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This paper presents a finite element method (FEM) for linear and geometrically nonlinear 

behaviours of cross ply square laminated composite plates (LCPs) subjected to a uniform 

distributed load (UDL) with simply supported boundary conditions (SS-BCs). The original 

MATLAB codes were written to achieve a finite element (FE) solution for bending of the plate. 

In geometrically nonlinear analysis, changes in geometry take place when large deflection 

exists to consequently provide nonlinear changes in the material stiffness and affect the con-

stitutive and equilibrium equations. The Von Karman form nonlinear strain displacement 

relations and a new inverse trigonometric shear deformation hypothesis were used for deriv-

ing the FE model. Here, in-plane displacements made  use of an inverse trigonometric shape 

function to account for the effect of transverse shear deformation. This hypothesis fulfilled the 

traction free BCs and disrupted the necessity of the shear correction factor (SCF). Overall the 

plate was discretized using the eight-node isoparametric serendipity element. The equilibri-

ums governing equations associated boundary conditions were obtained by using the princi-

ple of virtual work (PVW). The numerical results were obtained for central deflections, in-

plane stresses and transverse shear stresses for different stacking sequences of cross ply 

laminates. The results were also computed by the FE software ANSYS for limited cases. The 

results obtained showed an acceptable agreement with the results previously published. The 

findings suggested the future use of a new FE model for linear and nonlinear laminated com-

posite plate deformation. 

 

 

 

1. Introduction 

In all laminated composite plate (LCP) struc-
tures, a certain amount of nonlinear behaviour is 
shown. Once exposed to large displacements and 
rotations, the plate structure shows geometric 
nonlinearity. In such cases, linear FE models do 
not sufficiently estimate the response of struc-
tures . Therefore, the expansion of effective and 
precise nonlinear FE models becomes vital. How-
ever,  many researchers have concentrated pri-
marily on linear analysis of composite plates. This 
study discusses the development of FE models for 
linear and geometrically nonlinear bending of 
laminated composite sheets using a new kinemat-

ic function for the higher-order shear deformation 
theory (HSDT).  

In the past few decades, several hypotheses 
have been proposed by well-known researchers. 
The novel theory of plate by Kirchhoff [1] is rec-
ognized as the classical theory of plate (CPT). 
However, this theory is found to be insufficient in 
providing realistic responses to deflections since, 
it does not take into account the effect of trans-
verse shear deformation. In further developments 
in plate theories, Mindlin [2] developed the first 
order shear deformation theory (FSDT), wherein 
the SCF is multiplied to shear modulus to improve 
the variation of shear strains and stresses through 
the plate thickness. In addition, the determination 
of SCF is tedious as it depends on loading condi-
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tions, BCs, geometrical and material parameters. 
Correspondingly, FSDT does not fulfil traction free 
BCs at the top and bottom faces of the plate. Fur-
thermore, various higher order shear deformation 
theories (HSDTs) have been proposed to over-
come the limitations of CLPT and FSDT and one of 
the innovative HSDT was developed by Reddy[3] 
and three-dimensional (3D) elasticity theory for 
bidirectional bending of laminated composite and 
sandwich by Pagano [4] and Zenkour [5]. It is un-
derstood that 3D elasticity solutions were compu-
tationally tough for geometrically nonlinear anal-
ysis and led to the development of approximate 
theories for the analysis of plate structures. The 
analytical solution of governing equations in the 
case of geometrically nonlinear analysis of plates 
becomes difficult after the inclusion of nonlinear 
sense of Von Karman. Moreover, very few such 
analyses are available with SS-BCs. FEM by Panda 
and Natarajan[6] was used for analysis of lami-
nated composite plates in which stress-resultants 
were computed instead of shear stresses. The two 
new displacement-based quadrilateral plate ele-
ments were suggested by Sung and Kim [7] in FEM 
studies. The Gauss quadrature scheme of integra-
tion was used for calculations of the stiffness ma-
trix. Ren and Hinton [8] extended the Reddy’s 
HSDT, developed two finite elements (FE), and 
analyzed laminated composite plates for bending 
studies. Pandya and Kant [9] presented isopara-
metric finite elements (FEs) for estimation of in-
ter-laminae stress through the plate thickness 
using  C0 continuity in the displacements. Savithri 
and Varadan [10] presented a Galerkin method for 
the solution of displacement based on the higher 
order theory for the geometric nonlinear analysis 
of laminated plates. The  HT-FE model is suggest-
ed by Qin [11] and studied nonlinear analysis for 
simplification of coupling detachments between 
in-plane and out-of-plane displacements. The PVD 
based least square technique and Galerkin ap-
proach are offered by Reddy [12] for analysis by 
considering deformations and stress resultants as 
unknown field variables.  

Additionally, Reddy [13] presented the effect 
of E1/E2 and a/b (aspect ratio) on the central de-
flection, in plane and transverse stresses through 
the thickness of the plate. These remarks [12-13] 
were used in the present study in the selection of 
material properties. Goswami and Becker [14] 
proposed a new non-polynomial HSDT by intro-
ducing a new inverse parable and secant kinemat-
ic function and achieved remarkable results. Say-
yad and Ghugal  [15] proposed bidirectional-
bending analysis of plates analytically by Navier’s 
technique using the trigonometric shear and nor-
mal deformation theories. Sayyad and Ghugal [16-
18] presented an equivalent single layer trigono-
metric shear deformation theory for static flexure 
laminated composite plates. In this study, trans-

verse shear deformation and transverse normal 
strain effects were considered. 

In addition, Fereidoon et al. [19-20] used the 
power law function [20] to variable modulus of 
elasticity for analysis of the annular sector where-
in extension was made to the Kantorovich method 
(EKM) and Kirchhoff theory. The methods of poly-
nomial and harmonic differential quadrature (P & 
HDQ) were used for bending study of functionally 
graded plates by the varying modulus of elasticity 
[20]. Ghalebahman [21] carried out research on 
interlaminar stresses to cross ply laminated com-
posite plates subjected to uniform axial strain by 
extracting layerwise displacement field by succes-
sive iteration. Mantari et al. [22-23] developed a 
new shear deformation theory [22] and new trig-
onometric shear deformation theory [23] for the 
sandwich and composite plates  by suggesting the 
displacement field depending on the parameter 
"m". In addition to this Arya et al. [24] presented a 
zigzag model which used a sine term to represent 
the nonlinear displacement field. A cosine term 
was used to represent transverse shear stress and 
strain. Sayyad and Ghugal [25] presented numer-
ous methods for the analysis of laminated compo-
site and sandwich plates  that could benefit re-
searchers in their work. Kant and Komminen [26] 
presented a theory that accounted for parabolic 
distribution of the transverse shear strains 
through the thickness of the laminate and higher-
order terms in Green’s strain vector in the sense 
of von Karman. A simple C0  FE formulation was 
presented with a total Lagrangian approach and a 
9-nodes Lagrangian quadrilateral element was 
chosen with 9 DoFs/node. For the study of buck-
ling and free vibration of isotropic and FG sand-
wich beams, Rakočević & Popović [27] analyzed 
the SS rectangular LCP using a novel computa-
tional process based on the layerwise theory of 
Reddy and compared it to the results obtained 
through the application of three different finite 
element models of the ANSYS software. Mallek et 
al. [28-30] used an efficient nonlinear shell ele-
ment to analyze multi-layered shells in modified 
FSDT without SCF [28]. An embedded piezoelec-
tric layer using 3D-shell model based on a discrete 
double directors shell element was used to lay up 
shell structures [29]. An original attempt was 
made to conduct a geometric nonlinear analysis of 
functionally graded carbon nanotube reinforced 
composite (FG-CNTRC) structures, with surface-
bonded active layers, based on the Kirchhoff shell 
theory[30]. Mellouli et al. [31-32] proposed a ge-
ometrically nonlinear meshfree analysis of 3D 
shell structures using the double director shell 
theory with finite rotations. The radial point in-
terpolation method (RPIM) was employed for the 
construction of shape functions. The discrete sys-
tem of equations was obtained by incorporating 
the interpolations into the weak form. Nguyen et 
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al. [33-36]  developed a novel generalized quasi-
3D and refined plate theory (RPT) in different 
studies based on the new transverse shear func-
tion to involve the normal deformation in the dis-
placement field and mathematically represented 
all existing transverse shear functions of HSDT 
models by a unique polynomial formulation. The 
weak form was constructed by using the principle 
of virtual displacements and the variational ap-
proach was proposed to derive the strong forms. 
The numerical results were obtained by using the 
modern isogeometric analysis. Nguyen et al. [37] 
proposed a new kinematic function in developing 
refined hypothesis. This kinematic function satis-
fies zero transverse stress conditions at the top 
and bottom face of the plate. In the work reported 
in the present paper, the new HSDT model using 
the kinematic function of Nguyen et al. [37] and 
the C0 continuous element developed in the refer-
ence [26] have been employed for analysis of LCPs. 

The key novelty of the present study is to in-
vestigate the new non-polynomial type shear de-
formation theory in comparison with existing 
shear deformation theories. The theory involves 
inverse trigonometric function in the different in-
plane directions. The theory considers the effect of 
trans-verse shear deformation with five un-
knowns. The  linear and Von Karman’s non-
linearity based models inculcate the finite element 
method approach for analysis . The FE formula-
tions allow the symbolic form to be coded in 
MATLAB [37]. The numerical results are present-
ed for uniformly distributed load. Non-linear stat-
ic deflection under uniformly distributed load is 
limited in the literature(UDL). 

The numerical results are computed for differ-
ent stacking sequences of laminates and com-
pared with similar studies. Few cases are also 
solved by the FE software ANSYS for central dis-
placement and stresses in LCPs. 

2. The Mathematical Formulation 

The LCP illustrated in Fig.1 consists of N num-
ber of layers with dimensions (a × b × h) in the 
Cartesian coordinate system x-y-z. The boundaries 
of the complete plate coincide with the lines x=0-a 
and y=0-b. All the layers of elastic material are 
perfectly united on surface area. The plate is sub-
jected to transverse load q (x, y) on the top surface 
of the plate (z = h/2) in the form of UDL.  

2.1. The displacement fields 

According to current HSDT, the axial displace-
ments are u and v along the x and y directions, 
respectively, and the transverse displacement, w 
along the z-direction at any point in the plate writ-
ten in the functional form are shown in Eq. 1. [7]: 

 

 
Fig. 1. Schematic diagram of  LCP 
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where the ( )f z is a shape function which deter-

mines the variation of transverse shear stress 
through the thickness of the plate and u0, v0 and 
w0 are the mid-surface in-plane displacements 
along x, y, and z axes, correspondingly while 

&     being the rotations of the transverse 

normal about y and x axes correspondingly. The 
form of the displacement field in Eq.1 allows re-
duction of the 3-D problem to a mid-plane 2-D 
problem. Once u0, v0, w0,  &   are identified, the 

displacements ,  & u v wof random points (x, y & z) 

in the continuum can be determined using Eq.1. 
The von Karman strains associated with the dis-
placement field in static loading are computed 
using the Green-Lagrange strain-displacement 
relations, in the view of the small strain but mod-
erate rotations assumption. 
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 (2) 

 
The state of strains at any point in the plate is 

defined by the in-plane strains and transverse 
shear strains as shown in Eq.2. [7]. Here the suffix 
‘L’ and ‘NL’ stand for the linear and nonlinear part, 

respectively. The strains ( , )T

x y  = and
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( , )T

xz yz  = are the normal strains vector and 

transverse shear strain vector correspondingly, 

while xy is an in-plane strain. 

2.2. The Kinematic Function 

The kinematic functions mentioned in CLPT, 
FSDT, and Reddy’s HSDT and a new  one [27] for 
present inverse trigonometric shear deformation 
theory (ITSDT) is shown in Eq.3. The present kin-
ematic function satisfies the requirement of shear 
stresses to be zero on the top and bottom surfaces. 
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2.3. The Constitutive Relations 

The relationship needed between the stresses 
and strains [40] in the directions of the ortho-
tropic axes, in the typical lamina of the laminate is 
shown in Eq.4.  
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where Qij contains the material stiffness coeffi-
cient [17] shown in Eq.5  
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In this 1 2&E E  are the Young’s moduli in the 

fiber orientation (direction-1) and in-plane nor-
mal (direction-2) directions respectively. And 

12 13 23,   G G and G  are the shear moduli in the

(1-2), (1-3) and (2-3)planes respectively, with Pois-

son’s ratios  . There are four independent mate-

rial properties: 1 2 12 23, ,   E E and   and their recip-

rocal relations are specified by 1 2 12 21/ /E E  = . 

The stress-strain relations are accordingly deci-
sive and are the foundation for the stiffness and 
stress analysis of an individual lamina subjected 
to UDL in its own surface.  

3. Equilibrium Equations  

The summation of the total internal work (
intW ) 

and total external work (
extW ) in accordance with 

the principle of virtual work (PVW) is written as 
shown in Eq.6. In further interpretation 

int ext
W W =  is shown in Eq.6. 

intδ δ= extW W   [3]         

T T
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(6) 

where, v is the undefined volume while  and   

are the stress vector and virtual strain vector due 

to virtual displacement ( u ) respectively. And q 

is the transverse load on the top of the plate.  

3.1. Stress resultants 

The stress resultants computed by integrating 
stresses through the thickness direction of the 
plate [8] are shown in Eq. 7. 
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Solving Eq.7, force-strain relation and mo-
ment-curvature relationships [8] are obtained, 
shown in Eq.8. 
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where:  
N =In-plane force resultants: (Nx, Ny and Nxy), 
M=Bending moments (Mx, My and Mxy), 
A=Extensional stiffness matrix, relates in-plane 
forces of the in-plane strains, B=Coupling stiffness 
matrix, which couples the forces and moments to 
the mid-plane strain-curvature, D=Bending mo-
ment stiffness matrix., (Relates bending moments 

to the plate curvature), 0  =Membrane strains. Eq. 

9., k = Curvature strains. Eq. 9. 
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where i, j=1, 2, 6  
The total virtual work equation [3] is then 

written in Eq.10. 
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where, Px and Py are the stated global edge 
tractions in the x and y directions and q is the 
transverse UDL. 

3.2. The finite element models 

FEM is a powerful numerical technique for the 
solution of differential and integral equations in 
the geometrically complex behaviour of composite 
structures. Firstly the LCP domain is discretised in 
sub-domain using eight nodes serendipity ele-
ments shown in Fig.2. Further the FE model of 
plate is developed using PV displacements for cal-
culation of deformations.  

The C0 continuity is used in the present theory 
for its FE approximation. Adopting shape func-
tions (Ni), the displacement vector d within the 
finite element given as a function of eight discrete 
points is given as: 
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The shape functions (Ni) and their derivatives, 
which are needed for the computations of strains. 
The shape functions N1 to N8 are computed based 

on local coordinates  and   at specific node and 

are shown in Eq.12 [42-43]. 

 
Fig.2. Eight nodes serendipity element 
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The nodal displacements within the element 
in-summation notations are given by Eq.13. 
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Incorporating Eq. 13 in Eq. 10, PVW equation 

( )d is acquired in terms of shape functions and 

global displacement. [43] 
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B0=In-plane components, Bb=Bending components 
BS= Transverse shear components, Ws = Trans-
verse load components, We=In-plane edge load 
components. 

The Newton-Raphson method (NRM) is adopt-
ed to solve the assembled nonlinear equilibrium 
equations (Eq.14). The solution is initialized using 
residual equation, Eq. 15, by initial guess value

( )id , while TK  being tangent stiffness matrix:  

 

 
1

( )
( )

( ) ( ) ( )

i
T

i i T i

d
K

d

d d K del d
+


= 


= + 



 

 (15) 

The convergence of the solution is achieved for 
assuming three decimal accuracy [41-42]. 
 

1( ) ( ) ( )

( )
( )

i i i

T

T

e e

d d del d

Accuracy
R R

+ = +

 

    

   (16) 

 
Gaussian Quadrature numerical integration re-

spective three-point (3P) method and two-point 
(2P) method are used for bending and shear term 
solution of general form are shown in Eq.17 [41]. 
 

1

11

( ) , ( , )
N

k

I f z dz wN kf XN k

+

=−

= =  

 

(17) 

while the 2P and 3P wightages are, 2P: N=2, (xN, 
k): ±0.05773 & (wN, k):1, 1. 3P: N=3, (xN, k): 
±0.7754, 0 & (wN, k):0.555, 0.8888. 

4. Numerical Results and Discussions 

In the present investigation, central displace-
ments and stresses are presented for symmetric 
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and anti-symmetric cross-ply laminates shown in 
Fig. 3. They consist of graphite-epoxy lamina sub-
jected to the UDL using the present hypothesis-
based FE model derived in the preceding sections. 
The formulation and accuracy of the present FEM-
MATLAB code is verified with the closed-form 
solution of Zenkour [5] and other diverse theories 
in the literature.  

Following material properties [3] of Graphite-
epoxy layers are considered for the analysis. 
𝐸1 = 172.9 𝐺𝑃𝑎 ,               𝐸2 = 6.916 GPa       
𝐺12 = 0.5 × (𝐸2) 𝐺𝑃𝑎,       𝐺13 = 0.5 × (𝐸2) 𝐺𝑃𝑎       
𝐺23 = 0.2 × (𝐸2) 𝐺𝑃𝑎,       µ12 = 0.25   & µ21 =

0.01   
Similarly, geometrical information on the 

overall plate is taken as:  a=b=1, S=4 to 100. The 
symbols have their usual meaning. 

Firstly, linear bending analysis of plate was 
performed, followed by geometrically nonlinear 
bending analysis. 

Loading: The given transversely load (UDL) as 
shown in Fig.4 is expanded in a double Fourier 
series shown in Eq.18 [25]. 

 

0

2

16
sin( )sin( )

m n

q m n
q

a amn

 



 

=  (18) 

where qo denotes the load intensity at the center 
of the plate and for UDL, m, n = 1, 3, 5….  

4.1. Linear bending behavior  

In a linear bending analysis relation between 
applied forces and displacements is linear while 
the stiffness matrix of LCP structure is constant. 
The non-dimensional transverse displacement 
and stresses quantities [26] shown in Eq.19 are 
used for presenting the results in graphical and 
tabular form: 

[𝑤̄] =
1

𝑞0
[ 
102𝑤 h 𝐸2

𝑆3
] ,

[𝜎̄𝑥,  𝜎̄𝑦,   𝜏̄𝑥𝑦] = [  
𝜎𝑥
𝑞0
(
1

𝑆
)
2

,  
𝜎𝑦

𝑞0
(
ℎ

𝑆
)
2

,  
𝜏𝑥𝑦

𝑞0
(
1

𝑆
)
2

]    

and 𝑞0 = 1

[ 𝜏̄𝑥𝑧 ,  𝜏̄𝑦𝑧] = [  
𝜏𝑥𝑧

𝑞0
(
1

𝑆
) , 
𝜏𝑦𝑧

𝑞0
(
1

𝑆
)]

}
 
 
 

 
 
 

 
(19

) 

 

 
Fig.3. Configuration of plate laminates 

Table 1. Boundary Conditions (SS-BCs) [18] 

At y, x=0, a At x, y=0, b 

𝑢0 = 𝑤0 = 𝜓 = 0  

𝑀𝑥 = 0 
𝜕𝑤0
𝜕𝑥

= 0 

𝑢0 = 𝑤0 = 𝜙 = 0  

𝑀𝑦 = 0 

𝜕𝑤0
𝜕𝑦

= 0 

 
Fig. 4. Square LCP subjected to UDL 

An assessment of non-dimensional transverse 
displacement and stresses are displayed in Table 
2 for (0°/90°) antisymmetric LCP of equal-
thickness lamina subjected to UDL.  The present 
results are compared with those stated by Sayyad 
and Ghugal [15], Reddy [3], Mindlin [2], Kirchhoff 
[1] and 3D elasticity solution of Zenkour [5]. The 
investigation of Table 2 reveals that the present 
results are in exceptional agreement with a 3D 
elasticity solution [19]. It is also to be  noted that 
the present results are improved even more than 
the renowned theory by Reddy [3], FSDT by 
Mindlin [2] and CLPT by Kirchhoff [1].       The 
CLPT of Kirchhoff[1]  predicts the results as trans-
verse shear deformation is ignored. Similarly, Ta-
ble 3 shows a comparison of non-dimensional cen-
tral displacements and various stresses for 
(0°/90°/0°) symmetric LCP of equal-thickness 
lamina subjected to UDL. It is observed from Table 
3 that the present kinematic function computes 
outstanding results compared to those presented 
by Zenkour [5] for symmetric lamination. 

The results of non-dimensional central dis-
placements and stresses are presented in Table 4 
for (0°/90°/0°/90°) antisymmetric laminated 
composite plates of the equal - thickness lamina 
with S=4, 10, 20, 50 & 100. The comparison of the 
results with previous studies [1-3, 15] and partic-
ular  one [5] as shown in Table 2-4, shows the 
quality of the present results . From the conver-
gence analysis, it is clear that the outcome differs 
from other outcomes[1-3, 15] but up to 4 percent 
proximity to the Eaxct [5]. The results reported 
here are also in excellent agreement with the 3D 
elasticity solution presented by Zenkour [5]. It is 
also observed that the present kinematic trigono-
metric function shows improvement over other 
functions shown in Eq.3 and those expressed by 
Sayyad and Ghugal [15]. 
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Table 2. Non-dimensional displacements and stresses for (0°/90°) antisymmetric LCP 

S 
Hypothesis 
 (0)

w

 

%  
Error ( / 2)

x

h



−
 

% 
 Error ( / 2)

y

h



−  

%  
Error ( / 2)

xy

h



−  
(0)

xz

 

%  
Error (0)

yz

 

% 
 Error 

4 

Present 3.108 -1.583 1.298 8.662 0.177 11.77 0.117 0.244 -0.609 0.238 -14.48 

Sayyad and  
 Ghugal [15] 

2.998 
-5.057 

1.260 
6.444 

0.139 -12.32 0.110 0.239 -2.845 0.239 -14.33 

Reddy[3] 3.070 -2.767 1.269 7.187 0.131 -17.35 0.1070 0.241 -2.032 0.241 -13.62 

Mindlin[2] 3.008 -4.743 1.063 -10.16 0.125 -20.88 0.099 0.191 -22.35 0.191 -31.54 

Kirchhoff[1] 1.695 -46.31 1.076 -9.096 0.126 -20.18 0.0934 – – – – 
Zenkour[5] 3.158 – 1.184 – 0.159 – – 0.246 – 0.279 – 

10 

Present 1.967 1.811 1.142 5.193 0.131 0.816 0.1029 0.269 9.634 0.259 4.596 
Sayyad and   
Ghugal [15] 

1.907 -1.294 1.105 1.813 0.130 0.538 0.0978 0.266 8.130 0.266 7.258 

Reddy[3] 1.917 -0.760 1.104 1.740 0.127 -2.00 0.0977 0.264 7.317 0.264 6.451 

Mindlin[2] 1.905 -1.397 1.053 -3.011 0.126 -2.692 0.0961 0.194 -21.13 0.194 -21.77 
Kirchhoff[1] 1.695 -12.24 1.076 -0.893 0.126 -2.384 0.0934 – – – – 
Zenkour[5] 1.932 – 1.086 – 0.130 – – 0.246 – 0.248 – 

 
Table 3. Non-dimensional displacements and stresses for (0°/90°/00) symmetric LCP 

S Hypothesis 
(0)

w

 

% 
Error ( / 2)

x

h



−
 

% 
Error ( / 2)

y

h



−
 

% 
Error ( / 2)

xy

h



−
 

(0)

xz

 

% 
Error (0)

yz

 

% 
Error 

4 

Present 2.914 -4.257 1.050 -6.4475 0.118 -1.615 0.109 0.355 -19.69 0.443 -8.814 
Sayyad and  
 Ghugal[15] 

2.893 -4.941 1.034 -7.8902 0.113 -8.077 0.109 0.357 -19.26 0.435 -10.43 

Reddy[3] 2.909 -4.425 1.017 -9.3685 0.103 -16.80 0.109 0.353 -20.28 0.442 -9.081 
Mindlin[2] 2.353 -22.66 0.654 -41.704 0.085 -31.17 0.073 0.228 -48.37 0.342 -29.587 

Kirchhoff[1] 0.666 -78.11 0.807 -28.079 0.030 -75.20 0.042 – – – – 

Zenkour[5] 3.043 – 1.122 – 0.123 – – 0.442 – 0.486 – 

10 

Present 1.091 -5.390 0.854 -0.0189 0.052 -1.512 0.0594 0.445 -0.137 0.345 -0.137 
Sayyad and  
 Ghugal [15] 

1.095 -5.069 0.843 -0.0312 0.051 -3.591 0.059 0.460 -0.135 0.346 -0.135 

Reddy[3] 1.090 -5.537 0.839 -0.0359 0.048 -9.073 0.059 0.440 -0.141 0.344 -0.141 

Mindlin[2] 0.964 -16.43 0.772 -0.1134 0.044 -16.44 0.051 0.253 -0.343 0.263 -0.343 

Kirchhoff[1] 0.666 -42.28 0.807 -0.0725 0.030 -41.96 0.042 – – – – 
Zenkour[5] 1.153 – 0.870 – 0.052 – – 0.627 – 0.400 – 

Table 4. Non-dimensional displacements and stresses for (0°/90°/900/00) symmetric LCP 

S Hypothesis 
(0)

w

 ( / 2)

x

h



−
 

%  
Error ( / 2)

y

h



−
 

%  
Error ( / 2)

xy

h



−
 

%  
Error (0)

xz

 

%  
Error (0)

yz

 

%  
Error 

4 

Present 3.213 0.948 -3.66 0.942 -1.70 0.107 -21.7 0.384 -2.755 0.574 -1.10 

Sayyad and   
Ghugal [15] 

2.857 0.915 -7.01 0.919 -4.12 0.101 -25.6 0.379 -4.091 0.507 -12.5 

Zenkour [05] – 0.984 – 0.958 – 0.136 – 0.395 – 0.580 – 

10 

Present 1.196 0.816 -1.17 0.555 0 0.058 -2.66 0.568 2.249 0.442 -10.5 
Sayyad and  
 Ghugal [15] 

1.109 0.813 -1.62 0.546 -0.02 0.055 -6.83 0.517 -6.871 0.411 -16.7 

Zenkour [05] – 0.826 – 0.559 – 0.060 – 0.555 – 0.494 – 

20 

Present 0.818 0.823 0.182 0.413 -0.00 0.454 -0.21 0.601 -2.101 0.443 -4.76 
Sayyad and  
Ghugal [15] 

0.793 0.819 -0.26 0.411 -0.01 0.044 -1.97 0.563 -8.252 0.379 -18.6 

Zenkour [05] – 0.822 – 0.416 – 0.045 – 0.614 – 0.466 – 

50 

Present 0.702 0.827 0.546 0.364 -0.10 0.040 0 0.618 -3.342 0.454 -2.46 
Sayyad and  
Ghugal [15] 

0.698 0.823 0.060 0.363 -0.32 0.040 -0.24 0.5805 -9.244 0.369 -20.8 

Zenkour [05] – 0.823 – 0.364 – 0.040 – 0.6396 – 0.466 – 

100 

Present 0.6853 0.828 0.595 0356 -0.00 0.0398 0 0.6389 -1.035 0.457 -2.38 
Sayyad and 
Ghugal [15] 

0.6842 0.824 0.109 0.356 -0.00 0.0398 0 0.5833 -9.643 0.367 -21.5 

Zenkour [05] – 0.823 – 0.356 – 0.0398 – 0.6456 – 0.4690 – 
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From the results shown in Table 2-4, it has 
been noted that results of non-dimensional trans-
verse displacements w  for (0°/90°) at S=4 are 

quite close to results obtained by Zenkour [5] 

which is not the case when x is compared. This is 

a fact that non-dimensional transverse displace-
ment w is independent on thickness parameters 

and x  varies through the thickness. This is also 

due to the FEM discrete technique and does not 
give a continuous solution. The average disparity 
in the present results is calculated in the form of 
% Error as shown in the Tables 2-4  compared to 
the Zenkour [5] results. The results show more 
accuracy of displacement outcomes than stress 
outcomes. There are two kinds of plate theories: 
correspondingly based on displacement and 
stress. In  the current study, displacement is as-
sumed in the form of polynomial, while in the lat-
ter, stress is assumed in  the form of a polynomial. 
The central displacements are precisely estimated 
as the  present theory is based on displacements. 
Although the results of stresses are even more 
noticeable in some cases. The CPT [1] it gives is 
deprived of results due to the assumption in the 
displacement field sides. Figsures 5-14 shows the 
variation of non-dimensional displacements and 
stresses across the thickness of the LCP. 

The non-dimensional stresses are plotted 
along the x-axis and plate thickness (z/h) along 
the y-axis for symmetric and antisymmetric LCPs 
with schemes (0°/90°), (0°/90°/0°), 
(0°/90°/90°/0°), (0°/90°/0°/90°) and aspect ra-
tio, S=4 & 10. It can be seen that the results pre-
dicted by the present theory are almost the same 
as that of Zenkour [5]. 
 

 
 

Fig. 5 Through thickness variation of non-dimensional in-

plane normal stress (
x ) for (0°/90°) antisymmetric LCP 

 

 
Fig. 6 Through thickness variation of non-dimensional 

transverse shear stress ( xz ) for (0°/90°) antisymmetric LCP 

 

 
Fig. 7 Through thickness variation of non-dimensional in-

plane shear stress ( xz ) for (0°/90°) antisymmetric LCP 

 

 
Fig. 8 Through thickness variation of non-dimensional in-

plane normal stress (
x ) for (0°/90°/00) antisymmetric LCP 
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It may be easily inferred from Figs. 5-17, that 
all the variations of stresse have similar behav-
iours as specified by Sayyad and Ghugal [15] and 
the exact solution of Zenkour [5]. 

It can be seen in Fig. 5 that there are distinct 
discontinuities at the midplane of the plate. The 
stresses along the fibre axis is more than that of 
seen in the perpendicular direction of the fibre 
axis as an effect of E1/E2=25 (High elastic modulus 
along the fibre).  

The Figs. 6-14 show out of plane stresses and 
those accurately satisfy the required boundary 
conditions at the free (lowermost) and loaded 
(top) surfaces. The  top surface of plate encoun-
ters compressive stress (-

y ) while the bottom 

face experiences positive stress (+ y )  shown in 

Fig 8. 
As seen from Figs. 5-16, the out-of-plane 

transverse normal and shear stresses accurately 
satisfy the continuity conditions at the interfaces. 
As an exception, as is noticed in Fig. 6,  the maxi-
mum value of transverse shear stress occurs at the 
middle surface of the plate. In any particular case, 
the stresses in the specific lamina are more for 
S=4 than for S=10. From  observing  Fig. 8, it is 
seen that in-plane stress ( y ) variation is linear 

and parabolic, respectively, for S=4 and S=10. That 
also applies to the rest of the cases . 

By analyzing the bending characteristic of LCP 
the analysis of these results determines the 
performance and efficacy of this approach. 

These analyses show that non-dimensional 

transverse displacement w decreases in the 

sequence of stacking in  order of antisymmetric 
(00/900), symmetric (00/900/00), symmetric 
(00/900/900/00) and antisymmetric 
(00/900/00/900) square LCPs. 

 

 
Fig. 9 Through thickness variation of non-dimensional 

transverse shear stress ( yz ) for (0°/90°/00) symmetric LCP 

 
Fig. 10 Through thickness variation of non-dimensional 

transverse shear stress ( xz ) for (0°/90°/00) antisymmetric 

LCP 

 
Fig. 11 Through thickness variation of non-dimensional in 

plane normal stress (
x ) for (0°/90°/90°/0°) symmetric LCP 

Tables 3-5 and Figs. 5–14, show that the re-
sults from the present elements agree well with 
the analytical solution and the exact solution re-
sults. The Figs. 15-16, validate non-dimensional 

central displacement w  versus x/a subjected to 

UDL for S=4 & 10. 
Incidentally, the displacements vanish along 

the edge, as does the need for BCs shown in 
Figs.17-18. There is not much variation in central 
deflection results found for S>>25 and therefore 
the increase in aspect ratio, S is redundant. 

In addition to analyses based on FE MATLAB , 
the  structural analysis is carried out using  ANSYS 
workbench  to  solve linear or nonlinear problems 
by  modeling LCPs by solid element. ANSYS pro-
vides ANSYS composite Prep-Post to facilitate 
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building finite element models (FEMs) and access 
results. The SOLID185 element is used for the lin-
ear case.  The linear bending analysis of LCPs car-
ried out in the ANSYS environment is shown in 
Fig. 19-25. The plate is discretized using Solid 185 
finite elements.  

The Hashin failure criteria are used in the 2-
dimensional approach to calculate stress at nodes. 
The contour plots for linear bending analysis of 
LCP analyzed in ANSYS environment is shown in 
Figs. 19-23.  

 

 
Fig. 12 Through thickness variation of non-dimensional in 

plane normal stress (
y ) for (0°/90°/90°/0°) symmetric LCP 

 

 
 

Fig. 13 Through thickness variation of non-dimensional 

transverse shear stress ( yz ) for (0°/90°/90°/0°) symmetric 

LCP 

 
 

 
Fig. 14 Through thickness variation of non-dimensional 

transverse shear stress ( xz ) for (0°/90°/90°/0°) symmetric 

LCP 

 
Fig. 15 Variation of non-dimensional central deflection ( w )  of 

LCP for S=4. 

Figure 19 shows transverse deflection 
1.9560w =  for S=10 whereas by FEM-MATLAB 

1.9670w =  (present) and 1.9320w = by Zenkour 

[5]. The percentages of error while compared with 
Zenkour [5] are 1.2422 % (Present ANSYS) and 
1.2422 % (Present EEM-ATLAB). Fig.21 shows the 

non-dimensional shear stresses xy  computed by 

ANSYS as 0.1090 and by FEM-ANSYS codes xy as 

0.1029. 
Thus the results of the formulations presented 

are validated with those of the ANSYS analysis and 
there is a reasonably good agreement between 
them. The different cases shown in Figs 20-23 are 
simulated in the ANSYS. From these results it can 
be observed that ANSYS also provides a reasona-
bly accurate solution with less computational ef-
fort. 
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Fig.16. Variation of non-dimensional central deflection ( w )  of 

LCP for S=10 

 
Fig.17 The descretized (0°/90°)  antisymmetric LCP using 

Solid 185 Element 

 

 

Fig. 18. The SS-BCs (0°/90°) antisymmetric  LCP subjected to 
transverse load (UDL) 

 
Fig. 19. The non-dimensional central displacement w  of the 

(0°/90°)  antisymmetric LCP  using ANSYS 

 

Fig. 20. The non-dimensional inplane shear stress xy  in the 

(0°/90°) antisymmetric LCP using ANSYS 
 

 
Fig. 21. The non-dimensional central  displacement w of the 

plate of  (0°/90°/00) symmetric LCP using ANSYS 
 

 

Fig. 22. The non-dimensional in-plane stress   y in the 

(0°/90°/00)  symmetric LCP  using ANSYS 
 

4.2. Geometrically nonlinear behavior  

Having recognized the reliability of the FE 
model built for the linear bending, the analysis of 
LCPs drawn-out for geometric nonlinear analysis 
is performed by considering nonlinearity terms. In 
nonlinear analysis, the relation between applied 
forces and displacements is a nonlinear one. The 
geometric nonlinear effects which originate as 
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deformations are large. The stiffness matrix of the 
plate material varies with changes in configura-
tion during the load process.  

The non-dimensional quantities for deflection 
and stresses are shown in Eq.20, and used to pre-
sent the results in graphic and tabular form [26]. 
For the study, a plate with the aspect ratio S= 20 
and 40 is considered. 

( )
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     

 (20) 

The equilibrium equations are solved at each 
load step by using a Newton Raphson (NR) 
method with a convergence tolerance for nodal 
displacements by solving nonlinear FE equa-
tions.  In all the examples, loads 0 to 250 are 
considered with load increments of 50. 

A convergence study is conducted and pre-
sented in Table 5. Based on this convergence 
study, it is concluded that an 8×8 mesh is suffi-
cient.  Table 5 clearly shows that the perfor-
mance of the present FE formulations are very 
desireable in terms of solution accuracy. The 
central displacements are noteworthy for this 
mesh size (8×8). The present results are com-
pared with FEM results of Kant & Kommineni 
(26) and with Ron & Hinton (8). 

The results are also computed for few nonline-
ar bending cases in ANSYS environment. The 
SOLID186, quadratic serendipity element is used 
in the nonlinear case. The present modification is 
to improve the stress predictions within these 
finite elements. For (0°/90°/ 0°/900) antisymmet-
ric LCP with aspect ratio, S=20 results are  shown 
in Fig. 26. The non-dimensional transverse dis-
placement, w  shown in Table 5, by FEM-MATLAB 

(present), Kant [26], Ren [8] and ANSYS (present) 
are 0.7582(-1.057% Error), 0.7520(-1.866 % 
Error), 0.7663 and 0.780 (1.787% Error) re-
spectively. The comparison of the results in Table 
5  show  that in the geometrically nonlinear analy-
sis  ANSYS also gives results with reasonable 
agreement.  

Table 6 and 7 show comparisons of geometri-
cally linear and nonlinear displacements obtained 
for (0°/90°/0°/90°) antisymmetric LCP. In non-
linear bending analysis, the coupling between 
lamina increases to plate stiffening due to the von 
Karman nonlinearity and thus decreases in central 
displacements compared to linear bending analy-
sis. This is because in the case of the linear plate 

central displacement relies on bending and the 
same in the case of geometrically nonlinear on 
both extension and bending. 

 
Fig. 23. The non-dimensional central displacement w  of the 

(0°/90°/900/00) symmetric LCP using ANSYS 

Table 5. Non-dimensional transverse displacements  

( /w w h= ) for (0°/90°/0°/90°) for S=20. 

S Mesh size 
Nonlinear 

w  
%  

Error 

20 

 
Present (4×4) 

 
0.7482 

 

Present (6×6) 07579  

Present (8×8) 0.7582  

Present (10×10) 0.7582 -1.057 

FEM by 
Kant & Kommineni [26]   

0.7520 
-1.866 

FEM by 
Ren & Hinton[08] 

0.7663 
- 

In ANSYS environment 
0.780 

(Fig.25). 
1.787 

40 

 
Present (4×4) 

 
0.7281 

 

Present (6×6) 0.7335  

Present (8×8) 0.7357  

Present (10×10) 0.7357 -0.982 

FEM by 
Kant & Kommineni [26] 

0.7308 
-1.644 

FEM by Ren & Hinton 
[08] 

0.7430 
- 

In ANSYS environment  0.7290 -1.844 

 

 
Fig. 24. The descretized (0°/90°/00/900)  antisymmetric LCP 

using Solid 186 
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Fig. 25. The non-dimensional transverse displacement w  of 

the (0°/90°/00/900)  LCP  using ANSYS (S=20) 
 

 
Fig. 26 Load-deflection diagram at specific load points in 

geometrically nonlinear analysis. 

Table 6. Non-dimensional transverse displacements  

( /w w h= ) for (0°/90°/0°/90°) for S=20 

q
 

S=20 
L 

(Present) 
NL 

(Present) 
NL 

by Kant &  
Kommineni 

[26]  
(C0 FEM) 

NL 
Zhang 
[07] 

(FEM) 

0 0 0 0 0 
50 0.50253 0.3255 0.320 0.3270 

100 0.72218 0.4886 0.486 0.4949 
150 1.00680 0.6010 0.592 0.6048 
200 1.26520 0.6911 0.680 0.6948 
250 1.53130 0.7582 0.752 0.7663 

The analysis of the results in Table 6-7, shows 
that the findings reported are in acceptable 
agreement with the results of Kant and Kom-
mineni [26] and with Y.X. Zhang and Kim [7] and 
other researchers. The geometrically nonlinear 
analysis creates central displacement and stress 
solutions that are more realistic. Fig. 26, presents 

the nonlinear central displacement w  in the plate 

as a function of the load parameter. The displace-
ment turns out to be closely independent for larg-
er loads. As the number of lamina in the plate in-
creases, the plate becomes increasingly stiffer. The 

non-dimensional central displacements, w  initial-

ly increases, then increase nonlinearly with each 
increase in load.  The displacement   significantly 
depends on the plate aspect ratio (S) at small 
loads. 

5. Conclusions 

Based on the current theory and the nonlinear-
ity of von Karman, an FE model is developed. In 
this research, inverse TSDT is used on the basis of 
the modern kinematic method for the geometri-
cally linear and nonlinear analysis of LCPs. The 
kinematic function satisfies traction free BCs and 
also it does not for SCF unlike FSDT. The pro-
gramming codes are written in the MATLAB envi-
ronment based on FEM formulations and are sig-
nificant in plate analysis with SS-BCs. The Newton 
Raphson method is used to solve the nonlinear 
equations. Numerical results are obtained for dif-
ferent symmetric and antisymmetric lamination 
schemes. Results are also computed by using FE 
software ANSYS for limited cases. From the nu-
merical results it is seen that the present new hy-
pothesis calculates  central displacements and 
stresses more precisely, compared to other HSDTs 
available in the literature. The authors conclude 
that this article would pose numerical methodolo-
gy as a guide for two-dimensional plate theories 
and methods. 
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Table 7. Non-dimensional transverse displacements  

( /w w h= ) for (0°/90°/0°/90°) for S=40 

S=40 
L 
(Present) 

NL 
(Present) 

NL 
Kant & 

Kommineni 
[26]  

(C0 FEM) 

NL 
Zhang 
[07] 

(FEM) 

0 0 0 0 
0.44405 0.2981 0.293 0.2913 
0.68024 0.4656 0.464 0.4606 
0.97431 0.5840 0.582 0.5771 
1.23800 0.6651 0.664 0.6668 
1.50877 0.7358 0.738 0.7430 

L: Linear (L) and NL: Geometrically nonlinear analysis. 
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