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In this study, using the dynamic relaxation method, nonlinear mechanical and thermal 
buckling behaviors of functionally graded cylindrical shells were studied based on first-
order shear deformation theory (FSDT). It was assumed that material properties of the 
constituent components of the FG shell vary continuously along the thickness direction 
based on simple power-law and Mori-Tanaka distribution methods separately. An axial 
compressive load and thermal gradient were applied to the shell incrementally so that 
in each load step the incremental form of governing equations were solved by the DR 
method combined with the finite difference (FD) discretization method to obtain the 
critical buckling load. After convergence of the code in the first increment, the latter 
load step was added to the former so that the program could be repeated again. After-
wards, the critical buckling load was achieved from the mechanical/ thermal load-
displacement curves. In order to validate the present method, the results were com-
pared with other papers and the Abaqus finite element results. Finally, the effects of 
different boundary conditions, grading index, rule of mixture, radius-to-thickness ratio 
and length-to-radius ratio were investigated on the mechanical and thermal buckling 
loads. 

1. Introduction 

Functionally graded materials (FGMs) are a 
kind of unique composite material typically made 
from a mixture of ceramic and metal. The changes 
in these components result in an inhomogeneous 
microstructure which leads to gradual variations 
in the macroscopic properties of the material. 
Through this special property, the ceramic com-
ponent can boost the thermal resistance while the 
metallic composition can enhance the fracture 
toughness. Recently, FG cylindrical shells have 
been used in various industries such as: aero-
space, nuclear and medical applications [1]. De-
spite this evident importance of circular cylindri-
cal FG shells, there have been few investigations 
on the buckling behavior of these structures in 
comparison with plate structures or other types of 
shells. In this regard, the dynamic thermo-elastic 
response of FG cylinders and plates was presented 
by Reddy and Chin [2]. Also, Li and Batra analyzed 
the buckling behavior of axially compressed simp-

ly supported thin circular cylindrical shells with 
an FG middle layer [3]. Moreover, buckling behav-
iors of FG cylindrical shells subjected to pure 
bending load were investigated by Huang et al. [4]. 
In another study, Shariyat studied the dynamic 
buckling of a pre-stressed, suddenly-heated im-
perfect FGM cylindrical shell and dynamic buck-
ling of a mechanically-loaded imperfect FGM cy-
lindrical shells in a thermal environment, with 
temperature dependent properties [5]. Addition-
ally, based on the nonlinear large deflection theo-
ry of cylindrical shells as well as the Donnell as-
sumptions, Huang and Han presented nonlinear 
buckling and post buckling analysis of axially 
compressed functionally graded cylindrical shells 
using the Ritz energy method [6]. They also con-
sidered the buckling behaviors of axially com-
pressed functionally graded cylindrical shells with 
geometrical imperfections utilizing the Donnell 
shell theory and the nonlinear strain-
displacement relations of large deformations [7]. 
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In further publications by Shahsiah and Eslami, 
studies were carried out on the buckling analysis 
of functionally graded cylindrical shells under two 
types of thermal loads with simply supported 
boundary conditions based on the first-order shell 
theory (FSDT) and the Sanders kinematic equa-
tions [8]. A formulation for the free vibration and 
buckling of FG cylindrical shells subjected to com-
bined static and periodic axial loadings were pre-
sented by Ebrahimi and Sepiani based on FSDT 
and the classical shell theory (CST) [9]. Further-
more, Shen studied the post-buckling analysis for 
an FG thin cylindrical shell of finite length subject-
ed to external pressure and thermal environments  
[10]. Shen and Noda analyzed the post-buckling of 
shear deformable FG cylindrical shells of finite 
length subjected to combined axial and radial me-
chanical loads in thermal environments [11]. 
Based on Galerkin’s method, Mirzavand and Esla-
mi studied the buckling analysis of imperfect FG 
cylindrical shells under axial compression in 
thermal environments based on classical shell 
theory and the Sanders nonlinear kinematic rela-
tions [12]. Nonlinear response of imperfect eccen-
trically-stiffened FGM thin circular cylindrical 
shells surrounded by elastic foundations and sub-
jected to axial compression was presented by Duc 
and Thang [13]. Khazaeinejad and Najafizadeh 
considered analytical solutions of the buckling 
behavior of FG cylindrical shells subjected to three 
types of mechanical loads using the FSDT [14]. In 
addition, some studies of nonlinear bending of 
circular/annular FG plates/disks subjected to me-
chanical or thermo-mechanical loadings based on 
the DR method with FD technique were conducted 
by Golmakani et al., solving the non-incremental 
form of governing equations [15-19]. Based on a 
similar method and similar loadings, they also 
investigated the large deflection behavior of stiff-
ened/ unstiffened FG sector plates [20, 21] and 
general theta ply laminated plates [22, 23]. Eigen-
value buckling of a multi-layered FG cylindrical 
shells reinforced with graphene sheets was stud-
ied by Wang et al. by using finite element method 
(FEM) [24]. Also, Wang et al. analyzed the torsion-
al buckling of FG cylindrical shells reinforced with 
GPLs by using FEM. They observed that the en-
hancement of the number of layers resulted in 
notable decline of stress gradient between neigh-
boring layers [25]. Yiwen et al. studied thermal 
buckling of functionally graded orthotropic cylin-
drical shells analytically using Reissner's shell 
theory [26]. Trabelsi et al., investigated the ther-
mal buckling of functionally graded plates and 
cylindrical shells using the modified First Order 
Shear deformation theory [27]. The nonlinear ana-
lytical torsional/ thermal buckling and postbuck-
ling of multilayer FGM cylindrical shells were 
studied by Nam et al. [28]. Also, thermomechani-
cal buckling and post-buckling of cylindrical shell 

with FG coatings were analyzed by Thang et al. 
They considered the classical shell theory based 
on the von Kármán assumptions, Galerkin’s meth-
od and Airy stress function to obtain the closed-
form solution [29]. Golmakani et al. studied buck-
ling analysis of moderately thick FG cylindrical 
panels subjected to axial compression in different 
boundary conditions [30]. Rezaiee-Pajand et al. 
investigated thermo-mechanical buckling and 
post-buckling of functionally graded shells based 
on FSDT and Voigt’s model by finite element 
method (FEM) [31]. Wang et al., studied the buck-
ling of graphene platelets (GPL) reinforced com-
posite cylindrical shells with cutouts using the 
finite element method (FEM). In their article, they 
modified Halpin–Tsai micromechanics model and 
determined Young’s modulus of the composites, 
also using the rule of mixture, approximated the 
mass density and Poisson’s ratio of the composites  
[32]. Zghal et al. studied linear static analysis of FG 
carbon nanotube-reinforced plate and shell struc-
tures [33]. Trabelsi et al., studied thermal post-
buckling analysis of functionally graded material 
structures based on a modified FSDT via the finite 
element method and a large displacement was 
described by Green–Lagrange nonlinear strains 
[34]. Nonlinear thermal buckling of imperfect cy-
lindrical shells using a continuum-based semi-
analytical finite element formulation was used by 
Alijani et al. [35]. Zghal et al. studied free vibration 
of functionally graded composite shell structures 
reinforced by carbon nanotubes based on the dis-
crete double directors shell finite element formu-
lation [36]. Zghal investigated the mechanical 
buckling of functionally graded materials and car-
bon nanotubes-reinforced composite plates and 
curved panels based on a double director’s finite 
element shell model [37]. Furtermore, the dynam-
ic analysis and forced vibration of functionally 
graded carbon nanotubes-reinforced composite 
shell structures (FG-CNTRC) based on a linear 
discrete double director’s finite element model 
were studied by Frikha et al. [38]. They also, in-
vestigated non-linear deflections analysis of thin 
FG-CNTRC shell structures based on a discrete 
form of Kirchhoff finite element model and the 
displacement field was approximated by four 
nodes and three node finite elements [39]. Non-
linear bending of nanocomposites reinforced by 
graphene-nanotubes with finite shell element and 
membrane enhancement was studied by Zghal et 
al. based on the Third-order shear deformation 
theory [40]. 

But despite significant contributions to inves-
tigation of buckling behavior of cylindrical shells 
in the previous years, to the best of the authors’ 
knowledge, up to now the nonlinear mechanical 
and thermal buckling of FG cylindrical shells with 
various boundary conditions have not been stud-
ied based on FSDT. Hence, the present paper is 
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concerned with the further development of the 
mechanical and thermal buckling analysis of FG 
cylindrical shells for clamped and simply support-
ed boundary conditions based on FSDT and large 
deflection von Kármán equations. The DR method 
combined with the finite difference (FD) discreti-
zation technique is employed to solve these in-
cremental formulations. However, the buckling 
behavior of FG cylindrical shells is not considered 
by the DR method, so far. In this paper, the critical 
buckling load is predicted based on mechani-
cal/thermal load–displacement curve obtained by 
solving the incremental form of nonlinear equilib-
rium equations. In order to accurately predict the 
elastic properties of actual FGM’s, the Mori–
Tanaka scheme is applied. Furthermore, the re-
sults of this theory are compared with the power-
law distribution (simple rule of mixture) which 
indicates a significant difference. Also, unlike pre-
vious investigations, the nonlinear temperature 
distribution is considered along the thickness di-
rection for the purpose of thermal buckling analy-
sis. The results are compared with some refer-
ences and those obtained by the Abaqus finite el-
ement software. Finally, numerical results for crit-
ical buckling load and critical temperature differ-
ence are presented for various boundary condi-
tions, two different rules of mixture, grading indi-
ces, radius -to- thickness and length-to-radius ra-
tios. 

2. Material Properties of the FG Shell 

Figure 1 shows an FG cylindrical shell with ra-
dius R, thickness h, and length L in the cylindrical 
coordinate system (x, θ, z).  

The FG shell is considered a mixture of ceram-
ics and metals with the material properties of the 
composition varying continuously and smoothly 
through the thickness of the shell. As mentioned 
above, there are different models which show the 
variation in the mechanical and thermal proper-
ties of the FGMs. The power-law distribution of 
the volume fraction, is the most common type. 
Based on the power-law model, the material 
property 𝑃 (the effective values of Young’s modu-
lus 𝐸, heat conductivity coefficient 𝑘 and the coef-
ficient of thermal expansion 𝛼 through the thick-
ness of the shell can be expressed as [41]: 

𝑃(𝑧) = 𝑃𝑐𝑉𝑐 + 𝑃𝑚𝑉𝑚 (1) 

where subscripts 𝑚 and 𝑐 indicate the metallic 
and ceramic constituents, respectively; 𝑉𝑐  and 𝑉𝑚  
are the ceramic and metal volume fractions, re-
spectively, and follow as [41]: 

𝑉𝑐 = (
2𝑧+ℎ

2ℎ
)𝑘  (2) 

𝑉𝑚 = 1 − 𝑉𝑐  (3) 

where z is the thickness coordinate (−
ℎ

2
≤ 𝑧 ≤

ℎ

2
) 

and grading index k dictates the material variation 
profile through the shell thickness. Since the pre-
diction of the macroscopic stress-strain response 
of FGMs is related to the description of their com-
plex microstructural behavior represented by the 
interaction between the constituents, using a mi-
cro-mechanics-based method such as Mori-
Tanaka’s theory; a self-consistent scheme can rep-
resent the realistic prediction for the behavior of 
the FGMs [33]. The effective values of bulk modu-
lus, 𝐵, shear modulus, 𝐺, thermal conductivity co-
efficient, 𝐾 and thermal Expansion coefficient,  , 

of the functionally gradient material based on the 
Mori–Tanaka homogenization method are [42- 
44]: 

𝐵−𝐵𝑐

𝐵𝑚−𝐵𝑐
=

𝑉𝑚

1+(1−𝑉𝑚)
3(𝐵𝑚−𝐵𝑐)

3𝐵𝑐+4𝐺𝑐

  (4) 

𝐺−𝐺𝑐

𝐺𝑚−𝐺𝑐
=

𝑉𝑚

1+(1−𝑉𝑚)
𝐺𝑚−𝐺𝑐
𝐺𝑐+𝑓𝑐

  (5) 

𝐾 − 𝐾𝑚

𝐾𝑐 − 𝐾𝑚

=
𝑉𝑐

1 + (1 − 𝑉𝑐)
(𝐾𝑐−𝐾𝑚)

3𝐾𝑚

                  (6) 

∝−∝𝑚

∝𝑐−∝𝑚
=

(
1

𝐵
−

1

𝐵𝑚
)

(
1

𝐵𝑐
−

1

𝐵𝑚
)
  (7) 

Where: 

𝑓c =
𝐺𝑐(9𝐵𝑐+8𝐺𝑐)

6(𝐵𝑐+2𝐺𝑐)
  (8) 

Thus, the effective values of 𝐸 and 𝜗 can be 
computed as follows: 

𝐸 =
9𝐵𝐺

3𝐵+𝐺
  (9) 

𝜗 =
3𝐵−2𝐺

2(3𝐵+𝐺)
  (10) 

3. Thermal Load Distribution 

The temperature variation is assumed to occur 
only in the direction of thickness. For the men-
tioned one-dimensional temperature field, the 
study is designed so that the outer ceramic surface 
is exposed to higher temperatures compared to 
the inner metal surface. In this work, two types of 
linear and nonlinear temperature distributions 
are considered for thermal buckling analysis of FG 
cylindrical shell. 

3.1 Linear Temperature Distribution 
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Fig. 1. FG cylindrical shell in the cylindrical coordinate system 

In some works, in order to obtain the thermal 
buckling load, the linear temperature variation is 
assumed to be along the thickness direction. Ac-
cording to the linear temperature distribution, the 
following linear function is considered for thermal 
load distribution along the thickness [8, 45]: 

 

𝑇(𝑧) = 𝑇𝑚 + (𝑇𝑐−𝑇𝑚) (𝑧 +
ℎ

2
)  (11) 

where 𝑇 = 𝑇𝑐 at 𝑧 =
ℎ

2
 and 𝑇 = 𝑇𝑚 at 𝑧 = −

ℎ

2
. 

3.2 Nonlinear Temperature Distribution 

In this case, the temperature distribution along 
the thickness can be defined by solving the one-
dimensional Fourier equation of heat conduction: 

𝑑

𝑑𝑧
(𝑘(𝑧)

𝑑𝑇(𝑧)

𝑑𝑧
) = 0  (12) 

The nonlinear temperature function ( )T z  ob-

tained from Eq. (12) as following [13]: 

𝑇(𝑧) = 𝑇𝑚 +

(𝑇𝑐−𝑇𝑚) ∫
𝑑𝑧

𝐾(𝑧)

𝑧
−ℎ

2⁄ ∫
𝑑𝑧

𝐾(𝑧)

ℎ
2⁄

−ℎ
2⁄

⁄   
(13) 

Since the DR method combined with the finite 
difference (FD) discretization method is employed 
to solve the equations, the integrations of Eq. (13) 
are computed numerically by discretizing the shell 
along the thickness direction. 

4. Governing Equations 

In this study based on the FSDT, thickness ef-
fects on the buckling load are considered. Accord-
ing to the FSDT, the results are reliable for thin to 
moderately thick shells and the buckling load can 
be obtained for a variety of thickness-to-length 
ratios of shells. The displacement field based on 
the FSDT in the cylindrical coordinate system (x, θ, 
z) is as: 

𝑈(𝑥. 𝜃. 𝑧) = 𝑢(𝑥. 𝜃) + 𝑧𝜑𝑥(𝑥. 𝜃)  
𝑉(𝑥. 𝜃. 𝑧) = 𝑣(𝑥. 𝜃) + 𝑧𝜑𝜃(𝑥. 𝜃) 
𝑊(𝑥. 𝜃. 𝑧) = 𝑤(𝑥. 𝜃) 

(14) 

where 𝑈, 𝑉 and 𝑊 are the displacements cor-
responding to the co-ordinate system and are 
functions of the spatial co-ordinates; 𝑢(𝑥. 𝜃), 
𝑣(𝑥. 𝜃), and 𝑤(𝑥. 𝜃) are the middle surface dis-
placements and 𝜑𝑥(𝑥. 𝜃), 𝜑𝜃(𝑥. 𝜃) describe the 
rotations about the 𝜃 and 𝑥 axes, respectively (see 
Fig. 1). As stated, for obtaining the buckling load 
by the DR method, the equilibrium equations 
should be derived in the incremental form. Thus, 
all of the following governing equations are de-
rived in the incremental form of variables. Based 
on the incremental nonlinear von Kármán strain–
displacement relations, the strain components 
compatible with the displacement field of Eq. (14) 
are as follow: 

𝛿𝜀𝑋𝑋 =
𝜕𝛿𝑢

𝜕𝑋
+

1

2
(

𝜕𝛿𝑤

𝜕𝑋
)

2
+

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋
+

𝑧
𝜕𝛿𝜑𝑋

𝜕𝑋
   

𝛿𝜀𝜃𝜃 =
1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+

𝛿𝑤

𝑅
+

1

𝑅2

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
+

1

2𝑅2 (
𝜕𝛿𝑤

𝜕𝜃
)

2
+

𝑧

𝑅

𝜕𝛿𝜑𝜃

𝜕𝜃
   

𝛿𝛾𝑋𝜃 =
1

𝑅

𝜕𝛿𝑢

𝜕𝜃
+

𝜕𝛿𝑣

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝑤

𝜕𝜃
+

1

𝑅

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃
+  𝑍 (

𝜕𝛿𝜑𝜃

𝜕𝑋
+

1

𝑅

𝜕𝛿𝜑𝑋

𝜕𝜃
)   

𝛿𝛾𝑋𝑍 = 𝛿𝜑𝑋(𝑥. 𝜃) +
𝜕𝛿𝑤

𝜕𝑋
   

𝛿𝛾𝜃𝑍 = 𝛿𝜑𝜃(𝑥. 𝜃) +
1

𝑅

𝜕𝛿𝑤

𝜕𝜃
  

 

(15) 

Using the Hooke’s law, the incremental consti-
tutive thermoelastic relations can be defined by: 

𝛿𝜎𝑋 =
𝐸(𝑍)

1−𝜗2
[𝛿𝜀𝑋𝑋 + 𝜗𝛿𝜀𝜃𝜃] −

𝐸(𝑍)𝛼(𝑍)𝑇(𝑍)

1−𝜗
   

𝛿𝜎𝜃 =
𝐸(𝑍)

1−𝜗2
[𝛿𝜀𝜃𝜃 + 𝜗𝛿𝜀𝑋𝑋] −

𝐸(𝑍)𝛼(𝑍)𝑇(𝑍)

1−𝜗
   

𝛿𝜏𝑋𝜃 =
𝐸(𝑍)

2(1+𝜗)
[𝛿𝛾𝑋𝜃]   

𝛿𝜏𝑋𝑍 =
𝐸(𝑍)

2(1+𝜗)
[𝛿𝛾𝑋𝑍]  

𝛿𝜏𝜃𝑍 =
𝐸(𝑍)

2(1+𝜗)
[𝛿𝛾𝜃𝑍]  

(16) 

The stress and moment resultants 
( , , , ,r r rN N Q M M  ) can be achieved by utilizing 

relevant integration through the thickness: 

(𝛿𝑁𝑖 . 𝛿𝑀𝑖) = ∫ 𝛿𝜎𝑖

ℎ
2⁄

−ℎ
2⁄

(1. 𝑧)𝑑𝑧. 𝑖 = 𝑥. 𝜃. 𝑥𝜃   

𝛿𝑄𝑖 = ∫ 𝛿𝜎𝑖𝑧

ℎ
2⁄

−ℎ
2⁄

𝑑𝑧          𝑖 = 𝑥. 𝜃  (17) 

(𝛿𝑁𝑖
𝑇 . 𝛿𝑀𝑖

𝑇) =

∫
𝐸(𝑍)𝛼(𝑍)𝑇(𝑍)

1−𝜗

ℎ
2⁄

−ℎ
2⁄

(1. 𝑧)𝑑𝑧     𝑖 = 𝑥. 𝜃  
 



M.E. Golmakani et al/ Mechanics of Advanced Composite Structures 7 (2020) 297 - 311 

301 

By substituting Eqs. (15) and (16) into Eqs. 
(17), the incremental form of the constitutive rela-
tions in terms of displacement field are as follow: 

𝛿𝑁𝑋 = 𝐴11 [
𝜕𝛿𝑢

𝜕𝑋
+

1

2
(

𝜕𝛿𝑤

𝜕𝑋
)

2
+

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋
] +   𝐴12 [

1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+  

𝛿𝑤

𝑅
+

1

𝑅2

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
+  

1

2𝑅2 (
𝜕𝛿𝑤

𝜕𝜃
)

2
] +

𝐵11 [
𝜕𝛿𝜑𝑋

𝜕𝑥
] +  𝐵12 [

1

𝑅

𝜕𝛿𝜑𝜃

𝜕𝜃
] − 𝛿𝑁𝑥

𝑇  

𝛿𝑁𝜃 =   𝐴12 [
𝜕𝛿𝑢

𝜕𝑋
+

1

2
(

𝜕𝛿𝑤

𝜕𝑋
)

2
+

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋
] +  𝐴22 [

1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+

𝛿𝑤

𝑅
+

1

𝑅2

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
+

1

2𝑅2 (
𝜕𝛿𝑤

𝜕𝜃
)

2
] +

𝐵12 [
𝜕𝛿𝜑𝑋

𝜕𝑋
] +  𝐵22 [

1

𝑅

𝜕𝛿𝜑𝜃

𝜕𝜃
] − 𝛿𝑁𝜃

𝑇  

𝛿𝑁𝑋𝜃 = 𝐴66 [
1

𝑅

𝜕𝛿𝑢

𝜕𝜃
+

𝜕𝛿𝑣

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝑤

𝜕𝜃
+

1

𝑅

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃
] + 𝐵66 [

𝜕𝛿𝜑𝜃

𝜕𝑋
+

1

𝑅

𝜕𝛿𝜑𝑋

𝜕𝜃
]  

𝛿𝑄𝜃 = 𝐹44 [𝛿𝜑𝜃(𝑋. 𝜃) +
1

𝑅

𝜕𝛿𝑤

𝜕𝜃
]   

𝛿𝛾𝜃𝑍 = 𝛿𝜑𝜃(𝑥. 𝜃) +
1

𝑅

𝜕𝛿𝑤

𝜕𝜃
  

𝛿𝑄𝑋 = 𝐹55 [𝛿𝜑𝑋(𝑋. 𝜃) +
𝜕𝛿𝑤

𝜕𝑋
]  

(18) 

𝛿𝑀𝑋 = 𝐵11 [
𝜕𝛿𝑢

𝜕𝑋
+

1

2
(

𝜕𝛿𝑤

𝜕𝑋
)

2
+

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋
] +  𝐵12 [

1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+

𝛿𝑤

𝑅
+

1

𝑅2

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
+

1

2𝑅2 (
𝜕𝛿𝑤

𝜕𝜃
)

2
] + 𝐷11 [

𝜕𝛿𝜑𝑥

𝜕𝑥
] +

𝐷12 [
1

𝑅

𝜕𝛿𝜑𝜃

𝜕𝜃
] − 𝛿𝑀𝑥

𝑇  

𝛿𝑀𝜃 = 𝐵12 [
𝜕𝛿𝑢

𝜕𝑋
+

1

2
(

𝜕𝛿𝑤

𝜕𝑋
)

2

+
𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝑋
] +

 𝐵22 [
1

𝑅

𝜕𝛿𝑣

𝜕𝜃
+ 

𝛿𝑤

𝑅
+

1

𝑅2

𝜕𝑤

𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
+

 
1

2𝑅2 (
𝜕𝛿𝑤

𝜕𝜃
)

2

] + 𝐷12 [
𝜕𝛿𝜑𝑋

𝜕𝑋
] +

 𝐷22 [
1

𝑅

𝜕𝛿𝜑𝜃

𝜕𝜃
] − 𝛿𝑀𝜃

𝑇  

𝛿𝑀𝑋𝜃 = 𝐵66 [
1

𝑅

𝜕𝛿𝑢

𝜕𝜃
+

𝜕𝛿𝑣

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝑤

𝜕𝜃
+

1

𝑅

𝜕𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕𝛿𝑤

𝜕𝜃
] + 𝐷66 [

𝜕𝛿𝜑𝜃

𝜕𝑋
+

1

𝑅

𝜕𝛿𝜑𝑋

𝜕𝜃
]  

(19) 

Where 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗  and 𝐹𝑖𝑗  are the extensional, 

coupling, bending, and shear stiffness, respective-
ly, which are obtained by: 

(𝐴𝑖𝑗 . 𝐵𝑖𝑗 . 𝐷𝑖𝑗) = ∫ 𝑄𝑖𝑗

ℎ
2⁄

−ℎ
2⁄

(1. 𝑧. 𝑧2)𝑑𝑧 , 

(i,j=1, 2,6) 

(𝐹44. 𝐹55) = ∫
𝐾𝑆𝐸

2(1+𝜗)

ℎ
2⁄

−ℎ
2⁄

𝑑𝑧  

𝑄11 = 𝑄22 =
𝐸

1−𝜗2  

(20) 

𝑄12 = 𝑄21 =
𝜗𝐸

1−𝜗2  

𝑄66 =
𝐸

2(1+𝜗)
  

In which 𝐾𝑆 is the shear correction factor in-
troduced by Reddy [45] and is equal to 5/6. Ac-
cording to the principle of minimum potential en-
ergy, the following force equilibrium equations in 
incremental form can be computed: 

𝜕𝛿𝑁𝑋

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑁𝑋𝜃

𝜕𝜃
= 0  

𝜕𝛿𝑁𝑋𝜃

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑁𝜃

𝜕𝜃
= 0  

 
𝜕𝛿𝑄𝑋

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑄𝜃

𝜕𝜃
+

𝜕2𝛿𝑊

𝜕𝑋2
(𝑁𝑋 + 𝛿𝑁𝑋) +

𝜕2𝑊

𝜕𝑋2 𝛿𝑁𝑋 −
𝜕2𝛿𝑊

𝜕𝑋2 𝛿𝑁𝑥
𝑇 −

𝜕2𝑊

𝜕𝑋2 𝛿𝑁𝑥
𝑇 +

 
2

𝑅

𝜕2𝛿𝑊

𝜕𝑋 𝜕𝜃
(𝑁𝑋𝜃 + 𝛿𝑁𝑋𝜃) +

2

𝑅

𝜕2𝑊

𝜕𝑋 𝜕𝜃
𝛿𝑁𝑋𝜃 +

  
1

𝑅2

𝜕2𝛿𝑊

𝜕𝜃2
(𝑁𝜃 + 𝛿𝑁𝜃) +

1

𝑅2

𝜕2𝑊

𝜕𝜃2 𝛿𝑁𝜃 −

1

𝑅2

𝜕2𝛿𝑊

𝜕𝜃2 𝛿𝑁𝑥
𝑇 −

1

𝑅2

𝜕2𝑊

𝜕𝜃2 𝛿𝑁𝑥
𝑇 −

1

𝑅
𝛿𝑁𝑥

𝑇 −
1

𝑅
𝛿𝑁𝜃 = 0   

𝜕𝛿𝑀𝑋

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑀𝑋𝜃

𝜕𝜃
− 𝛿𝑄𝑋 = 0 

𝜕𝛿𝑀𝑋𝜃

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑀𝜃

𝜕𝜃
− 𝛿𝑄𝜃 = 0  

(21) 

It is evident that for mechanical buckling anal-
ysis the thermal terms must be raised. Substitut-
ing resultant forces and moments derived in Eqs. 
(17), (18) into Eq. (20) leads to a set of nonlinear 
displacement equilibrium equations in incremen-
tal form. As an example, the first equation of (20) 
is described in detail: 

𝐴11 [
𝜕2𝛿𝑢

𝜕𝑋2 +
𝜕2𝛿𝑤

𝜕𝑋2

𝜕𝛿𝑤

𝜕𝑋
+

𝜕2𝑤

𝜕𝑋2

𝜕𝛿𝑤

𝜕𝑋
+

𝜕2𝛿𝑤

𝜕𝑋2

𝜕𝑤

𝜕𝑋
] + 𝐴12 [

1

𝑅

𝜕2𝛿𝑣

𝜕𝑋𝜕𝜃

1

𝑅

𝜕𝑤

𝜕𝑋
+

1

𝑅2

𝜕2𝛿𝑤

𝜕𝑋𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
+

1

𝑅2

𝜕2𝛿𝑤

𝜕𝑋𝜕𝜃

𝜕𝑤

𝜕𝜃
+ 

1

𝑅2

𝜕2𝑤

𝜕𝑋𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
] +

𝐵11 [
𝜕2𝛿𝜑𝑋

𝜕𝑋2 ] + 𝐵12 [
1

𝑅

𝜕2𝛿𝜑𝜃

𝜕𝑋𝜕𝜃
] +

 
1

𝑅
𝐴66 [

1

𝑅

𝜕2𝛿𝑢

𝜕𝜃2 +
𝜕2𝛿𝑣

𝜕𝑋𝜕𝜃
+

1

𝑅

𝜕2𝑤

𝜕𝑋𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
+

1

𝑅

𝜕2𝛿𝑤

𝜕𝑋𝜕𝜃

𝜕𝛿𝑤

𝜕𝜃
+

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕2𝑤

𝜕𝜃2 +
1

𝑅

𝜕𝑤

𝜕𝑋

𝜕2𝛿𝑤

𝜕𝜃2 +

1

𝑅

𝜕𝛿𝑤

𝜕𝑋

𝜕2𝛿𝑤

𝜕𝜃2 ] +
1

𝑅
𝐵66 [

𝜕2𝛿𝜑𝜃

𝜕𝑋𝜕𝜃
+ 

1

𝑅

𝜕2𝛿𝜑𝑋

𝜕𝜃2 ] = 0  

(22) 

In this paper, it is considered that mechanical 
buckling of the FG circular cylindrical shell is sub-
jected to uniformly distributed axial compressive 
load 𝑞. Whereas for thermal buckling analysis the 
FG cylinder is only under a thermal gradient along 
the thickness direction. Also, for both of mechani-
cal and thermal buckling, the clamped and simply 
supported boundary conditions are applied 
around the circumference edges. These boundary 
conditions are set out below in terms of con-
straints on displacements, stress resultants and 

stress couples at 0,X L= : 

(a) For Mechanical Buckling Analysis  

Clamped—in-plane movable: 
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𝑁𝑋 = −
𝑞

2𝜋𝑅
        𝑣 = 𝑤 = 𝜑𝑋 = 𝜑𝜃 = 0  (23) 

Simply supported—in-plane movable: 

𝑁𝑋 = −
𝑞

2𝜋𝑅
         𝑣 = 𝑤 = 𝜑𝜃 = 𝑀𝑋 = 0  (24) 

(b)  For Thermal Buckling Analysis  

Clamped—in-plane movable: 

𝑁𝑋 =  𝑣 = 𝑤 = 𝜑𝑋 = 𝜑𝜃 = 0  (25) 

Simply supported—in-plane movable: 

𝑁𝑋 = 𝑀𝑋 = 𝑣 = 𝑤 = 𝜑𝜃 = 0  (26) 

5. Numerical Solution of the Nonlinear 
Equation 

Since, solving the set of nonlinear equilibrium 
equations are very complicated and are not ame-
nable to a closed form solution, in this study, the 
DR method with a finite difference discretization 
scheme was used. The DR method is a strong and 
reliable method for analyzing the nonlinear bend-
ing and buckling problems [15-23, 45]. The DR 
method is an explicit iterative technique which is 
used to transfer a boundary value problem into 
time-stepping initial value problem. This aim is 
obtained by adding artificial inertia and damping 
forces to the right side of Eqs. (21) as: 

𝐿𝐻𝑆{𝐸𝑞𝑠.  (20)} = 𝑚𝑋
𝜕2𝛿𝑋

𝜕𝑡2 + 𝑐𝑋
𝜕𝛿𝑋

𝜕𝑡
  (27) 

In Eq. (27) LHS = left-hand side and 𝑚𝑋, 𝑐𝑋 
(𝑋 = 𝑢. 𝑣. 𝑤. 𝜑𝑋. 𝜑𝜃) are elements of diagonal ficti-
tious mass and damping matrices 𝑀 and 𝐶, re-
spectively. Here, to assure the numerical stability, 
the element of diagonal matrix M is obtained by 
the Gershgörin theorem as [47, 48]: 

𝑚𝑖𝑖
𝑋 ≥ 0.25(𝜏𝑛)2 ∑ |𝑘𝑖𝑗

𝑋|𝑁
𝑗=1   (28) 

where superscript n indicates the nth iteration 
and 𝜏 is the increment of fictitious time with its 
value assumed to be 1. Also, 

ijk  is the element of 

stiffness matrix 𝐾 which is achieved by: 

𝐾 =
𝜕𝑃

𝜕𝑋
  (29) 

where 𝑃 is the left-hand-side of the equilibri-
um equations (21). Furthermore, by applying the 
Rayleigh principle to each node, the instant critical 
damping factor 𝑐𝑖

𝑛 for node i at the nth iteration is 
as follows [49]: 

𝑐𝑖
𝑛 = 2 {

(𝑋𝑖
𝑛)

𝑇
(𝑃𝑖

𝑛)

(𝑋𝑖
𝑛)

𝑇
𝑚𝑖𝑖

𝑛𝑋𝑖
𝑛

}

1

2

  (30) 

Hence, to make the elements of diagonal ficti-
tious damping matrix 𝐶, various 𝐶 values for di-
verse nodes are obtained at each direction as [49]: 

𝑐𝑖𝑖 = 𝑐𝑖𝑚𝑖𝑖 .     𝑖 = 1.2. … . 𝑁  (31) 

Finally, the velocity and acceleration terms 
should be substituted with the following equiva-
lent central finite-difference expressions: 

𝑋̈𝑛 =
𝑋̇

𝑛+
1
2−𝑋̇

𝑛−
1
2

𝜏𝑛   (32) 

𝑋̇𝑛−
1

2 =
𝑋𝑛−𝑋𝑛−1

𝜏𝑛   (33) 

By replacing Eqs. (32) and (33) into the right-
hand side of Eq. (27), the equilibrium equations 
can be rearranged into an initial value format as: 

𝛿𝑢̇𝑖
𝑛+1 2⁄ =

2𝜏𝑛

2+𝜏𝑛𝑐𝑖
𝑛 (𝑚𝑖𝑖

𝑛)−1 (
𝜕𝛿𝑁𝑋

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑁𝑋𝜃

𝜕𝜃
)

𝑖

𝑛

+ 
2−𝜏𝑛𝑐𝑖

𝑛

2+𝜏𝑛𝑐𝑖
𝑛 𝛿𝑢̇𝑖

𝑛−1 2⁄   

𝛿𝑣̇𝑖
𝑛+1 2⁄ =

2𝜏𝑛

2+𝜏𝑛𝑐𝑖
𝑛 (𝑚𝑖𝑖

𝑛 )−1 (
𝜕𝛿𝑁𝑋𝜃

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑁𝜃

𝜕𝜃
)

𝑖

𝑛

+  
2−𝜏𝑛𝑐𝑖

𝑛

2+𝜏𝑛𝑐𝑖
𝑛 𝛿𝑣̇𝑖

𝑛−1 2⁄   

 𝛿𝑤̇𝑖
𝑛+1 2⁄ =

2𝜏𝑛

2+𝜏𝑛𝑐𝑖
𝑛 (𝑚𝑖𝑖

𝑛)−1 (
𝜕𝛿𝑄𝑋

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑄𝜃

𝜕𝜃
+

𝜕2𝛿𝑊

𝜕𝑋2
(𝑁𝑋 + 𝛿𝑁𝑋) +

𝜕2𝑊

𝜕𝑋2 𝛿𝑁𝑋 +

  
2

𝑅

𝜕2𝛿𝑊

𝜕𝑋 𝜕𝜃
(𝑁𝑋𝜃 + 𝛿𝑁𝑋𝜃) +

2

𝑅

𝜕2𝑊

𝜕𝑋 𝜕𝜃
𝛿𝑁𝑋𝜃 +

 
1

𝑅2

𝜕2𝛿𝑊

𝜕𝜃2
(𝑁𝜃 + 𝛿𝑁𝜃) +

1

𝑅2

𝜕2𝑊

𝜕𝜃2 𝛿𝑁𝜃 −

 
1

𝑅
𝛿𝑁𝜃)

𝑖

𝑛

+   
2−𝜏𝑛𝑐𝑖

𝑛

2+𝜏𝑛𝑐𝑖
𝑛 𝛿𝑤̇𝑖

𝑛−1 2⁄  

𝛿𝜑̇𝑋𝑖
𝑛+1 2⁄ =

2𝜏𝑛

2+𝜏𝑛𝑐𝑖
𝑛 (𝑚𝑖𝑖

𝑛)−1 (
𝜕𝛿𝑀𝑋

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑀𝑋𝜃

𝜕𝜃
−  𝛿𝑄𝑋)

𝑖

𝑛

+
2−𝜏𝑛𝑐𝑖

𝑛

2+𝜏𝑛𝑐𝑖
𝑛 𝛿𝜑̇𝑋𝑖

𝑛−1 2⁄   

𝛿𝜑̇𝜃𝑖
𝑛+1 2⁄ =

2𝜏𝑛

2+𝜏𝑛𝑐𝑖
𝑛 (𝑚𝑖𝑖

𝑛)−1 (
𝜕𝛿𝑀𝑋𝜃

𝜕𝑋
+

1

𝑅

𝜕𝛿𝑀𝜃

𝜕𝜃
−  𝛿𝑄𝜃)

𝑖

𝑛

+  
2−𝜏𝑛𝑐𝑖

𝑛

2+𝜏𝑛𝑐𝑖
𝑛 𝛿𝜑̇𝜃𝑖

𝑛−1 2⁄   

(34) 

By integrating the velocities at the end of each 
load step, the incremental displacements can be 
computed: 

𝛿𝑋𝑛+1 = 𝛿𝑋𝑛 + 𝜏𝑛+1𝛿𝑋̇𝑛+
1

2 (35) 

In order to compute the critical buckling load 
from the load-displacement curve, the total dis-
placements of each load must be obtained. For this 
goal, the computed incremental displacements in 
each load step should be added to the displace-
ments determined from the previous load steps as 
follows: 
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𝑋𝑛 = 𝑋𝑛−1 + 𝛿𝑋𝑛 (36) 

It is evident that critical buckling load is a 
specified load in which a large amount of dis-
placement occurs compared to the previous load 
steps.  

Because of the terms of governing equations in 
the displacement field are quite long, for example, 
Eqs. at (34) have been written based on the force 
equilibrium equation (Eqs. (21)). In this paper, 
however, the developed numerical code is based 
on displacement equations. Therefore, the dis-
placement equilibrium equations and Eqs. (34) to 
(36) with the related boundary conditions in their 
finite difference forms, constitute the set of equa-
tions for the sequential DR approach. For simplici-
ty purposes, the DR algorithm, which is explained 
in [15, 16], is omitted. In order to clarify the pre-
sent method for finding the buckling load of FG 
cylindrical shell with clamped boundary condi-
tion, the load-displacement curve is plotted and is 
shown at Fig 2. As can be seen, at a point in the 
graph when disproportionate increase in dis-
placement occurs, the buckling behavior takes 
place. 

6. Results and Discussion 

In this analysis, the metal and ceramic phases 
of the FG shell are considered to be made of alu-
minum and alumina, respectively, in which the 
elasticity modules, thermal conductivity and 
thermal expansion coefficients, respectively, are 

Em = 70 GPa, Km  =  204
W

mK
, ∝m =  23 ×

10−6  (
1

℃
) for the former and these values are E𝑐 =

380 GPa, Kc  =
10.4W

mK
, ∝c =  7.4 × 10−6  (

1

℃
) for the 

latter. Furthermore, the Poisson’s ratios of metal 
and ceramic are ϑ𝑚 = 0.3 and ϑc = 0.22, respec-
tively. Also, the shell thickness is considered as 
h = 0.001 m.  

At first, the results are carried out for the me-
chanical buckling behavior and then the thermal 
buckling analyses are presented. For both me-
chanical and thermal buckling analysis, the effects 
of grading indices, radius-to-thickness ratios, 
length-to-radius ratios and boundary conditions 
are studied on the buckling load in detail. Obvi-
ously, the FSDT cannot present correct responses 
for thick shell (i.e. R/h=5) but the main goal of 
considering larger radius-to-thickness ratios is 
studying this ratio on the buckling behavior quali-
tatively which as it was observed in other papers, 
the trends of results of FSDT are similar to HSDT 
ones for higher radius-to-thickness ratios. 

6.1 Mechanical Buckling Analysis 

For verification of the present approach and 
relations of the critical buckling load, the obtained 

results are compared with references related with 
the mechanical buckling analysis of a circular cy-
lindrical isotropic shell, and can be observed at 
Table 1. 

As seen, there is a very good agreement be-
tween the current solution and those obtained by 
Refs. [14] and [34] for mechanical buckling of iso-
tropic shell. In order to verify the current results 
for buckling analysis of FG shell, some comparison 
studies have been conducted between the present 
solution and the ones obtained by the Abaqus 
software [50] for different boundary conditions in 
Tables 2 and 3. As shown, the current results are 
verified for buckling analysis of FG shell. In order 
to model the shell structure, element S4R has been 
taken into the Abaqus software [50]. Also, accord-
ing to the axisymmetric assumption of the cylin-
drical shell, 10 elements are considered in the 
thickness direction and 50 elements are assumed 
in the longitudinal direction. Definitely, the mesh 
size is selected using mesh sensitivity diagram to 
achieve the optimal number of elements that re-
sult in the least error and time consumption.  

In Tables 4-6 the values of critical buckling 
load for different ratios of length-to-radius, radi-
us-to-thickness and grading indices are presented 
for different boundary conditions based on the 
simple power-law and Mori-Tanaka distributions. 
As it is expected, with increase of grading index 
and the tendency of material properties towards 
metal, the critical buckling load decreases based 
on both distribution models. In addition, for both 
of the distribution models the difference of critical 
buckling load among various grading indices is 
greater in clamped boundary condition rather 
than the simply supported one. This fact is seen in 
radius-to-thickness ratios of 5 to 30 and in many 
different ratios of length-to-radius. 

 

Fig. 2: Load-displacement curve for FG cylindrical Shell with 
clamped boundary condition. 
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While, for radius-to-thickness ratios above 30, 
not much of a difference is observed between the 
two boundary conditions. In this way, the greater 
length-to-radius ratios result in decreasing the 
effect of grading index on the critical buckling load 
variations for both of the boundary conditions. 

According to Tables 4-6, it can be concluded 
that at length-to-radius ratios of 0.5, 1 and 5 with 
material grading indices of 1 and 2, the critical 
buckling load in the Mori-Tanaka model is smaller 
than that of a simple-power law. Furthermore, 
considering the length-to-radius ratios of 0.5 and 
1 and material grading indices of 5 and 10, the 
critical buckling load in different boundary condi-

tions is greater for the case of the Mori-Tanaka 
model in comparison with that of a simple power-
law. Though, for the case in which the length-to-
radius ratio is 5 and with radius-to-thickness rati-
os ranging from 5 to 20 along with the same mate-
rial grading indices as the previous case, a lower 
critical buckling load in both boundary conditions 
exists in the Mori-Tanaka model rather than the 
simple power-law. This is, however, when the ra-
dius-to-thickness ratio is raised from 30 to 300 
then the critical buckling load in the Mori-Tanaka 
model is higher than the one in simple power-law. 

 
 

Table 1. Comparison of the critical buckling loads for simply supported (S) isotropic cylindrical shells under axial loads (MN) between 
the present solution and Refs. [42] and [14]. 

𝐿
𝑅⁄  

  0.5  1  5 

Material 𝑅
ℎ⁄  

Present 
study 

Ref. 
[34] 

Ref. 
[14] 

 
Present 

study 
Ref. 
[33] 

Ref. 
[14] 

 
Present 

study 
Ref. 
[34] 

Ref. 
[14] 

Aluminium 

5 0.300 0.292 0.294  0.280 0.250 0.271  0.240 0.239 0.247 
10 0.258 0.258 0.258  0.258 0.256 0.258  0.253 0.258 0.256 
20 0.300 0.286 0.293  0.271 0.270 0.270  0.261 0.251 0.261 
30 0.280 0.295 0.289  0.262 0.265 0.264  0.260 0.260 0.263 

100 0.265 0.270 0.266  0.265 0.270 0.266  0.265 0.266 0.265 
300 0.264 0.267 0.266  0.264 0.267 0.266  0.264 0.266 0.266 

Alumina 

5 1.590 1.583 1.598  1.473 1.460 1.472  1.333 1.295 1.341 
10 1.391 1.401 1.403  1.380 1.394 1.403  1.390 1.390 1.392 
20 1.600 1.546 1.594  1.472 1.470 1.468  1.411 1.391 1.417 
30 1.571 1.611 1.566  1.440 1.455 1.435  1.426 1.417 1.426 

100 1.428 1.470 1.443  1.428 1.470 1.443  1.428 1.445 1.439 
300 1.430 1.458 1.443  1.430 1.455 1.443  1.430 1.434 1.443 

Table 2. Comparison of the critical buckling load (MN) of the FG cylindrical shells based on the power law model with simply supported 
boundary conditions and length-to-radius ratio of L / R = 0.5 with those of results obtained from the Abaqus software [50]. 

Volume fraction power 

R/h 
10 5 2 1 

Abaqus 

[50] 

Present 

study 

Abaqus 

[50] 

Present 

study 

Abaqus 

[50] 

Present 

study 

Abaqus 

[50] 

Present 

study 

0.452 0.446 0534 0.526 0.669 0.664 0.854 0.866 5 

0.395 0.392 0.476 0.456 0.589 0.600 0.753 0.760 10 

0.442 0.434 0.513 0.521 0.701 0.700 0.868 0.909 20 

0.444 0.450 0.526 0.532 0.637 0.667 0.827 0.827 30 

0.408 0.400 0.470 0.473 0.626 0.601 0.785 0.787 100 

0.405 0.400 0.466 0.470 0.630 0.609 0.786 0.788 300 

Table 3. Comparison of the critical buckling load (MN) of the FG cylindrical shells based on the power law model with clamped boundary 
conditions and length-to-radius ratio of L / R = 0.5 with those of results obtained from the Abaqus software [50]. 

Volume fraction power 

R/h 
10 5 2 1 

Abaqus 

[50] 

Present 

study 

Abaqus 

[50] 

Present 

study 

Abaqus 

[50] 

Present 

study 

Abaqus 

[50] 

Present 

study 

0.694 0.622 0.860 0.857 1.165 1.173 1.687 1.570 5 

0.532 0.533 0.857 0.854 1.156 1.159 1.533 1.532 10 

0.673 0.673 0.784 0.783 0.970 0.964 1.319 1.317 20 

0.586 0.580 0.665 0.673 0.835 0.837 0.980 0.977 30 

0.411 0.415 0.472 0.476 0.612 0.615 0.789 0.790 100 

0.408 0.410 0.469 0.472 0.616 0.618 0.792 0.793 300 
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According to Tables 4-6, it can be concluded 
that at length-to-radius ratios of 0.5, 1 and 5 with 
material grading indices of 1 and 2, the critical 
buckling load in the Mori-Tanaka model is smaller 
than that of a simple-power law. Furthermore, 
considering the length-to-radius ratios of 0.5 and 
1 and material grading indices of 5 and 10, the 
critical buckling load in different boundary condi-
tions is greater for the case of the Mori-Tanaka 
model in comparison with that of a simple power-
law. Though, for the case in which the length-to-
radius ratio is 5 and with radius-to-thickness rati-
os ranging from 5 to 20 along with the same mate-
rial grading indices as the previous case, a lower 
critical buckling load in both boundary conditions 

exists in the Mori-Tanaka model rather than the 
simple power-law. This is, however, when the ra-
dius-to-thickness ratio is raised from 30 to 300 
then the critical buckling load in the Mori-Tanaka 
model is higher than the one in simple power-law. 
As indicated in Tables 4-6, it is also obvious that 
based on the power-law model, in simply sup-
ported boundary conditions and length-to-radius 
ratios of 0.5 and 1, for various ranges of grading 
indices with an increase in radius-to-thickness 
ratio from 5 to 10 the critical buckling load de-
creases whereas with a continuation of increasing 
in the radius-to-thickness ratio from 10 to 20 the 
critical buckling load grows opposite to the pre-
ceding case. 

Table 4. Critical buckling loads (MN) of the FG cylindrical shells for various material distributions, indices, boundary conditions, 𝐿 𝑅⁄ =

0.5. 

Boundary conditions 𝑅
ℎ⁄  

k=1  k=2  k=5  k=10 

P.L M.T  P.L M.T  P.L M.T  P.L M.T 

Simply supported 

 

5 0.866 0.727  0.664 0.627  0.526 0.523  0.446 0.500 

10 0.760 0.705  0.600 0.588  0.456 0.517  0.392 0.512 

20 0.909 0.773  0.700 0.669  0.521 0.571  0.434 0.548 

30 0.827 0.782  0.667 0.714  0.532 0.620  0.450 0.583 

100 0.787 0.697  0.601 0.610  0.473 0.550  0.400 0.540 

300 0.788 0.694  0.609 0.610  0.470 0.550  0.400 0.535 

Clamp supported 

5 1.570 1.334  1.173 1.092  0.857 0.815  0.622 0.734 

10 1.532 1.545  1.159 1.142  0.854 0.967  0.533 0.944 

20 1.317 1.043  0.964 0.923  0.783 0.821  0.673 0.800 

30 0.977 0.947  0.837 0.838  0.673 0.714  0.580 0.710 

100 0.790 0.730  0.615 0.640  0.476 0.587  0.415 0.570 

300 0.793 0.710  0.618 0.630  0.472 0.578  0.410 0.571 

Table 5. Critical buckling loads (MN) of the FG cylindrical shells for different material distributions, indices, boundary conditions, 𝐿 𝑅⁄ =

1. 

Boundary conditions 𝑅
ℎ⁄  

k=1  k=2  k=5  k=10 

P.L M.T  P.L M.T  P.L M.T  P.L M.T 

Simply supported 

 

5 0.825 0.649  0.640 0.587  0.500 0.485  0.400 0.476 

10 0.730 0.696  0.588 0.583  0.457 0.519  0.386 0.500 

20 0.780 0.696  0.610 0.595  0.479 0.532  0.421 0.522 

30 0.769 0.699  0.615 0.593  0.462 0.533  0.402 0.524 

100 0.787 0.697  0.601 0.600  0.473 0.540  0.400 0.526 

300 0.788 0.694  0.609 0.610  0.470 0.540  0.400 0.528 

Clamp supported 

5 0.950 0.842  0.865 0.714  0.570 0.592  0.493 0.551 

10 0.827 0.769  0.700 0.651  0.569 0.586  0.474 0.545 

20 0.783 0.692  0.625 0.600  0.508 0.538  0.432 0.524 

30 0.790 0.706  0.628 0.600  0.500 0.539  0.429 0.522 

100 0.793 0.708  0.612 0.609  0.476 0.540  0.415 0.528 

300 0.793 0.689  0.616 0.605  0.472 0.545  0.410 0.530 
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Table 6. Critical buckling loads (MN) of the FG cylindrical shells for different material distributions, indices, boundary conditions and 
𝐿

𝑅⁄ = 5. 

Boundary conditions 𝑅
ℎ⁄  

k=1  k=2  k=5  k=10 

P.L M.T  P.L M.T  P.L M.T  P.L M.T 

Simply supported 

 

5 0.733 0.476  0.571 0.416  0.431 0.370  0.376 0.357 

10 0.781 0.434  0.590 0.384  0.454 0.332  0.386 0.326 

20 0.777 0.545  0.611 0.461  0.455 0.414  0.390 0.400 

30 0.774 0.615  0.596 0.552  0.462 0.490  0.385 0.470 

100 0.787 0.666  0.601 0.570  0.473 0.507  0.400 0.490 

300 0.788 0.685  0.609 0.588  0.470 0.533  0.400 0.520 

Clamp supported 

5 0.750 0.489  0.612 0.424  0.469 0.380  0.382 0.367 

10 0.749 0.435  0.594 0.385  0.467 0.340  0.381 0.335 

20 0.842 0.556  0.639 0.474  0.480 0.416  0.400 0.400 

30 0.783 0.625  0.612 0.555  0.472 0.500  0.415 0.470 

100 0.789 0.666  0.615 0.571  0.476 0.505  0.415 0.490 

300 0.793 0.685  0.618 0.588  0.472 0.529  0.410 0.528 

However, for grading indices of k=1, 2 with in-
crease of radius-to-thickness ratio from 20 to 30 
the critical buckling load decreases again. While 
for k=5, 10, by increasing the ratio from 20 to 30 
the buckling load increases. Now, if we leave the 
length-to-radius ratio constant at 5 and increase 
the radius-to-thickness ratio from 5 to 20, the crit-
ical buckling load will encounter a growth. It is 
obvious that for the higher ratios of radius-to-
thickness there are not any significant differences 
between the results for various ranges of length-
to-radius ratios and grading indices.  

In another case, considering the clamped 
boundary condition and length-to-radius ratios of 
0.5 and 1, increase of radius-to-thickness ratio 
from 5 to 100 will yield a reduction in critical 
buckling load. Moreover, at length-to-radius ratio 
of 5, the increase in radius-to-thickness ratio from 
5 to 10 will create a reduction of critical buckling 
load, however, the greater increase of the same 
ratio from 10 to 20 will cause a consequent 
growth in critical buckling load. Clearly, in higher 
values of radius-to-thickness ratios the obtained 
results do not change considerably for different 
ratios of length-to-radius. 

As seen in Tables 4-6, the effects of major pa-
rameters on the critical buckling load based on the 
Mori-Tanaka distribution, indicate the different 
behaviors compared to the ones given by the 
power-law model for some cases. As observed in 
Table 4, according to the Mori-Tanaka model, in 
the simply supported case at length-to-radius ra-
tio of 0.5, the critical buckling load decreases 
when an increase in the radius-to-thickness ratio 
is applied from 5 to 10 while it increases when the 
mentioned ratio ranges from 10 to 30. However, 
with increase of this ratio from 30 to 100 the ob-
tained results are decreased again. Besides, con-

sidering the implementation of the clamed bound-
ary condition, an increase of critical buckling load 
is seen by manipulating the radius-to-thickness 
ratio from 5 to 10, in contrast to the range of 10 to 
30 which results in a decrease of the critical buck-
ling load. A higher increase of the aforementioned 
ratio from 100 to 300 makes not much of a varia-
tion in critical buckling load for both of distribu-
tion models and boundary conditions. Also, the 
presented data from Table 5 based on the Mori-
Tanaka model indicate that at a length-to-radius 
ratio of 1, the critical buckling load grows as a 
consequence of enlarging the radius-to-thickness 
ratio from 5 to 20 under a simply supported 
boundary condition while it goes down in the case 
of clamped boundary condition. Regarding the 
previous case, by adding up the radius-to-
thickness ratio from 20 to 300, not an observable 
change will appear in critical buckling load based 
on both rules of mixture. In Table 6, at length-to-
radius ratio of 5, increasing the radius-to-
thickness ratio from 5 to 10 causes the critical 
buckling load to decrease under any boundary 
conditions, however, adding the mentioned ratio 
up to 30 makes it go up as well. It needs to be 
pointed out that similar to the previous cases, 
based on both distribution models, increase of the 
radius-to-thickness ratio from 100 to 300 does not 
create a great impact on critical buckling load no 
matter what type of boundary condition is imple-
mented.  

Based on the presented results of the Tables 4-
6, it can be concluded that in different boundary 
conditions and concerning various grading indi-
ces, raising length-to-radius ratio decreases the 
critical buckling load, as long as radius-to-
thickness ratio ranges from 5 to 30 while for the 
ratios beyond 30, an increase in the length-to-
radius ratio has a small effect on critical buckling 
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load. Moreover, considering the trend of varia-
tions within the critical buckling load as presented 
in Tables 4-6, it is inferred that as a result of in-
creasing length-to-radius ratio values of critical 
buckling load under both simply supported and 
clamped boundary conditions they are likely to 
converge into a common value so whereas at 
length-to-radius ratio of 5 or in other words for 
long shells the values of critical buckling load does 
not differ greatly in both clamped and simply sup-
ported boundary conditions. It must be noted that 
the mentioned behaviors are more considerable 
for higher values of grading indices of the FG shell 
rather than the lower ones. It is concluded from 
the tables that non-dimensional buckling loads 
predicted by a power-law model are larger than 
that of the Mori–Tanaka homogenization scheme 
except for some cases of aspect ratios. This can be 
concluded from the stiffness of the FG shell de-
termined based on the different material distribu-
tion models and also the temperature distribution 
which is affected by the geometry of the shell. 

6.2 Thermal Buckling Analysis 

The thermal loading is applied in a manner 
that the temperature of metal surface is assumed 
to be constant at Tm =20 C while the temperature 
of ceramic surface increases incrementally, so that 
the nonlinear temperature variation is assumed 
along the thickness direction. The main objective, 
here, is to determine the critical temperature dif-
ference ∆Tcr=(Tc-Tm) which causes the buckling. In 
order to verify the current solution for the ther-
mal buckling behavior, a comparison study has 
also been carried out which is shown in Tables 7 

and 8 between the DR results and the ones re-
ported by Shahsiah and Eslami [8] for simply sup-
ported FG cylindrical shell under linear distribu-
tion of thermal gradient. According to [8], in this 
case the Poisson’s ratio is considered to be con-
stant at ϑ=0.3 and the shell thickness is h=0.01m. 
Relying on the precision of the results from Tables 
7 and 8 and the accuracy within solutions for FG 
cylindrical shells, in the following there will be a 
presentation of the results in correspondence 
with FG cylindrical shells imposed to non-linear 
thermal distribution, unless stated otherwise, 
with different boundary conditions along with 
various geometrical parameters and grading indi-
ces. 

In Fig. 3, a diagram has been drawn which rep-
resents the variation of the material grading index 
on the critical temperature difference at radius-to-
thickness ratio of 10 and length-to-radius ratio of 
0.5 with implementation of different boundary 
conditions. It is observed that as the material 
grading index goes up, the critical temperature 
difference decreases. Additionally, the most signif-
icant variation occurs when the material grading 
index is zero. As seen, the critical temperature 
differences of FG cylindrical shells (R/ℎ=10, 
L/R=0.5) with a material grading index of k=0.5 
and k=1.0 are different for simply supported and 
clamped boundary conditions which can be origi-
nated from rigidity of boundary conditions. In fact, 
increasing the rigidity of boundary conditions may 
cause the more significant trend of reduction in 
clamped boundary condition with respect to the 
simply supported one. 

 

Table 7. Comparison the critical temperature difference (℃) of the simply supported FG cylindrical shell (k=1, R=0.5m) based on linear 
temperature distribution obtained by the DR method to the results reported by Ref. [8]. 

L/R 

h/R 0.5 0.3 0.15 

Present study Ref. [8] Present study Ref. [8] Present study Ref. [8] 

40 40 80 100 140 140 4.60E-03 

60 80 120 120 210 200 6.40E-03 

80 80 180 180 320 320 8.22E-03 

100 100 240 240 420 400 1.00E-02 

Table 8. Comparison the critical temperature difference (℃) of the simply supported FG cylindrical shell (k=1,𝐿 𝑅⁄ =0.5) based on linear 

temperature distribution obtained by the DR method to the results reported by Ref. [8]. 

h(m) 

R(m) 0.01 0.007 0.005 

Present study Ref. [8] Present study Ref. [8] Present study Ref. [8] 

1000 1000 300 300 80 100 0.625 

520 500 170 180 55 60 0.90 

330 340 120 120 80 60 1.18 

230 260 90 100 60 60 1.45 

180 220 70 80 60 60 1.73 

160 160 60 60 60 60 2.00 
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Fig. 3. Critical temperature difference versus k for FG cylindri-

cal shell (R⁄h=10, L⁄R=0.5) with different boundary condi-

tions based on linear and nonlinear thermal distributions. 

Figure 4 depicts the critical temperature dif-
ference for different radius-to-thickness ratios 
with regards to a material grading index of K=0.5 
and length-to-radius ratio of L⁄R=0.5 for both 
clamped and simply supported boundary condi-
tions. As noticed, due to an increase of radius-to-
thickness ratio the critical temperature difference 
decreases for both boundary conditions. 

In order to consider the effect of boundary 
conditions on the critical temperature difference, 
Fig. 5 is presented for different radius-to-
thickness ratios of simply supported and clamped 
FG cylindrical shells with a material grading index 
of k=0.5 and length-to-radius ratio of L⁄R=1 based 
on nonlinear thermal distributions. It is discerned 
that the critical temperature difference in a 
clamped boundary condition is more noticeable 
than that of a simply supported one. Also, at high 
radius-to-thickness ratios, no major difference is 
identified between clamped and simply supported 
boundary conditions. 

The difference between the distribution mod-
els of the simple power-law and the Mori-Tanaka 
equation for predicting the critical temperature 
difference of simply supported and clamped FG 
cylindrical shell is illustrated in Fig. 6 for different 
ratios of the material grading index with respect 
to radius-to-thickness ratio of R⁄h=5 and length-
to-radius ratio of L⁄R=1. It is identifiable that the 
critical temperature variation is greater when the 
FG material is modeled by the Mori- Tanaka theo-
ry compared to the case of a simple power-law.  

In Table 9 the critical temperature difference is 
shown for different values of grading indices and 
ratios of length-to-radius and radius-to-thickness. 
As indicated, with increase of the length-to-radius 
ratio the critical temperature difference decreas-
es. However, in higher values of radius-to-
thickness ratios (R⁄h=100) the increase of length-
to-radius ratio does not have any significant ef-
fects on the results. 

 
Fig. 4. Critical temperature difference versus 𝑅 ℎ⁄  for FG cylin-
drical shell (𝑘 = 0.5, 𝐿 𝑅⁄ = 0.5) with different boundary con-
ditions based on linear and nonlinear thermal distributions. 

 
Fig. 5. Critical temperature difference versus 𝑅 ℎ⁄  for the FG 
cylindrical shell (𝑘 = 0.5, 𝐿 𝑅⁄ = 1) with different boundary 

conditions based on nonlinear thermal distributions. 

7. Conclusions 

In the present paper, the mechanical and 
thermal buckling analysis of FG cylindrical shells 
have been considered for clamped and simply 
supported boundary conditions based on FSDT 
and large deflection von Kármán equations. The 
mechanical and thermal properties of the constit-
uent components of the FG shells have been as-
sumed to vary continuously along the thickness 
direction according to the simple power-law and 
the Mori–Tanaka distributions. To predict precise-
ly the elastic properties of FG shell, the variable 
Poisson’s ratio is considered along the thickness 
direction. Also, for thermal buckling analysis the 
nonlinear temperature distribution is assumed. 
The critical buckling load is predicted based on 
mechanical/thermal load–displacement curve 
obtained by solving the incremental form of non-
linear equilibrium equations. The DR method in 
conjunction with the central finite difference dis-
cretization technique is used to solve the incre-
mental formulations. Finally, after verification of 
the present solutions, a detailed parametric study 
is carried out to investigate the effects of bounda-
ry conditions, rules of mixture, grading indices, 
radius -to- thickness and length-to-radius ratios 
on the mechanical and thermal buckling loads.
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Fig. 6. Critical temperature difference of the (a) simply supported and (b) clamped FG cylindrical shell (𝑅 ℎ⁄ = 5, 𝐿 𝑅⁄ = 1) vs 𝑘 for dif-
ferent material model based on nonlinear thermal distribution 

Table 9. Critical temperature difference (℃) of the FG cylindrical shells for different grading indices, boundary conditions and geome-
tries based on simple power-law method and nonlinear temperature distribution. 

 k=0  k=1  k=5 

Boundary conditions 𝑅
ℎ⁄  𝐿

𝑅⁄ = 0.5 𝐿
𝑅⁄ = 1  𝐿

𝑅⁄ = 0.5 𝐿
𝑅⁄ = 1  𝐿

𝑅⁄ = 0.5 𝐿
𝑅⁄ = 1 

Clamp supported 

 

5 600 600  480 400  360 300 

10 580 480  380 300  300 240 

20 580 400  220 140  180 120 

30 440 380  160 120  140 80 

100 180 180  80 80  60 60 

Simply supported 

5 520 440  440 320  340 260 

10 400 360  300 220  240 180 

20 400 260  160 140  140 120 

30 340 280  140 120  100 80 

100 140 140  60 60  60 60 
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