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In this study, an efficient finite element model with two degrees of freedom per node is 

developed for buckling analysis of axially functionally graded (AFG) tapered Timoshenko 

beams resting on Winkler elastic foundation. For this, the shape functions are exactly 

acquired through solving the system of equilibrium equations of the Timoshenko beam 

employing the power series expansions of displacement components. The element 

stiffness matrix is then formulated by applying the developed shape functions to the total 

potential energy along the element axis. It is demonstrated that the resulting shape 

functions, in comparison with Hermitian cubic interpolation functions, are proportional to 

the mechanical features of the beam element, including the geometrical properties, 

material characteristics, as well as the critical axial load. An exhaustive numerical example 

is implemented to clarify the efficiency and simplicity of the proposed mathematical 

methodology. Furthermore, the effects of end conditions, material gradient, Winkler 

parameter, tapering ratio, and aspect ratio on the critical buckling load of AFG tapered 

Timoshenko beam are studied in detail. The numerical outcomes reveal that the elastic 

foundation enhances the stability characteristics of axially non-homogeneous and 

homogeneous beams with constant or variable cross-section. Moreover, the results show 

that the influence of non-uniformity in the cross-section and axially inhomogeneity in 

material characteristics play significant roles in the linear stability behavior of 

Timoshenko beams subjected to different boundary conditions. 

1. Introduction

Knowing the stability characteristics and the
specific buckling load of the axially loaded 
members are of significant importance in design 
considerations. Elastic tapered beams are a class 
of important structural components, which have 
wide applications in civil, mechanical, and 
aeronautical structures. This is because of their 
ability to increase both strength and stability, 
reduce the whole weight of the structure, and 
satisfy aesthetic necessities. The stability 
problem has been investigated by many 
researchers via the Euler-Bernoulli and the 
Timoshenko beam theories. Based on the Euler-
Bernoulli theory (EBT), the influence of 
transverse shear deformation is neglected, and 
only the effect of flexural deformation is 
considered. The Euler–Bernoulli beam model is 

usually adopted for the bending of slender and 
long beams. To overcome the defects of EBT, 
especially when the beam is moderately deep 
with a small length-to-depth ratio, for instance, 
towers, moveable arms, and antenna, researchers 
usually use Timoshenko beam assumptions, in 
which the effects of rotatory inertia, transverse 
shear, and bending deformations are taken into 
account. Furthermore, the use of functionally 
graded materials (FGMs) has been increasing in 
automotive, civil, electronic, optical, and 
mechanical industries due to their noticeable 
characteristics such as elimination or 
minimization of interfacial stress concentration, 
thermal resistance and optimal distribution of 
weight. 

Therefore, until now, several types of 
research have been performed to assess the 
static, stability, and the vibration behaviors of 
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FGMs and/or homogenous beams. In this context, 
Simsek [1] studied the free vibration of FG beams 
based on the first-order and different higher-
order shear deformation theories. The free 
vibration and linear buckling analyses of non-
prismatic Timoshenko beams with axially 
varying materials subjected to various end 
conditions were perused by Shahba et al. [2] 
using the finite element procedure. Through the 
Rayleigh-Ritz method, the linear buckling 
resistance of tapered micro-columns having 
different taper ratios was studied by Akgoz and 
Civalek [3]. Arefi and Rahimi [4] employed the 
Adomian Decomposition Method (ADM) on the 
nonlinear analysis of the FG beam with variable 
thicknesses. The surface effects on the nonlinear 
free vibration of elastically restrained non-local 
beams with variable cross-sections were 
examined by Malekzadeh and Shojaee [5]. An 
efficient finite element model for static and 
dynamic analysis of functionally graded 
piezoelectric beams was introduced by Lezgy-
Nazargah et al. [6]. Rajasekaran and Tochaei [7] 
applied the Differential Transformation Element 
Method (DTEM) and Differential Quadrature 
Element of Lowest-order (DQEL) to obtain the 
non-dimensional natural frequencies of tapered 
Timoshenko beams made up of AFG materials. 
Ghasemi et al. [8] analyzed the stress and the 
strain in the pressure vessel made of functionally 
graded materials reinforced by laminated 
composite. Rahmani and Pedram [9] investigated 
the free vibration of FG nanobeams using the 
Timoshenko beam model and the nonlocal 
theory. Besides, Gan et al. [10] surveyed the 
dynamic behavior of non-uniform AFG 
Timoshenko beams subject to multiple moving 
point loads. Ebrahimi and Mokhtari [11] applied 
the Differential Transformation Method (DTM) to 
investigate vibration responses of rotating FG 
Timoshenko beams made of porous materials. 
Via the Generalized Differential Quadrature 
Method (GDQM), Ghasemi and Mohandes [12-15] 
performed comprehensive investigations on free 
vibration analysis of laminated composite 
Timoshenko and Euler-Bernoulli beams affected 
by finite strain. The sinusoidal shear deformation 
theory was employed by Arefi and Zenkour [16] 
to expand a transient formulation for a three-
layer curved nanobeam in thermo–magneto-
elastic environments. Additionally, to analyze 
free vibration analysis of AFG Euler–Bernoulli 
beams with varying cross-sections, Ghazaryan et 
al. [17] adopted the DTM. Li et al. [18] applied the 
GDQM to analyze the instability of a micro-scaled 
bi-directional functionally graded beam. Arefi 
and Takhayor Ardestani [19] assessed the 
electro-thermo-elastic analysis of functionally 
graded piezoelectric thick-walled spherical shell 
utilizing the division method. Based on the first-

order shear deformation theory (FSDT), Mirzaei 
et al. [20-22] perused time-dependent creep and 
thermo-elastic analysis of a rotating cantilever 
tapered beam with axially varying materials 
subjected to mechanical, inertia and thermal 
loadings. 

The problem of beams resting on an elastic 
foundation is also a crucial and technical topic in 
structural and geotechnical engineering. 
Practical examples of these are railroad 
structures, highway pavements, the foundations 
of buildings, and pipelines embedded in the soil. 
There are various types of foundation models for 
soil-structure interaction in static and dynamic 
analysis of structures on an elastic foundation. 
The Winkler model, which consists of infinitely 
closed spaced linear translational springs which 
are independent of each other, is extensively used 
in the solution of the problems mentioned above 
related to soil-structure interaction. Several 
types of research have been conducted on the 
mechanical behavior of beam elements lying on 
an elastic foundation.  

Also, Zhu and Leung [23] suggested a new 
finite element formulation for the non-linear free 
and forced vibration analysis of non-prismatic 
Timoshenko beams lying on two-parameter 
foundations. According to the nonlocal 
Timoshenko beam theory, stability analysis of 
nanotubes embedded in an elastic matrix was 
also performed by Wang et al. [24]. Mirzabeigy 
[25] investigated the free vibration behavior of 
non-uniform beams resting on an elastic 
foundation by presenting a semi-analytical 
technique, based on the DTM. Tsiatas [26] 
developed a new influential approach to 
accurately determine stiffness and mass matrices 
of non-uniform Euler-Bernoulli beam from 
inhomogeneous linearly elastic material resting 
on an elastic foundation. Hassan and Nassar [27] 
assessed the linear buckling and the free 
vibration analysis of the Timoshenko beam 
resting on a two-parameter foundation by 
employing the ADM. Akgoz and Civalek [28] 
applied higher-order shear deformation 
microbeams and a modified strain gradient 
theory to analyze the static bending response of 
single-walled carbon nanotubes embedded in an 
elastic medium. The stability analysis of the AFG 
non-prismatic beam on an elastic foundation was 
comprehensively examined by Shvartsman and 
Majak [29]. Based on the modified strain gradient 
theory and surface stress effects, 
Mohammadimehr et al. [30] exploited the size-
dependent effect on the free vibration behavior of 
Timoshenko microbeams subjected to pre-stress 
loading embedded in an elastic medium. Mercan 
and Civalak [31] analyzed the stability of boron 
nitride nanotube on the elastic matrix by utilizing 
a discrete singular convolution technique. By 
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considering the impact of the viscoelastic 
foundation, Calim [32] studied free and forced 
vibration of AFG Timoshenko beams. Soltani and 
Asgarian [33] combined the power series 
approximation and the Rayleigh-Ritz method to 
assess the free vibration and stability of AFG 
tapered beam resting on the Winkler-Pasternak 
foundation. 

Therefore, the main objective of the present 
paper is to derive highly accurate static and 
buckling stiffness matrices of axially functionally 
graded Timoshenko tapered beams subjected to 
compressive axial concentrated load and 
supported by a uniform Winkler foundation. For 
this, a novel numerical methodology based on a 
general and straightforward procedure 
presented in [34-37] is established. The 
superiority of the finite element method over the 
other semi-analytical and mathematical 
techniques is its simplicity, excellent precision, 
and generality. This methodology is applicable to 
analyzing a vast range of problems subjected to 
various circumstances. Considering these facts, 
the majority of the structural engineering 
simulation software is commonly developed 
based on the finite element solution. 

An overview of the important contents of this 
study is given below: 

1- Coupled governing equations for the 
buckling of AFG tapered Timoshenko beams 
resting on a uniform Winkler foundation have 
been derived via the energy principle, and they 
are analytically solved using the power series 
method. According to the aforementioned 
method, the expressions of the vertical deflection 
and cross-sectional rotation modes are also 
determined. 

2- Next, the expressions of new shape 
functions extracted from the beam’s nodal 
displacements and the principle of virtual work 
along the beam axis are employed to determine 
the exact terms of 4*4 static and buckling 
stiffness matrices. Finally, one can acquire critical 
buckling loads by solving the eigenvalue 
problem. 

3- To assure the precision and practical 
usefulness of this hybrid formulation, 
comparisons with existing results in the 
literature are provided for a particular case. 
Subsequently, the effects of the taper ratio, the 
material non-homogeneity index, end restraints, 
and the Winkler parameter on critical buckling 
loads are investigated. 

A significant point of departure of the present 
finite element solution from others is in the 
interpolating shape functions used for derivation 
the structural stiffness matrices. Unlike the 
Hermitian interpolation polynomials, the 
expressions of proposed shape functions are 
dependent on geometrical properties, Winker 

elastic foundation coefficient, material 
characteristics, and the compressive axial load. 
Besides, the accuracy of this method is improved 
by contemplating the influence of material 
gradient and varying cross-sections in the 
calculation procedure of the terms of structural 
and buckling stiffness matrices. This numerical 
methodology is not restricted by any 
computational operations. It can be easily used 
for linear stability analysis of non-prismatic 
Timoshenko beam with axially varying materials 
subjected to different boundary conditions. It is 
also believed that the rate of convergence of the 
present formulation is faster than that of the 
conventional finite element technique. 

2. Derivation of the Governing 
Equations 

Consider a straight non-uniform beam 
element of length span L resting on Winkler’s 
elastic foundation (Fig. 1) and loaded by a 
constant axial compressive force P applied at 
both ends. We contemplate the right hand 
Cartesian coordinate system, with x the initial 
longitudinal axis measured from the left end of 
the beam, the y-axis in the lateral direction, and 
the z-axis along the thickness of the beam. The 
origin of these axes (O) is located at the centroid 
of the cross-section. The cross-section is in the 
form of a rectangle with breadth b and height h, 
which is assumed to be sufficiently small relative 
to the breadth. It should be noted that the 
Timoshenko beam assumptions are adopted here 
in order to take into consideration the influences 
of the shear deformation of the beam. Assuming 
that the deformation of the beam has taken place 
about the weak axis, in the x-z plane, the total 
potential energy of the considered member can 
be expressed as [38-40]: 

2 2

0

2 2 2

1 1

2 2

1 1
( )

2 2 2





  = +

 + − − +

 
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L L

w
L L L

EAu dx EI dx

P
kGA w dx w dx k w dx

 (1) 

In Eq. (1), w is the transverse deflection of the 
centerline of the beam,  the slope due to 
bending, I the second moment of the area with 
respect to the y-axis, A the cross-sectional area, k 
the shear correction factor. G and E are the shear 
and Young's modulus, which are variable along 
the beam’s length. kw denotes Winkler’s 
foundation constant per unit length of the beam.  

 
Fig. 1. AFG tapered beam on Winkler’s foundation and 

subjected to an axial load, Coordinate system and notation of 
displacement parameters 
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In the stationary state, the equilibrium 
equations for non-prismatic Timoshenko beam 
are derived from a variation of total potential 
energy which is 

0 0   

 

 

 

    = +

 + +

 + +

 + +

 

 

 

 

L L

L L

L L

w
L L

EAu u dx EI dx

kGAw dx kGA w dx

kGA dx kGAw w dx

P w w dx k w wdx

 (2) 

 illustrates a virtual variation in the last 
formulation. In the case of the constant axial load 
(P) and according to Eq. (2) with respect to u0, w 
and , the equilibrium equations for a non-
prismatic Timoshenko beam are derived as 

( )0 0EAu  =  (3a) 

( ) ( ) 0EI kGA w   + − =  (3b) 

( )( ) 0wkGA w Pw k w  − − + =  (3c) 

The last two equilibrium equations (3b and 
3c) are coupled differential equations due to the 
presence of vertical and rotation displacement 
components (w and θ) as well as shear rigidity 
(GA), while the axial stability equation (Eq. (3a)) 
is uncoupled from the others. It has no incidence 
on linear stability analysis of the Timoshenko 
beam. 

In the following section, the application of the 
Power Series Method (PSM) in the linear stability 
analysis of non-homogeneous Timoshenko 
beams with non-uniform cross-section is 
presented. According to this semi-analytical 
method, all variable geometric and material 
properties of a beam and the displacement 
components are developed into the power series 
form. 

3. Numerical Approach 

In Eq. (3), due to the presence of a functionally 
graded Timoshenko beam with variable cross-
section, the geometrical characteristics of the 
cross-section over the member length are 
variable (I(x), A(x)). Moreover, shear and young’s 
modulus of elasticity are not constant along the x-
axis (G(x), E(x)). For these reasons, all the 
variable terms are presented in power series 
form, as follows: 

0 0

0 0

( ) , ( )

( ) , ( )  

 

= =

 

= =

= =

= =

 
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i i

i i

i i

i i

i i

i i

I x I x  A x A x

E x E x G x G x

 (4) 

where iI  iA , iE  and iG  are coefficients of 

power series at order i. In order to facilitate the 
solution of the equations (3b) and (3c), a non-

dimensional variable ( /x L = ) is introduced. 

Furthermore, the general solutions of two 
displacement parameters ( ( )w  , ( )  ) should be 

presented by the following power series of the 
form: 

( ) ( )
0 0

              
 

= =

 =   = i i

i i

i i

w a ε b ε  (5) 

where ai and bi are unknown coefficients and the 
amplitude of the i component. Substituting Eqs. 
(4) and (5) and the non-dimensional variable  
into the system of stability equations, the 
following expressions are obtained: 
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in which: 
* * * * , , ,  = = = =i i i i

i i i i i i i iI I L A A L E E L G G L  (7) 

After some simplifications, the following 
expressions are obtained: 
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To satisfy these equations for every value of  
we must have: 
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Based on Eqs. (10a) and (10b), the following 
recurrence formulas are obtained: 
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According to the above recurrence 
formulations and from a mathematical point of 
view, it is culminated that all the ak and bk 

coefficients can be obtained except for the first 
two ( 0 1a ,a  and 0 1b ,b ), which can be derived by 

imposing the natural boundary conditions of 
Timoshenko beam. Note that the terms of ak+2 and 
bk+2 converge to zero as → k . 

Applying Eqs. (11a) and (11b) together with 
Eq. (5), the fundamental solutions of the coupled 
system of differential equations (3b)–(3c) can be 
thus determined explicitly in terms of the four 
constants ( 0 1a ,a  and 0 1b ,b ). Then, the general 

solution of equilibrium equations can be 
expressed in the following matrix equation of the 

form: 

     ( ) ( )C B A =    (12) 
 in which  
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T
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In equation (12), [B] is a 2 4  matrix 
including the fundamental solutions of 
equilibrium equations for linear stability ( ( ) i  

and ( ),  0,1,2,3 =iw i ), and {A} represents the 

column vector of four unknown parameters. All 

terms of i  and iw  are derived with the aid of 

the symbolic software MATLAB [44] and the 
expressions of displacement functions ( i and 

,  0,1,2,3=iw i ) are shown in Appendix A. 

4. Boundary Conditions and Shape 
Functions 

It has to be noted that the four undefined 
coefficients ( 0 1 0 1a ,a ,b ,b ) are functions of the 

displacements of the degree of freedom (DOF), 
then all the rest of coefficients 

, ( 2,3,4,..)=k ka b k  are also functions of the 

displacements of DOF. The expression of the 
angle of rotation and vertical displacement ( ( ) 

and ( )w  ) can thus be derived as a function of the 

displacement of DOF. These mentioned unknown 
parameters can be obtained by imposing the right 
and left end boundary conditions of the element 
(two at each end).  

In the current finite element model, there are 
two nodes with two degrees of freedom per node 
(DOF) for each element. The two nodes by which 
the finite element can be assembled into the 
structure are located at its ends. The nodal 
displacements of the beam element in the local 

coordinate at 0 =  and 1 =  are illustrated in 

Fig. 2. 

 
Fig. 2. The nodal displacement vectors of a tapered 

Timoshenko beam element of length Le 
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According to Fig. 2, the following boundary 
conditions in the local co-ordinate must be 
satisfied:  

     D V A=   (14) 

where 

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

(0) (0) (0) (0)

(0) (0) (0) (0)

(1) (1) (1) (1)

(1) (1) (1) (1)

   

   

 
 
 =
 
 
  

w w w w

V
w w w w

 (15a) 

   0 0 1 1 =
T

D w w  (15b) 

The considered degrees of freedom at the left 

and right nods of each element are: 0 1,w w  (the 

transverse displacement in the z-direction), 
0 1,   (the angle of rotation). The DOF vector of 

the element is given in Eq. (15). From (14), one 
gets 

   1[ ]A V D−=  (16) 

Based on Eq. (15a) and knowing that 

0 2(0) (0) 1w = =  and 1 2 3(0) (0) (0)= = =w w w

0 1 3(0) (0) (0) 0  = = = (see Appendix A), the 

inverse of matrix [V] is acquired as 

( )
1

1 3 3 1

1

(1) (1) (1) (1) 

−
=   

−
V

w w
 (17) 

0 3 3 0 2 3 3 2 3 3

0 1 1 0 1 2 2 1 1 1

1 0 0 0

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

0 1 0 0

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

    

    

 
 
− + − + − 

 
 

− − + −  

w w w w w

w w w w w

 

Subsequently, the system (12) changes into 

   
1

2 1 4 12 4 4 4
( ) ( )C B V D 

−

  
=         (18) 

Multiplying the three matrices and expanding 
Eq. (18), we obtain 

0 10 3 3 0

0 11 3 3 1

3 00 1 1 0

31 3 3 1

2 3 3 2

1
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( ) ( )(1) (1) (1) (1)
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The terms of the element stiffness matrix can 
be found from the derivation of the interpolation 
functions. The shape functions define the 

deformation shape of the element from applying 
unit translation or rotation at each of the four 
degrees of freedom while constraining the other 
three nodal displacements. With these four 
interpolation functions, the exact deformed 
shape of the beam element can be expressed in 
terms of its nodal displacements. Therefore, the 
corresponding shape functions must satisfy the 
following boundary conditions: 

0 0 1 1

0 0 1 1

1 0 0 1

1 0 0 1

1. 1, 0

2. 1,  0

3. 1,  0

4. 1,  0

 

 

 

 

= = = =

= = = =

= = = =

= = = =

w w

w w

w w

w w

 (20) 

Referring to these four boundary conditions 
corresponding to each shape function and using 
Eq. (19), four sets of interpolation functions can 
be derived. These shape functions could take any 
arbitrary shapes which satisfy the boundary 
conditions of element and internal continuity 
requirements. In other words, the general 
displacement of the considered beam is related to 
four evaluated shape functions for each 
displacement parameter. Using equations (18) to 
(20), the general displacement expressions in 
terms of the shape functions can thus be 
expressed as 

 
 

 
 ( )




 
 =
 
 

T
w

T

N
C D

N
 (21) 

where 

 

 

1 2 3 4

1 2 3 4
   

   
   =
     

T
w w w w w

T

N N N N N

N N N NN
 (22) 

The equivalent shape functions (
, ( 1,2,3,4)i i

wN N i = ) are then given as  

1
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After noticing the resulting interpolating 
functions (Eq. (23)) and the symbolic expressions 
presented in Appendix A which are related to the 
fundamental solutions of the equilibrium 
equations (Eq. (3)), it can be stated that the new 
shape functions, on the contrary to Hermitian 
cubic interpolation (cubic spline) functions, are 
proportional to the mechanical features of beam 
element including the geometrical properties, 
material characteristics, Winkler coefficient, as 
well as the applied compressive axial load (P). In 
the remaining part of the current paper, the finite 
element formulation using the acquired 
interpolation shape functions in the powers 
series form (Eq. (23)) is developed. 

5. Finite Element Formulation 

In section 2, the governing equilibrium 
equations have already been achieved from the 
principle of stationary total potential energy. 
While, in the present part, the finite element 
formulation is outlined based on the principle of 
minimum potential energy. The terms of the 
elemental stiffness matrix of AFG non-prismatic 
Timoshenko beam in the non-dimensional 
coordinate are carried out by substituting the 
acquired interpolation shape functions (Eq. (23)) 
into Eq. (2) 
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  
1

0ij

T

w e w w wK L k N N d   =
    (24c) 

  
1

0

T

Gij w wK P N N d    =    (24d) 

where 
FijK  

SijK , 
wijK  and 

GijK  are 

respectively, the terms of the flexural stiffness 
matrix, shear stiffness matrix, foundation 
stiffness matrix, and the geometric stiffness 
matrix, which account for the secondary effect of 
the axial force (P) on the elemental stiffness 
matrix. Le is also the length of each segment.  

Afterwards, by assembling each element 
stiffness matrices based on its nodal 
displacements, the stiffness matrix of the whole 
structure can be achieved. In most finite element 
method textbooks [41, 42], one can find the 
description of the process of assemblage in detail. 
It should be pointed out that the linear analysis is 
under consideration in the present study. In the 
linear buckling analysis, the geometric stiffness 
matrix is proportional to the initial stress forces. 
In order to perform stability analysis and 
evaluate the critical buckling loads, the following 
eigenvalue problem should be solved: 

   ( ) 0F S w GK K K K + + + =            (25) 

in which   and   are respectively the 

eigenvalues and their related eigenvectors, which 
associate with the total Degree of Freedom of 
each element. It is well known that for a system 
with n Degrees of Freedom, there exist n buckling 
modes, but in practice, only the lowest ones are of 
interest. 

In order to clarify the numerical procedure, a 
general algorithm is illustrated in Fig. 3 for 
determination of fundamental solutions, 
interpolating shape functions, and structural 
matrices for AFG non-prismatic Timoshenko 
beams on Winkler elastic foundation. The 
presented algorithm is used for computer 
applications of the method. 

6. Numerical Examples 

This section aims to measure the accuracy and 
check the validity of the present numerical 
procedure in the buckling analysis of AFG beams 
with variable cross-sections resting on an elastic 
foundation. In order to achieve this goal, two 
illustrative examples are carried out. The 
influences of end conditions, material gradient 
index, slenderness ratio, elastic foundation 
modulus, and tapering parameter on the buckling 
loads of beam are examined.  

 
Fig. 3. The algorithm used for stability analysis of AFG non-
prismatic Timoshenko beams resting on elastic foundation 
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Through this section, linear buckling analysis 
is performed for a double tapered beam with 
rectangular cross-section whose height (h0) and 
breadth (b0) both are concurrently allowed to 
vary linearly along the member’s length with the 
same tapering ratio. Therefore, the cross-
sectional area A(x) and the area moment of 
inertia I(x) vary along the beam as 

( ) ( ) ( ) ( )
2 4

0 0
1- / ;  1- /A x A x L I x I x L = =  (26) 

where  is breadth and height taper ratios. 
Note that the tapering parameter can change from 
=0 (prismatic beam) to =− (non-uniform 
ones). In Eq. (26), A0 and I0 are respectively cross-
sectional area and moment of inertia at the left 

support (x=0). They are defined as: 
3

0 0
0 12

b h
I =  

and 
0 0 0A b h= . 

In the following benchmark examples, it is also 
supposed that the beam is made of two different 
materials, specifically zirconia (ZrO2) and 
aluminum (Al), in the length direction with the 
following characteristics: ZrO2: E0=200GPa; Al: 
E1=70GPa. The variation of Young’s modulus of 
elasticity along the beam axis is defined with the 
following power-law formulation: 

0 1 0( ) ( )( / )mE x E E E x L= + −  (27) 

In the last expression, m signifies the material 
non-homogeneity parameter. By notifying this 
formulation, it can be stated that by descending 
the gradient index (m), the proportion of zirconia 
over the beam’s length increases. It should be 
noted that the material properties of the beam are 
assumed to be constant in the direction of the 
thickness. Poisson’s ratio of the material also 
remains constant in a longitudinal direction. 
Further, Poisson’s ratio and the shear correction 
factor are assumed 0.3 and 5/6, respectively. In 
the numerical computation, the non-dimensional 
forms of buckling load and elastic foundation 
parameter are introduced as 

2

0 0

cr
cr

P L

E I
 =    

4

0 0

w w

L
k k

E I
=  (28a, b) 

6.1 Example 1: Tapered beam from 
functionally graded materials 

To study the effect of the Winkler foundation 
on the buckling capacity, this comprehensive 
example is considered including axially non-
homogeneous and homogeneous beams with 
non-uniform cross-section. The following 
parameters are used: length L =1m, the ratio 
between moment of inertia, and cross-sectional 
area I0/A0 = 0.01. 

At first, the validation of the present 
formulation for buckling analysis of AFG tapered 
Timoshenko beam without elastic foundation is 
checked by comparing the obtained results with 
those available in the literature when possible. 

Note that it is an important task to evaluate 
the convergence characteristics of any numerical 
methods, especially the finite element solution to 
guarantee the exactness and performance of the 
adopted technique to different engineering 
problems. Accordingly, estimating the required 
number of segments in the assemblage of beam 
element stiffness matrices to determine 
acceptable buckling results is essential before the 
presentation of numerical results of buckling 
loading of AFG Timoshenko columns with 
varying cross-section. 

According to the authors’ knowledge of power 
series approximation [33-37], for most non-
prismatic members under various loading 
conditions, it is not practicle to use more than 10 
terms in power series expansions to derive the 
exact shape functions. Therefore, the taken 
number in terms of the power series (the 
maximum power of shape functions) is equal to 
10 in the following cases. 

In this regard, the lowest value of the non-
dimensional buckling load of cantilever tapered 
beam with two different taper ratios ( = 0.2 and 
0.5) is acquired with respect to the number of 
meshes (n) considered in the procedure for the 
assemblage of the stiffness matrices of the whole 
structure. The convergence study is carried out 
for homogenous beams, as well as axially 
functionally graded ones by contemplating the 
gradient parameter (m) equals to two. The 
obtained results by the proposed numerical 
technique compared with those acquired via new 
finite element modeling introduced by Soltani 
and Asgarian [36]. The percentage of relative 
errors ( ()) between the results of the present 
study and the mentioned numerical method is 
also calculated by the following expression: 

100

FEM ref

cr cr
ref

cr

 



−
 =   (29) 

In the following, the graphic illustrations of 
the variation of relative errors with the number 
of considered segments (n) in the FE 
discretization phase are provided in Fig. 4. 

After noticing the results represented in Fig. 4, 
the following outcomes could be expressed: 

 
Fig. 4: Timoshenko beams with variable cross-section: 

variation of the relative errors () versus the number of 
elements (n) along the beam’s length 
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1- An outstanding compatibility between the 
elastic buckling loads acquired by the current 
study and those computed from another available 
benchmark solution is noteworthy 

2- Even by applying 4 segments in the beam’s 
length according to the suggested finite element 
solution, the elastic buckling loads can be 
precisely calculated bellow the acceptable 
relative error (1%). 

3- It is not required to use more than 6 
segments in the finite element approach, in order 
to obtain a satisfactory accuracy on critical elastic 
buckling loads. 

Following the procedure mentioned above, 
the first non-dimensional buckling load 
parameters for tapered Timoshenko beam from 
homogenous materials and axially functionally 
ones with different gradient indexes (m=1, 2, and 
3) are derived using the proposed finite element 
solution by dividing the beam into 6 equal 
segments. The dimensionless buckling loads of 
the member for various tapering ratios and 
different boundary conditions are arranged in 
Table 1 and compared with Soltani et al. [43]. As 
presented in Table 1, an excellent agreement is 
observed between the critical buckling loads for 
different values of non-uniformity ratios 
acquired by the present study and those 
computed from the other benchmark solutions. 

Comparing the results of the prismatic beams 
presented in Table 1 with those related to non-

prismatic ones, it can be culminated that the 
considered prismatic beam in this example had 
the highest critical buckling loads. This can be 
explained by the fact that increasing taper ratios 
causes the reduction in cross-sectional area and 
moment of inertia and consequently stiffness of 
the elastic member. Since the linear stability 
behavior is directly proportional to the member’s 
stiffness, an increase in tapering ratio causes a 
decrement in the dimensionless axial buckling 
load. Furthermore, it can be argued from Table 1 
that the increase in the gradientindices leads to 
an increase in the critical buckling loads. For 
example, in the case of the simply supported FG 
prismatic beam ( 0 = ), the critical buckling 

load increases from 4.6618 to 5.5390 and then to 
6.0492, when m increases from 1 to 3. It shows a 
rise of 18.82% and 29.76%, accordingly. 
Regarding Eq. (27), it is clear that when the non-
homogeneity index is increased from 1 to 3, the 
volume fraction of Zirconia and, consequently, 
the value of Young’s modulus are increased. As a 
result, a higher buckling load is achieved. 

Afterward, the lowest buckling loads 
variation versus the taper ratio () and the 
gradient index (m) for simply supported and 
fixed-free beams are presented in Fig. 5. Each of 
the depictions of Fig. 5a and b present six 
different plots relating to m = 0.5, 1, 1.5, 2, 2.5, 
and 3. 

Table 1. Critical axial load parameter ( cr ) for tapered Timoshenko beams with different material non-homogeneity indexes (m) 
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n
s 

() 

Homogenous m=1 m=2 
m=3 

Present 

method 

Soltani 

et al. 

[43] 

Present 

method 

Soltani 

et al. 

[43] 

Present 

method 

Soltani 

et al. 

[43] 

Present 

method 

Soltani et 

al. [43] 

H
in

ge
d

-H
in

ge
d

 

0.0 7.546 4.546 4.662 4.667 5.539 5.556 6.049 6.075 

0.1 6.274 6.248 3.756 3.749 4.484 4.467 4.897 4.902 

0.2 5.055 5.036 2.930 2.926 3.501 3.487 3.833 3.839 

0.3 3.936 3.924 2.205 2.203 2.634 2.623 2.890 2.896 

0.4 2.934 2.928 1.584 1.584 1.879 1.882 2.076 2.082 

0.5 2.062 2.062 1.070 1.071 1.264 1.267 1.398 1.405 

0.6 1.333 1.337 0.661 0.663 0.776 0.780 0.858 0.865 

0.7 0.753 0.765 0.356 0.359 0.414 0.418 0.457 0.463 

0.8 0.341 0.350 0.150 0.154 0.171 0.176 0.188 0.194 

0.9 0.087 0.085 0.035 0.032 0.039 0.036 0.042 0.039 

F
ix

ed
-F

re
e 

0.0 2.291 2.291 1.710 1.712 1.982 1.986 2.097 2.104 

0.1 2.016 2.016 1.469 1.471 1.712 1.716 1.821 1.827 

0.2 1.743 1.743 1.233 1.235 1.446 1.450 1.547 1.553 

0.3 1.472 1.472 1.006 1.008 1.186 1.190 1.277 1.283 

0.4 1.204 1.205 0.789 0.791 0.935 0.939 1.013 1.020 

0.5 0.942 0.944 0.586 0.588 0.696 0.701 0.760 0.767 

0.6 0.688 0.691 0.401 0.404 0.476 0.481 0.524 0.530 

0.7 0.449 0.453 0.241 0.244 0.285 0.289 0.314 0.320 

0.8 0.236 0.241 0.114 0.117 0.133 0.136 0.146 0.151 

0.9 0.072 0.075 0.031 0.031 0.034 0.036 0.037 0.035 
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As shown in Fig. 5, for any value of the power-
law exponent, the stability of prismatic beam 
(=0) and tapered beam with =0.9 is most and 
least, respectively. It is observable that increasing 
the gradient index leads to the enlargement of the 
dimensionless buckling load for all values of the 
tapering ratio. The reason is the higher portion of 
the ZrO2 phase as the value of the gradient index 
rises. Also, it is found that for 0.5 1.5m  , the 

non-dimensional critical loads increase sharply 
whereas, for m > 1.5, the buckling resistance 
increases slightly and approaches maximum 
magnitude. 

In the following, the linear stability problem 
for simply supported and clamped-free beams 
made up of axially functionally graded materials 
in the presence of the Winkler foundation is 
investigated. For this purpose, the non-
dimensional buckling load is carried out for four 
different taper ratios (), namely 0, 0.2, 0.5, and 
0.8; where the first one is a prismatic beam, while 
the others are tapered ones. Note that the FEM 
results are obtained by discretizing the beam into 
6 elements.  

The variation of the lowest buckling load 
parameters for hinged-hinged and fixed-free 
Timoshenko beams resting on the Winkler type 
of foundation versus the elastic foundation 
constant (

wk ) are respectively presented in Figs. 

6 and 7. 
As can be seen, the variation of the Winkler 

elastic foundation parameter has a significant 
influence on the linear stability behavior of both 
beams under different circumstances. It is found 
from these figures that the critical buckling load 
parameters corresponding to the first mode are 
increased as the stiffness of the elastic foundation 
increases. In other words, the numerical 
outcomes show that the elastic foundation has a 
stabilizing effect on the stability characteristics of 
axially non-homogeneous and homogeneous 
Timoshenko beams with constant or variable 
cross-section. By pondering Fig. 6, one can 
remark that for homogeneous prismatic simply 
supported beam, the buckling load increases 
linearly due to the effect of uniform Winkler 
foundation. At the same time, this variation for 
double-tapered members is non-linear. 

It can be stated that the variation of stability 
behavior for the cantilever is similar to those for 
the hinged-hinged beam, but the latter beam 
appears to be more unstable than the former. 
Moreover, for any value of the Winkler’s 
parameters, the corresponding buckling load for 
the beam having constant material properties 
and a uniform cross-section is the highest and 
that for tapered beams having a material 
property according to power-law with index m = 
1 is the lowest. 

 
Fig. 5. Effects of the gradient index (m) on the normalized 
buckling load of tapered Timoshenko beam with different 

tapering ratios: (a) simply supported, (b) fixed-free 

 

Fig. 6. Influence of Winkler type elastic foundation modulus 
on the critical axial load parameters of simply supported 

Timoshenko beams: (a) 0 = , (b) 0.2 = , (c) 0.5 = , (d)

0.8 =  
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Fig. 7. Influence of Winkler type elastic foundation modulus 
on the critical axial load parameters of fixed-free 

Timoshenko beams: (a) 0 = , (b) 0.2 = , (c) 0.5 = , (d)

0.8 = . 

6.2 Example 2: Tapered Timoshenko beam versus 
tapered Euler-Bernoulli beam 

To depict the difference between the critical 
buckling loads of the Euler-Bernoulli beam 
theory and those of the Timoshenko beam model, 
this illustrative example is also considered. In this 
regard, for different values of slenderness ratio 
(L/b0), the lowest critical loads are calculated for 
hinged-hinged beam, and the results are listed in 
Table 2. The critical axial loads are also carried 
out for two cases: axially non-homogeneous and 
homogeneous beams. In the case of axially FG 
members, the distribution of modulus of 
elasticity is contemplated to vary in the 
longitudinal direction with a power-law 

formulation as expressed in Eq. (27). In this case, 
the material non-homogeneity parameter (m) is 
assumed to be equal to 1. Moreover, the buckling 
load is acquired for four different tapering 
parameters: =0, 0.2, 0.5, and 0.8. 

It should be noted here that the static stability 
responses of EBT are independent of the aspect 
ratio. Also, it is worth mentioning that the values 
of the taper parameter and the type of boundary 
conditions are selected in such a way that make 
comparison possible with available reference in 
the case of the tapered Euler-Bernoulli beam 
[33]. 

From Table 2, one can see that the elastic 
buckling loads calculated by employing the Euler-
Bernoulli theory are overestimated for all values 
of thickness ratio (L/b0). The difference between 
the EBT and shear deformation theory 
(Timoshenko beam model) is significant for deep 
members (L/b0<10). Note that for slender and 
long beams (L/b0>50), this difference is small and 
negligible (see Table 2). According to EBT, the 
influences of shear deformation and rotatory 
inertia are ignorable, and only the effect of 
flexural deformation is taken into account. In 
general, the effect of transverse shear 
deformation is to increase the deflection, which 
leads to a noticeable decrease in the value of the 
stiffness and rigidity of the member, and 
consequently, a weaker member being obtained. 
Therefore, a significant decrease in the elastic 
buckling loads of the member is observed. The 
shear deformation loses its effect on the 
transverse deflections, as the value of the 
thickness ratio increases. It is also clear that the 
exclusion of the shear deformation decreases the 
deflections and increases the buckling loads. 
Moreover, it is reasonable that the elastic critical 
load increases noticeably, when considering the 
Winkler foundation effects. This fact can be easily 
observed in Table 2. 

7. Conclusions 

In this paper, a hybrid numerical 
methodology to acquire the axial critical buckling 
loads of non-prismatic functionally graded beams 
based on the Timoshenko theory was proposed. 
This new technique combined the power series 
method and finite element solution and applied 
them to tapered beams lying on a uniform 
Winkler foundation. In this regard, the power 
series expansions method was used to solve the 
system of second-order differential equations 
with variable coefficients and determine the 
exact four sets shape functions for the non-
uniform element with four degrees of freedom. In 
turn, based on the principle of internal virtual 
work along the element axis, the exact element 
stiffness matrices for the buckling analysis of the 
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non-uniform Timoshenko beam resting on an 
elastic foundation were established. 

Table 2. The dimensionless buckling load of simply supported Timoshenko beam and Euler-Bernoulli beam 

Material  L/b0 
Timoshenko Beam Theory 

Euler-Bernoulli Beam Theory 

Soltani and Asgarian [33] 

0wk =  40wk =  80wk =  0wk =  40wk =  80wk =  

Homogenous 

 
0.0 

5 8.9687 13.0088 17.0567 

9.8694 13.9236 17.9778 
10 9.6289 13.6775 17.7285 

50 9.8607 13.9127 17.9652 

100 9.8681 13.9203 17.9728 

0.2 

5 5.8342 9.8243 13.7806 

6.3328 10.3542 14.3598 
10 6.1894 10.1952 14.1805 

50 6.3120 10.3228 14.3151 

100 6.3159 10.3269 14.3194 

0.5 

5 2.3178 5.7425 8.0535 

2.4891 6.0834 9.0018 
10 2.4288 5.9595 8.6897 

50 2.4664 6.0269 8.8817 

100 2.4676 6.0291 8.8876 

0.8 

5 0.3761 1.4630 1.8132 

0.4189 1.5901 2.0081 
10 0.3911 1.5449 1.9263 

50 0.3963 1.5729 1.9647 

100 0.3973 1.5742 1.9659 

m= 1 

0.0 

5 5.7001 9.6451 13.4935 

6.3961 10.3999 14.3801 
10 6.1959 10.1828 14.1351 

50 6.3715 10.3696 14.3422 

100 6.3772 10.3755 14.3487 

0.2 

5 3.5125 7.2245 10.3464 

3.9030 7.7599 11.4402 
10 3.7852 7.5997 11.1608 

50 3.8804 7.7214 11.3714 

100 3.8834 7.7252 11.3777 

0.5 

5 1.2538 3.7693 4.7225 

1.3790 4.3439 5.8474 
10 1.3369 4.1660 5.4850 

50 1.3654 4.2892 5.7569 

100 1.3663 4.2930 5.7656 

0.8 

5 0.1704 0.7620 0.9490 

0.1941 0.8995 1.1354 
10 0.1794 0.8272 1.0411 

50 0.1825 0.8500 1.0734 

100 0.1827 0.8508 1.0746 

 
The applicability and efficiency of the 

proposed finite element formulation in linear 
stability analysis of tapered AFG beams on the 
uniform elastic foundation were demonstrated 
by providing two illustrative examples in which 
the effects of the Winkler parameter, mechanical 
variation, and different boundary conditions 
were investigated. The acquired outcomes were 
contrasted with other analytical and numerical 
solutions presented in the literature. In most 
cases, it was concluded that by considering up to 
10 terms of power series and only 6 elements in 
mesh process, the buckling loads related to the 
lowest buckling loads of axially functionally 
graded Timoshenko beams resting on the elastic 
foundation and having variable cross-sections 
could be determined with high competency. 

Moreover, the numerical outcomes illustrated 
that Winkler’s elastic foundation had a stabilizing 
effect on the stability characteristics of axially 
non-homogeneous and homogeneous beams 
with different tapering ratios. It was also 
observed that the results obtained based on the 
Euler-Bernoulli model were greater than those 
predicted by the shear deformation beam model. 

Appendix A 

By using symbolic MATLAB software [44], the 
displacements functions iw and 𝜃𝑖(𝑖 = 0,1,2,3) 

are derived. The first few terms are expressed in 
the following forms: 
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