) - 3f(x-y) - 48f(x)$$

respectively. The equality $C_{2,1}f(x,y) = 0$ is called a cubic functional equation and every solution of the last functional equation is said to be a cubic function; see [10]. The stability of cubic functional equation in Banach spaces and Lipschitz spaces were investigated by Jun and Kim [10] and Ebadian et al. [8], respectively.

Also, the equality $C_{3,1}f(x,y) = 0$ is called a $\{3,1\}$ -cubic functional equation. Park and Jung [22] proved that the $\{3,1\}$ -cubic functional equation is equivalent to cubic functional equation and investigated the stability of $\{3,1\}$ -cubic functional equation on abelian groups to a Banach space.

In this present paper, under some assumptions about f and $\mathcal{C}_{3,1}f$, we show that if $\mathcal{C}_{3,1}f$ is Lipschitz, then there exists a cubic function $\mathcal{C} : \mathcal{G} \to \mathcal{E}$ such that $f - \mathcal{C}$ is Lipschitz with the same constant. We also investigate the approximation of $\{3, 1\}$ -cubic functional equation in the Lipschitz norms. Finally, we bring several open problems related to this concept.

2. Main results

All over this paper, we use notations \mathcal{G} and \mathcal{E} for arbitrary Abelian group and vector space, unless they are otherwise specified. Let $S(\mathcal{E})$ be a given family of subsets of \mathcal{E} . We say that this family is linearly invariant (see [1]) if it is closed under the addition and scalar multiplication defined as usual sense and translation invariant, i.e., $x + A \in S(\mathcal{E})$, for all $x \in \mathcal{E}$ and $A \in S(\mathcal{E})$. One can easily check that due to properties of $S(\mathcal{E})$ it contains all singleton subsets of \mathcal{E} . In the special case, for a normed vector space \mathcal{E} , the family of all closed balls with center at zero is denoted by $CB(\mathcal{E})$.

By $B(\mathcal{G}, S(\mathcal{E}))$ we denote the family of all functions $f : \mathcal{G} \to \mathcal{E}$ with $\operatorname{Im} f \subset V$ for some $V \in S(\mathcal{E})$. It is easy to verify that $B(\mathcal{G}, S(\mathcal{E}))$ is a vector space.

Definition 2.1. [23] We say that $B(\mathcal{G}, S(\mathcal{E}))$ admits a left invariant mean (LIM, in short) if the family $S(\mathcal{E})$ is linearly invariant and there exists a linear operator $M : B(\mathcal{G}, S(\mathcal{E})) \to \mathcal{E}$ such that

(i) if $Im(f) \subset V$ for some $V \in S(\mathcal{E})$, then $M[F] \in V$;

(ii) if $f \in B(\mathcal{G}, S(\mathcal{E}))$ and $a \in \mathcal{G}$, then $M[f^a] = M[f]$, where $f^a(\cdot) = f(\cdot + a)$.

Definition 2.2. [7, 23] Let $\mathbf{d} : \mathcal{G} \times \mathcal{G} \to S(\mathcal{E})$ be a set-valued function such that for each $x, y, a \in G$,

$$\mathbf{d}(x+a,y+a) = \mathbf{d}(a+x,a+y) = \mathbf{d}(x,y)$$

and a function $f: \mathcal{G} \to \mathcal{E}$ is said to be d-Lipschitz if

$$f(x) - f(y) \in \mathbf{d}(x, y).$$

Theorem 2.3. Assume that $S(\mathcal{E})$ is a linearly invariant family such that $B(\mathcal{G}, S(\mathcal{E}))$ admits LIM. If $f : \mathcal{G} \to \mathcal{E}$ is an odd function and $\mathcal{C}_{3,1}f(.,y) : \mathcal{G} \to \mathcal{E}$ is **d**-Lipschitz for every $y \in \mathcal{G}$, then there exists a cubic function $\mathcal{C} : \mathcal{G} \to \mathcal{E}$ such that $f - \mathcal{C}$ is $\frac{1}{48}$ **d**-Lipschitz. Moreover, if $Im(\mathcal{C}_{3,1}f) \subset A$ for some $A \in S(\mathcal{E})$, then $Im(f - \mathcal{C}) \subset \frac{1}{48}A$.

Proof. Let $M: B(\mathcal{G}, S(\mathcal{E})) \to \mathcal{E}$ be a LIM. We define $C^3_{(x,z)}: \mathcal{G} \to \mathcal{E}$ by

$$C^{3}_{(x,z)}(y) = \frac{1}{48}\mathcal{C}_{3,1}f(x,y) - \frac{1}{48}\mathcal{C}_{3,1}f(z,y)$$

A new type of approximation for cubic functional equations in Lipschitz spaces11 (2020) No. 1, 291-300

for all $x, y, z \in \mathcal{G}$. Consider the function $F_a : \mathcal{G} \to \mathcal{E}$ given by

$$F_a(y) = \frac{1}{48}f(3a+y) + \frac{1}{48}f(3a-y) - \frac{1}{16}f(a+y) - \frac{1}{16}f(a-y)$$

for all $a, y \in \mathcal{G}$. By the oddness of f, we have $\frac{1}{48}C_{3,1}f(0,y) = f(0)$. We will prove that $F_a \in \mathcal{G}$. $B(\mathcal{G}, S(\mathcal{E}))$. In fact, for each $y, a \in \mathcal{G}$ we have

$$F_x(y) = \frac{1}{48}f(3x+y) + \frac{1}{48}f(3x-y) - \frac{1}{16}f(x+y) - \frac{1}{16}f(x-y)$$

= $\frac{1}{48}\mathcal{C}_{3,1}f(0,y) - \frac{1}{48}\mathcal{C}_{3,1}f(x,y) + f(x) - f(0)$
= $C^3_{(0,x)}(y) + f(x) - f(0).$

Since $Im(C^3_{(x,z)}) \subset \frac{1}{48}\mathbf{d}(x,z)$ for all $y, z \in \mathcal{G}$, it follows that $F_a \in B(\mathcal{G}, S(\mathcal{E}))$ for all $a \in \mathcal{G}$. Thus we may define $\mathcal{C} : \mathcal{G} \to \mathcal{E}$ by the formula

$$\mathcal{C}(x) = M(F_x), \quad (x \in \mathcal{G}).$$

We will verify that $f - \mathcal{C}$ is $\frac{1}{48}$ d-Lipschitz. By properties of the mean M, it is easy to see that if $f : \mathcal{G} \to \mathcal{E}$ is constant, then M(f) = Imf. Furthermore,

$$\begin{aligned} (f(x) - \mathcal{C}(x)) - (f(z) - \mathcal{C}(z)) &= (f(x) - M(F_x)) - (f(z) - M(F_z)) \\ &= (M(f(x)) - M(F_x)) - (M(f(z)) - M(F_z)) \\ &= M((f(x)) - (F_x)) - M((f(z)) - (F_z)) \\ &= M(\frac{1}{48}\mathcal{C}_{3,1}f(x, \cdot) - \frac{1}{48}\mathcal{C}_{3,1}f(z, \cdot)) \\ &= M(C^3_{(x,z)}(\cdot)) \end{aligned}$$

for all $x, z \in \mathcal{G}$. So, $f - \mathcal{C}$ is $\frac{1}{48}$ d-Lipschitz. Now, we show that \mathcal{C} is a cubic function. We have the equalities

$$\begin{split} \mathcal{C}(3x+z) &+ \mathcal{C}(3x-z) \\ &= M[F_{3x+z}(y)] + M[F_{3x-z}(y)] \\ &= M\left[\frac{1}{48}f(9x+3z+y) + \frac{1}{48}f(9x+3z-y) - \frac{1}{16}f(3x+y+z) - \frac{1}{16}f(3x+z-y)\right] \\ &+ M\left[\frac{1}{48}f(9x-3z+y) + \frac{1}{48}f(9x-3z-y) - \frac{1}{16}f(3x-z+y) - \frac{1}{16}f(3x-z-y)\right]. \end{split}$$

On the other hand,

$$\begin{split} & 3\mathcal{C}(x+z) + 3\mathcal{C}(x-z) + 4\mathcal{C}(x) \\ &= 3M[F_{x+z}(y)] + 3M[F_{x-z}(y)] + 4\mathcal{S}M[F_x(y)] \\ &= M[F_{x+z}(y) + \mathcal{S}M] + M[F_{x-z}(y-6x)] + M[F_{x+z}(y)] \\ &+ M[F_{x-z}(y) + \mathcal{S}M] + M[F_{x-z}(y-6x)] + M[F_{x-z}(y)] \\ &+ \mathcal{S}M[F_x(y+4x+z)] + 3M[F_x(y+4x-z)] \\ &+ \mathcal{S}M[F_x(y-4x+z)] + 3M[F_x(y-4x-z)] \\ &+ \mathcal{S}M[F_x(y-2x+z)] + \mathcal{S}M[F_x(y-2x-z)] \\ &+ \mathcal{S}M[F_x(y-2x+z)] + \mathcal{S}M[F_x(y-2x-z)] \\ &+ \mathcal{S}M[F_x(y+2x+z)] + \mathcal{S}M[F_x(y-2x)] \\ &= M\left[\frac{1}{48}f(-3x+3z+y) + \frac{1}{48}f(-3x+3z-y) - \frac{1}{16}f(7x+z+y) - \frac{1}{16}f(-5x+z-y)\right] \\ &+ M\left[\frac{1}{48}f(-3x+3z+y) + \frac{1}{48}f(9x+3z-y) - \frac{1}{16}f(-5x+z+y) - \frac{1}{16}f(7x+z-y)\right] \\ &+ M\left[\frac{1}{48}f(3x+3z+y) + \frac{1}{48}f(3x+3z-y) - \frac{1}{16}f(-5x-z-y) - \frac{1}{16}f(7x-z+y)\right] \\ &+ M\left[\frac{1}{48}f(3x-3z+y) + \frac{1}{48}f(-3x-3z-y) - \frac{1}{16}f(-5x-z-y) - \frac{1}{16}f(7x-z-y)\right] \\ &+ M\left[\frac{1}{48}f(-3x-3z+y) + \frac{1}{48}f(9x-3z-y) - \frac{1}{16}f(-5x-z-y) - \frac{1}{16}f(7x-z-y)\right] \\ &+ M\left[\frac{1}{48}f(3x-3z+y) + \frac{1}{48}f(9x-3z-y) - \frac{1}{16}f(-5x+y) - \frac{1}{16}f(-3x-y-z)\right] \\ &+ M\left[\frac{1}{48}f(-x+y-z) + \frac{1}{48}f(-x-y-z) - \frac{1}{16}f(5x+y-z) - \frac{1}{16}f(-3x-y-z)\right] \\ &+ 3M\left[\frac{1}{48}f(-x+y-z) + \frac{1}{48}f(-x-y+z) - \frac{1}{16}f(-3x+y+z) - \frac{1}{16}f(-3x-y-z)\right] \\ &+ 3M\left[\frac{1}{48}f(-x+y-z) + \frac{1}{48}f(7x-y-z) - \frac{1}{16}f(-3x+y-z) - \frac{1}{16}f(-5x-y-z)\right] \\ &+ \mathcal{S}M\left[\frac{1}{48}f(-x+y-z) + \frac{1}{48}f(-x-y+z) - \frac{1}{16}f(-3x+y-z) - \frac{1}{16}f(-x-y-z)\right] \\ &+ \mathcal{S}M\left[\frac{1}{48}f(x+y-z) + \frac{1}{48}f(-x-y+z) - \frac{1}{16}f(-3x+y-z) - \frac{1}{16}f(-x-y-z)\right] \\ &+ \mathcal{S}M\left[\frac{1}{48}f(x+y-z) + \frac{1}{48}f(-x-y-z) - \frac{1}{16}f(-x+y-z) - \frac{1}{16}f(-x-y-z)\right] \\ &+ \mathcal{S}M\left[\frac{1}{48}f(x+y-z) + \frac{1}{48}f(-x-y-z) - \frac{1}{16}f(-x+y-z) - \frac{1}{16}f(-x-y-z)\right] \\ &+ \mathcal{S}M\left[\frac{1}{48}f(x+y-z) + \frac{1}{48}f(-x-y-z) - \frac{1}{16}f(-x+y-z) - \frac{1}{16}f(-x-y-z)\right] \\ &+ \mathcal{S}M\left[\frac{1}{48}f(x+y-z) + \frac{1}{48}f(-x-y-z) - \frac{1}{16}f(-x+y-z) - \frac{1}{16}f(-x-y-z)\right] \\ &+ \mathcal{S}M\left[\frac{1}{48}f(-x+y-z) + \frac{1}{48}f(-x-y-z) - \frac{1}{16}f(-x+y-z) - \frac{1}{16}f(-x-y-z)\right] \\ &+ \mathcal{S}M\left[\frac{1}{48}f(-x+y-z) + \frac{1}{48}f(-x-y-z) - \frac{1}{16}f(-x+y-z) - \frac{1}{16}f(-x-y-z)\right] \\ &+ \mathcal{S}M\left[\frac{1}{48}f(-x+y-z) + \frac{1}{48}f(-x-y-z) - \frac{1}$$

By properties of the linear operator M and oddness of f, one gets

$$3\mathcal{C}(x+z) + 3\mathcal{C}(x-z) + 48\mathcal{C}(x) = \mathcal{C}(3x+z) + \mathcal{C}(3x-z).$$

To finish the proof, assume that $Im\mathcal{C}_{3,1}(f) \subset A$ for some $A \in S(\mathcal{E})$. Then we have

$$Im(\frac{1}{48}\mathcal{C}_{3,1}(f)) \subset \frac{1}{48}A.$$

So, $f(y) - \mathcal{C}(y) = M(\frac{1}{48}\mathcal{C}_{3,1}f(y,.)) \in \frac{1}{48}A$, for all $y \in G$. Thus,

$$Im(f-\mathcal{C}) \subset \frac{1}{48}A,$$

as required. \Box

Corollary 2.4. Let $(\mathcal{E}, \|.\|)$ be a normed space. Assume that $S(\mathcal{E})$ is a family of closed balls such that $B(\mathcal{G}, S(\mathcal{E}))$ admits LIM. Let $f : \mathcal{G} \to \mathcal{E}$ be an odd function and $g : \mathcal{G} \to \mathbb{R}_+$ satisfy the inequality

$$\parallel \mathcal{C}_{3,1}f(y,z) - \mathcal{C}_{3,1}f(z,x) \parallel \leq g(y-z)$$

for all $x, y, z \in \mathcal{G}$. Then there is a cubic function $\mathcal{C} : \mathcal{G} \to \mathcal{E}$ with

$$\| (f(x) - \mathcal{C}(x)) - (f(y) - \mathcal{C}(y)) \| \le \frac{1}{48}g(x - y)$$

for all $x, y \in \mathcal{G}$.

Proof. We put $\mathbf{d}(x, y) = g(x - y)B(0, 1)$ for all $x, y \in \mathcal{G}$, where B(0, 1) is the closed unit ball with center at zero, and make use of Theorem 2.3. \Box

3. The approximation in the Lipschitz norms

In this section, we study the approximation of the $\{3, 1\}$ -cubic functional equation in the Lipschitz norms. Before that, we recall the following definition.

Definition 3.1. [23] Let $(\mathcal{E}, \|.\|)$ be a normed space.

(i) A function $f : \mathcal{G} \to \mathcal{E}$ is called Lipschitz function if

$$\parallel f(x) - f(y) \parallel \le Ld(x, y)$$

for all $x, y \in \mathcal{G}$ and for a constant $L \in \mathbb{R}_+$. We denote the smallest constant possessing this property by lip(f). Let $Lip(\mathcal{G}, \mathcal{E})$ be the space of all bounded Lipschitz functions with the norm

$$\parallel f \parallel_{Lip} := \parallel f \parallel_{\sup} + lip(f)$$

for all $f \in Lip(\mathcal{G}, \mathcal{E})$. Moreover, by $Lip_0(\mathcal{G}, \mathcal{E})$ we denote the space of all Lipschitz functions $f : \mathcal{G} \to \mathcal{E}$ with the norm defined by the formula

$$|| f ||_0 = || f(0) || + lip(f).$$

(ii) A function $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ is the module of continuity of the function $f : \mathcal{G} \to \mathcal{E}$, if for every $\delta > 0$ and $x, y \in \mathcal{G}$,

$$d(x,y) \le \delta \implies || f(x) - f(y) || \le \omega(\delta).$$

(iii) A group (\mathcal{G}, d, d') is said to be a metric pair if d is a metric in abelian group \mathcal{G} and d' is a metric in $\mathcal{G} \times \mathcal{G}$ such that

$$d'((a,x),(a,y)) = d'((x,a),(y,a)) = d(x,y)$$

for all $a, x, y \in \mathcal{G}$.

Theorem 3.2. Let (\mathcal{G}, d, d') be a metric pair and let $(\mathcal{E}, \| . \|)$ be a normed space. Assume that $S(\mathcal{E})$ is a family of closed balls such that $B(\mathcal{G}, S(\mathcal{E}))$ admits LIM. Let $f : \mathcal{G} \to \mathcal{E}$ be an odd function. If $\mathcal{C}_{3,1}f \in Lip(\mathcal{G} \times \mathcal{G}, \mathcal{E})$, then there is a cubic function $\mathcal{C} : \mathcal{G} \to \mathcal{E}$ such that $f - \mathcal{C} \in Lip(\mathcal{G}, \mathcal{E})$ and

$$\parallel f - \mathcal{C} \parallel_{Lip} \leq \frac{1}{48} \parallel \mathcal{C}_{3,1}f \parallel_{Lip}.$$

Furthermore, if $C_{3,1}f \in Lip^0(\mathcal{G} \times \mathcal{G}, \mathcal{E})$, then there is a cubic function $\mathcal{C} : \mathcal{G} \to \mathcal{E}$ such that $f - \mathcal{C} \in Lip^0(\mathcal{G}, \mathcal{E})$ and

$$\| f - \mathcal{C} \|_{Lip^0} \le \frac{1}{48} \| \mathcal{C}_{3,1} f \|_{Lip^0}$$

Proof. Suppose that $\mathcal{C}_{3,1}f \in Lip(\mathcal{G} \times \mathcal{G}, \mathcal{E})$. Let $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ be defined by $\omega(x) := lip(\mathcal{C}_{3,1}f)x$, for all $x \in \mathcal{G}$. Since $\mathcal{C}_{3,1}f \in Lip(\mathcal{G} \times \mathcal{G}, \mathcal{E})$, it follows that

 $\| \mathcal{C}_{3,1}f(x,y) - \mathcal{C}_{3,1}f(m,k) \| \le lip(\mathcal{C}_{3,1}f)d'((x,y),(m,k)) = \omega(d'((x,y),(m,k)))$

for all $x, y, m, k \in \mathcal{G}$. This means that ω is the module of continuity of the function $\mathcal{C}_{3,1}f$. Define $\mathbf{d} : \mathcal{G} \times \mathcal{G} \to S(\mathcal{E})$ by the formula

$$\mathbf{d}(x,y) := \{\inf_{r \ge d(x,y)} \omega(r)\} B(0,1)$$

for all $x, y \in \mathcal{G}$. Since ω is the module of continuity, it follows that

$$\| \mathcal{C}_{3,1}f(y,x) - \mathcal{C}_{3,1}f(z,x) \| \le \inf_{r \ge d'((y,x),(z,x))} \omega(r) = \inf_{r \ge d(y,z)} \omega(r)$$

for all $x, y, z \in \mathcal{G}$. This means that $\mathcal{C}_{3,1}f(., x)$ is a **d**-Lipschitz function. Then by Theorem 2.3, there exists a new type cubic function $\mathcal{C} : \mathcal{G} \to \mathcal{E}$ such that

$$(f(x) - \mathcal{C}(x)) - (f(y) - \mathcal{C}(y)) \in (\frac{1}{48})\mathbf{d}(x, y)$$

for all $x, y \in \mathcal{G}$. Consequently,

$$\| (f(x) - \mathcal{C}(x)) - (f(y) - \mathcal{C}(y)) \| \leq \inf_{r \ge d(x,y)} (\frac{1}{48}) \omega(r) \\ \leq (\frac{1}{48}) \omega(d(x,y)) \\ = (\frac{1}{48}) lip(\mathcal{C}_{3,1}f) d(x,y)$$

for all $x, y \in \mathcal{G}$. So, $f - \mathcal{C}$ is a Lipschitz function and $lip(f - \mathcal{C}) \leq (\frac{1}{48})lip(\mathcal{C}_{3,1}f)$. Since $\mathcal{C}_{3,1}f \in Lip(\mathcal{G} \times \mathcal{G}, \mathcal{E})$, we have $\mathcal{C}_{3,1}f \in B(\mathcal{G} \times \mathcal{G}, \mathcal{E})$ and we obtain

$$\parallel f - \mathcal{C} \parallel_{\sup} \leq \frac{1}{48} \parallel C_k f \parallel_{\sup} .$$

That is $f - \mathcal{C} \in Lip(\mathcal{G}, \mathcal{E})$. So,

$$\parallel f - \mathcal{C} \parallel_{Lip} \leq \frac{1}{48} \parallel \mathcal{C}_{3,1}f \parallel_{Lip}$$

Now, suppose that $\mathcal{C}_{3,1}f \in Lip^0(\mathcal{G} \times \mathcal{G}, \mathcal{E})$. By the same way, one can obtain a new type cubic function $\mathcal{C} : \mathcal{G} \to \mathcal{E}$ such that $f - \mathcal{C}$ is Lipschitz and

$$lip(f - \mathcal{C}) \le (\frac{1}{48})lip(\mathcal{C}_{3,1}f)$$

Since C(0) = 0, we have

$$\| f - \mathcal{C} \|_{Lip^{0}} = \| f(0) - \mathcal{C}(0) \| + lip(f - \mathcal{C})$$

$$\leq \frac{1}{48} \| \mathcal{C}_{3,1}f(0,0) \| + (\frac{1}{48})lip(\mathcal{C}_{3,1}f)$$

$$\leq \frac{1}{48} \| \mathcal{C}_{3,1}f \|_{Lip^{0}},$$

as, required. \Box

4. Open research problems

Problem A.

A functional equation is said to be $\{m, k, r, s\}$ -additive if $f : \mathcal{G} \to \mathcal{E}$ satisfies the functional equation

$$\mathcal{A}_{m,k,r,s}f(x,y) := f(mx+ky) - rf(x) - sf(y) = 0$$

for some real numbers m > 0, k > 0, r, s with $m + k = r + s \neq 1$. Furthermore, the equalities $\mathcal{A}_{1,1,1,1}f(x,y) = 0$ and $\mathcal{A}_{\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}}f(x,y) = 0$ are the additive and Jensen functional equations, and every solution of these functional equations are additive and Jensen functions, respectively.

The stability of the $\{m, k, r, s\}$ -additive functional equation was studied by Lu and Park [14].

Tabor [23] proved that if the function $\mathcal{A}_{1,1,1,1}f$ is Lipschitz, then there exists an additive function $A: \mathcal{G} \to \mathcal{E}$ such that f - A is Lipschitz with the same constant. He also proved analogous results for the Jensen functions.

Let us note that, a mapping $F: G^n \to E$ is said to be multi $\{m, k, r, s\}$ -additive if it satisfies the $\{m, k, r, s\}$ -additive equation in each of its n arguments, that is

$$F(x_1, ..., x_{i-1}, mx_i + ky_i, x_{i+1}, ..., x_n) = rF(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n) + sF(x_1, ..., x_{i-1}, y_i, x_{i+1}, ..., x_n),$$

where $i \in \{1, ..., n\}$, $x_1, ..., x_{i-1}, x_i, y_i, x_{i+1}, ..., x_n \in G$. In the special case, a multi $\{1, 1, 1, 1\}$ -additive $(\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$ -additive) mapping is said to be a multi additive (multi Jensen) mapping.

The stability of multi additive mappings in Banach spaces and complete non-Archimedean spaces were investigated by Ciepliński [2, 3, 4].

- (i) Is the Tabor's result true for the $\{m, k, r, s\}$ -additive functional equation?
- (ii) Is the Tabor's result true for multi Jensen mappings?
- (iii) Is the Tabor's result true for multi $\{m, k, r, s\}$ -additive mappings?

Problem B.

A functional equation is said to be $\{m, k\}$ -quadratic if $f : \mathcal{G} \to \mathcal{E}$ satisfies the functional equation

$$\mathcal{Q}_{m,k}f(x,y) := f(mx + ky) + f(mx - ky) - 2m^2 f(x) - 2k^2 f(y) = 0$$

for any fixed integers m, k with $m, k \neq 0$. In a special case, the equality $Q_{1,1}f(x, y) = 0$ is called a quadratic functional equation, and every solution of the last functional equation is said to be a quadratic function. Eshaghi and second author [9], studied the stability of the $\{m, k\}$ -quadratic functional equation in Banach spaces. Czerwik and Dłutek [7] studied the stability of the quadratic functional equation in Lipschitz spaces.

A mapping $F : G^n \to E$ is said to be multi $\{m, k\}$ -quadratic if it satisfies the $\{m, k\}$ -quadratic equation in each of its n arguments, that is

$$F(x_1, \dots, x_{i-1}, mx_i + ky_i, x_{i+1}, \dots, x_n) + F(x_1, \dots, x_{i-1}, mx_i - ky_i, x_{i+1}, \dots, x_n)$$

= $2m^2 F(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) + 2k^2 F(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n),$

where $i \in \{1, ..., n\}$, $x_1, ..., x_{i-1}, x_i, y_i, x_{i+1}, ..., x_n \in G$. In the special case, a multi $\{1, 1\}$ -quadratic mapping is said to be a multi quadratic mapping.

Park [21] and Ciepliński [5] proved the stability of the multi quadratic mappings in Banach spaces and complete non-Archimedean spaces, respectively.

- (i) Is the Czerwik and Dłutek's result true for the $\{1, k\}$ -quadratic functional equation? (Yes, it is solved by Chahbi et al. [6].)
- (ii) Is the Czerwik and Dłutek's result true for the $\{m, k\}$ -quadratic functional equation?
- (iii) Is the Czerwik and Dłutek's result true for the multi quadratic mappings? (Yes, it is solved by Nikoufar [20].)
- (iv) Is the Czerwik and Dłutek's result true for the multi $\{m, k\}$ -quadratic mappings?

Problem C.

A functional equation is said to be $\{m, k\}$ -cubic if $f : \mathcal{G} \to \mathcal{E}$ satisfies the functional equation

$$C_{m,k}f(x,y) := f(mx + ky) + f(mx - ky) - mk^2 f(x+y) - mk^2 f(x-y) - 2m(m^2 - k^2)f(x) = 0$$

for any fixed integers m, k with $m \neq \pm 1, 0, k \neq 0$ and $m \neq \pm k$. In a special case, the equality $C_{2,1}f(x,y) = 0$ is called a cubic functional equation, and every solution of the last functional equation is said to be a cubic function; see [11, 13].

The stability of cubic functional equation in Banach spaces and Lipschitz spaces were investigated by Jun and Kim [10] and Ebadian et al. [8], respectively.

A mapping $F: G^n \to E$ is said to be multi $\{m, k\}$ -cubic if it satisfies the $\{m, k\}$ -cubic equation in each of its n arguments, that is

$$F(x_1, ..., x_{i-1}, mx_i + ky_i, x_{i+1}, ..., x_n) + F(x_1, ..., x_{i-1}, mx_i - ky_i, x_{i+1}, ..., x_n)$$

= $mk^2 F(x_1, ..., x_{i-1}, x_i + y_i, x_{i+1}, ..., x_n) + mk^2 F(x_1, ..., x_{i-1}, x_i - y_i, x_{i+1}, ..., x_n)$
+ $2m(m^2 - k^2) F(x_1, ..., x_{i-1}, x_i, x_{i+1}, ..., x_n),$

where $i \in \{1, ..., n\}, x_1, ..., x_{i-1}, x_i, y_i, x_{i+1}, ..., x_n \in G$.

- (i) Is Ebadian et al.'s result true for $\{m, 1\}$ -cubic functional equation? (In the special case, the $\{3, 1\}$ -cubic functional equation, we responded positively to this question in Theorem 2.3 in this paper.)
- (ii) Is Ebadian et al.'s result true for $\{m, k\}$ -cubic functional equation?
- (iii) Is Ebadian et al.'s result true for multi $\{m, k\}$ -cubic mappings?

Problem D.

A functional equation is said to be $\{m, k\}$ -quartic if $f : \mathcal{G} \to \mathcal{E}$ satisfies the functional equation

$$\mathfrak{Q}_{m,k}f(x,y) := f(mx+ky) + f(mx-ky) - 2m^2(m^2-k^2)f(x) - (mk)^2[f(x+y) + f(x-y)] + 2k^2(m^2-k^2)f(y) = 0.$$

where $m, k \neq 0, m \neq \pm k$. In a special case, the equality $\mathfrak{Q}_{2,1}f(x, y) = 0$ is called a quartic functional equation, and every solution of the last functional equation is said to be a quartic function [12].

The stability of $\{m, k\}$ -quartic functional equation in Banach spaces was investigated by Kang [12]. Nikoufar [15, 16] studied the stability of the quartic functional equation in the Lipschitz norms.

A mapping $F : G^n \to E$ is said to be multi $\{m, k\}$ -quartic if it satisfies the $\{m, k\}$ -quartic equation in each of its n arguments, that is

$$\begin{split} F(x_1, \dots, x_{i-1}, mx_i + ky_i, x_{i+1}, \dots, x_n) + F(x_1, \dots, x_{i-1}, mx_i - ky_i, x_{i+1}, \dots, x_n) \\ &= (mk)^2 [F(x_1, \dots, x_{i-1}, x_i + y_i, x_{i+1}, \dots, x_n) + F(x_1, \dots, x_{i-1}, x_i - y_i, x_{i+1}, \dots, x_n)] \\ &+ 2m^2 (m^2 - k^2) F(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) - 2k^2 (m^2 - k^2) F(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n), \end{split}$$

where $i \in \{1, ..., n\}, x_1, ..., x_{i-1}, x_i, y_i, x_{i+1}, ..., x_n \in G.$

- (i) Is the Nikoufar's result true for $\{m, k\}$ -quartic functional equation?
- (ii) Is the Nikoufar's result true for multi $\{m, k\}$ -quartic mappings?

References

- R. Badora, On some generalized invariant means and their application to the stability of the Hyers-Ulam type, Ann. Polon. Math. 58 (1993) 147–159.
- [2] K. Ciepliński, Generalized stability of multi-additive mappings, Appl .Math. Lett. 23 (2010) 1291–1294.
- [3] K. Ciepliński, Stability of the multi-Jensen equation, J. Math. Anal. Appl. 363 (2010) 249–254.
- [4] K. Ciepliński, Stability of multi-additive mappings in non-Archimedean normed spaces, J. Math. Anal. Appl. 373 (2011) 376–383.
- [5] K. Ciepliński, On the generalized Hyers-Ulam stability of multi-quadratic mappings, Comput. Math. Appl. 62 (2011) 3418–3426.
- [6] A. Chahbi, IZ. EL-Fassi and S. Kabbaj, Lipschitz stability of the k-quadratic functional equation, Quaestiones Math. (2017) 991–1001.
- [7] S. Czerwik and K. Dłutek, Stability of the quadratic functional equation in Lipschitz spaces, J. Math. Anal. Appl. 293 (2004) 79–88.
- [8] A. Ebadian, N. Ghobadipour, I.Nikoufar and M. Eshaghi, Approximation of the Cubic Functional Equations in Lipschitz Spaces, Anal. Theory Appl. 30 (2014) 354–362.
- M. Eshaghi and H. Khodaei, On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abst. Appl. Anal. (2009) Art. ID 923476.
- [10] K.W. Jun and H.M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002) 867–878.
- [11] K.W. Jun, H.M. Kim and I.S. Chang, On the HyersUlam stability of an EulerLagrange type cubic functional equation, J. Comput. Anal. Appl. 7 (2005) 21–33.
- [12] D. Kang, On the Stability of Generalized Quartic Mappings in Quasi-β-Normed Spaces, J. Inequal. Appl. (2010) Art. ID 198098.
- [13] H. Koh and D. Kang, Approximate Generalized Cubic -Derivations, J. Funct. Spaces (2014) Art. ID 757956.
- [14] G. Lua and C. Park, Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett. 24, (2011) 1312–1316.
- [15] I. Nikoufar, Quartic functional equations in Lipschitz spaces, Rend. Circ. Mat. Palermo 64 (2015) 171–176.
- [16] I. Nikoufar, Erratum to: Quartic functional equations in Lipschitz spaces, Rend. Circ. Mat. Palermo 65 (2016) 345–350.
- [17] I. Nikoufar, Lipschitz criteria for bi-quadratic functional equations, Commun. Korean Math. Soc. 31 (2016) 819–825.
- [18] I. Nikoufar, Approximate tri-quadratic functional equations via Lipschitz conditions, Math. Bohemica 142 (2017) 337–344.
- [19] I. Nikoufar, Behavior of bi-cubic functions in Lipschitz spaces, Lobachevskii J. Math. 39 (2018) 803–808.
- [20] I. Nikoufar, Stability of multi-quadratic functions in Lipschitz spaces, Iran J. Sci. Technol. Trans. Sci. 43 (2019) 621–625.
- [21] C. Park, Multi-quadratic functional equations in Banach spaces, Proc. Amer. Math. Soc. 131 (2003) 2501–2504.
- [22] K.H. Park and Y.S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc. 41 (2004) 347–357.
- [23] J. Tabor, Lipschitz stability of the Cauchy and Jensen equations, Results Math. 32 (1997) 133–144.
- [24] J. Tabor, Superstability of the Cauchy, Jensen and isometry equations, Results Math. 35 (1999) 355–379.