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Abstract
Maintenance scheduling of power generators is of particular importance for power grids from both
economic and reliability aspects. In this paper, the discrete firefly algorithm is implemented for
maintenance scheduling of generators. This project utilizes the combination of the discrete firefly
algorithm, as the main tool, and heuristic methods, as the secondary tool, for constructing initial
solutions and searching the solution space. The paper investigates a case study consisting of a 32-
generator problem formulated as a mixed-integer problem. The performance of the proposed method
is compared with those in the literature and its strengths and weaknesses are discussed. The obtained
results showed that performance of the proposed algorithm is not highly affected by its parameters’
values and is capable of providing multiple efficient maintenance schedules in a desirable time.
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Maintenance covers all activities associated with the functioning of the entire factory assets. Due
to the stochastic nature of failure incidents, this field is appealing to mathematical modelers, and
optimization techniques are employed in a broad range in this regard (Wang, 2012). About 15% to
40% of production costs are assigned to maintenance activities. The purpose of management and
planning of maintenance is to mitigate the undesired effects of breakdowns. Typically, two general
approaches are available to reach these objectives: Preventive Maintenance (PM) and Corrective
Maintenance (CM). While the former is about decreasing the probability of failure incidents during
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the system’s operation, the latter seeks to lower the intensity of undesired failure impacts after
its happening. The recent studies suggest that the Preventive Maintenance is more reasonable for
reaching the mentioned goals (Lo & Lofsten, 2000). PM problems concerns with determining the
maintenance tasks to be done and their scheduling with respect to the limited resources available.
In this regard, PM problem can be considered as a resource allocation and scheduling problem. In
the literature, PM is categorized into two general classes:
(a) studies that focus on inspection periods and parts replacements, and (b) studies aiming at parts
improvement (Gopalakrishnan et al., 2001). Scheduling the PM is an NP-hard problem. Factors
including maximizing the system’s reliability, minimizing the workforce, unemployment of workers,
and imposed costs, turn it into a Multi-Objective Optimization Problem (MOP) problem (Quan et
al., 2007). Prajapat et al. (2017) provided a review of the recent applications of PM optimization in
power plants.
From the mathematical viewpoint, Maintenance Scheduling (MS) is a non-linear, multi-constraints,
stochastic optimization problem. For simplicity, the linear form of MS problems is usually formulated
as Mixed Integer Programming (MIP) (Sumesh et al., 2012). Numerous intelligent methods, including
neural networks, simulated annealing, tabu search algorithm, ant colony, evolutionary techniques,
etc. are employed to solve such problems (Schlunz et al., 2013). These approaches are adopted to
find near-optimal solutions, the solution quality of which depends on the problem’s nature. In some
cases, an upper bound can be offered for the difference between the general optimal solution and the
one obtained with the mentioned methods (Nicolai & Dekker, 2008).
PM seems necessary in power systems to prevent the generators’ early deterioration and breakdown,
which leads to outages and unpredicted costs. Maintenance of generators in power systems includes
the scheduling and execution of field operations. Solving this scheduling program is of great essence,
for it affects short- and long-term programs of power generation commitment in power plants. In this
paper, the generator maintenance scheduling (GMS) problem is addressed. The larger the studied
power system, the greater the demand for its electricity (load) generation, and consequently, the more
complicated obtaining a proper scheduling program. Froger et al. (2016) offered a comprehensive
literature review on maintenance schedulings in the power industry.
Given the combinatorial nature of the problem, the exact solution approaches cannot reach the
optimal point in reasonable CPU times. Conversely, meta-heuristic algorithms require negligible
CPU times for obtaining near-optimal solutions. Thus, in this paper, a discrete firefly algorithm is
developed to find high-quality solutions in desirable CPU times.
The rest of the paper is organized as follows. In section 2, a brief literature review on GMS problem
and its solution methodologies is provided. Problem formulation is presented in Section 3. The
proposed meta-heuristic approach based on discrete firefly algorithm is delineated in detail in Section
4. Finally, numerical results and conclusions are discussed in Sections 5 and 6, respectively.

2. Literature review

According to the literature, objective functions can be categorized into three classes in terms of
economic, reliability and convenience criteria. These criteria usually conflict with each other and
cause the problem to become multi-objective, if considered simultaneously (Kralj & Petrovic, 1988).
From the economic perspective, minimizing the startup, production, and maintenance costs are
mainly considered.Benefit maximization is another economic goal interested in today’s competitive
market (Canto, 2008).Smoothing the reserved load throughout the planning horizon is at the focus of
reliability criteria. This goal is modeled by minimizing the reserved load (deficiency-surplus) squares.
Dahal & Chakpitak (2007) and Fung et al. (2007) implemented this class of functions as a single-
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objective problem. Eventually, the cornerstone of the convenience criteria, which is less addressed
in the literature, is minimizing the violation of constraints or schedule interruptions (Leou, 2006).
Apart from the diversity of objective functions mentioned above, a variety of solution methodologies
are also developed. Commercial softwares usually adopt exact methods such as branch and bound
for this purpose.Likewise, many meta-heuristic methods, including genetic algorithm (GA) (Dahal
et al., 2000), simulated annealing (SA) (Saraiva et al., 2011), tabu search (TS) (El-Amin et al.,
2000), ant colony optimization (ACO) (Fetanat & Shafipour, 2011; Fug et al., 2007), and particle
swarm optimization (PSO) (Sumesh et al., 2012) are implemented in practice. Hybrid meta-heuristic
methods have also been developed (Reihani et al., 2012).
Wang and Handschin (2000) and Baskar et al. (2003) employed genetic algorithm to solve GMS
problems. Yare and Venayagamoorthy (2010) and Ekpenyong et al. (2012) used PSO algorithm for
scheduling maintenance problems in generators. Samuel and Asir Rajan (2015) proposed a hybrid
evolutionary algorithm consisting of GA, PSO and frog leaping algorithm for long-term maintenance
of generators.
Balaji et al. (2016) introduced a differential evolution algorithm mixed with Lambda iterative method
to solve the GMS problem. Froger et al.(2018) used a large-scale neighborhood search algorithm based
on constrained programming to solve a wind turbine maintenance and scheduling problem.
Bali and Labdelaoui (2015) formed an optimal approach for solving the GMS problem utilizing a
hybrid algorithm based on a hybrid approach. Their objective function includes both reliability and
violation of constraints. To solve this problem, a new optimization strategy based on SA and ACO
was recommended. Kumarappan and Suresh (2015) proposed a hybrid algorithm of SA and PSO for
a transmission constrained maintenance scheduling problem.
Lakshminarayanan and Kaur (2018) developed a cuckoo search optimization (CSO) algorithm for
optimal maintenance scheduling of generator units. Umamaheswari et al. (2016) adopted a new
meta-heuristic algorithm called the Ant Lion Optimizer (ALO) algorithm to solve the scheduling
problem of generator preventive maintenance.
Abirami et al. (2015) considered a GMS problem aiming at maximizing reliability, and developed
a nature-inspired algorithm named Teaching Learning Based Optimization (TLBO) to solve their
problem. Hadjaissa et al. (2016) proposed a new competitive mechanism based on a modified genetic
algorithm to optimize the power system scheduling.
Tamil Selvi et al. (2018) implemented and solved the GMS problem utilizing a stepwise and compre-
hensive genetic algorithm. They also estimated the performance of the genetic algorithm concerning
time-saving and improvement in the quality of the solutions compared to the classical methods.
Table 1 and Table 2 summarize the literature based on the above discussions.

Table 1: Types of objective Functions in GMS problem

Reference Subject
(Canto, 2008) Objective function with cost criteria
(Dahl and Chakpitak, 2007),
(Foong et al., 2007), (Schlunz, 2011), Objective function with reliability criteria
Bali and Labdelaoui (2015),
Abirami et al (2015)
(Leou, 2006) Objective function with convenience criteria
(Kralj and Petrović, 1988) Multi-objective
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Table 2: The meta-heuristic algorithms used to solve GMS problem

Reference Subject
Dahal et al. (2000), Wang & Handschin (2000) Genetic Algorithm
Baskar et al. (2003), Hadjaissa et al. (2016),
Tamil Selvi et al. (2018)
Saraiva et al. (2011) Simulated Annealing
El-Amin et al. (2000) Tabu Search
Foong et. al. (2007), Fetanat & Shafipour (2011) Ant colony
Sumesh et al. (2012), Yare & Venayagamoorthy (2010), Particle Swarm
Ekpenyong et al. (2012)
Balaji et al. (2016) Differential Evolution Algorithm
Lakshminarayanan & Kaur (2018) Cuckoo search
Umamaheswari et al. (2016) Ant Lion Optimization
Abirami et al. (2015) Learning-based optimization
Froger et al. (2018) Neighborhood Search Algorithm
Reihani et al. (2012), Samuel & Asir Rajan (2015),
Bali & Labdelaoui (2015), Kumarappan & Suresh (2015) Hybrid Meta-heuristic Methods

3. Problem formulation

Depending on the complexity of the model, assumptions, and requirements, the GMS problem
comprises different constraints. One of its simplest shapes is the problem modeling with constraints
of the maintenance time window (earliest and latest times) and constraints of meeting the load
requirements. Moreover, extra constraints can be added to the problem in case of need.
In GMS problem, there are several objective functions to optimize and several scheduling constraints
to consider. In this paper, the reliability criterion for the objective function is selected. The goal is to
smooth the reserved load during the planning horizon, which is formulated as the minimization of the
sum of the squares of the reserved load (Schlunz, 2011). The reserved load is defined as the available
production capacity minus the load demand. Problem constraints include maintenance intervals for
each unit, meeting network demand and availability of maintenance personnel.
Suppose n is the number of generating units in the system, and m is the number of periods in the
planning horizon. Let’s take I = {1, . . . , n}� and �J = {1, . . . ,m} for generators and time periods,
respectively. The binary variable xij� is 1 if maintenance task of ith generator starts in jth period;
otherwise, it is 0. Also, the auxiliary variable yij� equals 1 if the ith generator is under maintenance
task in jth period; otherwise, it equals 0. The earliest and latest possible times to start repairing the
ith generator are also indicated by the parameters ei �and li�, respectively. Since there is only one
time to repair during the above period, the following constraint is added to the model:

li∑
j=ei

xij = 1, i ∈ I (1)

It is also known that a generator unit cannot be repaired outside the designated time period.
Therefore, equalities (2) and (3) are enforced.

xij = 0 j < ei or j > li i ∈ I (2)
yij = 0 j < ei or j > li + di − 1 i ∈ I (3)
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Where, di is the repair duration for ith generator. Equation (4) is also valid:

li+di−1∑
j=ei

yij = dij, i ∈ I (4)

Since interruptions in maintenance tasks are not allowed and it must be done in an integrated scheme,
constraints (5) and (6) are imposed.

yi,j − yi,j−1 ≤ xij, i ∈ I, j ∈ J \ {1} (5)
yi1 ≤ xi1, i ∈ I (6)

The load demand also limits the maintenance schedule so that the total load demand during each
time period must be met. �gij is generating capacity of ith generator in jth period, and �Dj is the
load demand in the jth duration. We offer the reliability margin S as a percentage of demand as
follows.

n∑
i=1

gij(1− yij) = Dj(1 + S) + rj. j ∈ J (7)

Where, rj� is the reserved level variable, which is defined as the portion of unused power generated
in jth period (except for the reliability margin). Maintenance personnel constraints concerning the
availability of manpower for maintenance operations should also be considered. m′

p,i,j� represents
the workforce required to repair ith unit in jth period, when repairs are started from pth period. if
�mk

i represents the manpower required to repair ith generator in kth period, then parameter m′
p,i,j�

is calculated as follows.

m′
p,i,j =

 mj−p+1
i if j − p < di

0 otherwise.
(8)

n∑
i=1

j∑
p=1

m′
p,i,jxip ≤ Mj, j ∈ J (9)

Where, Mj� indicates the number for manpower available in jth period.
Sometimes repairing several units at the same time is not permitted. A typical case for this constraint
can be considered as follows: If K sets of units are excepted from the constraint of simultaneous
repairs, then we denote the set of all K sets with K = {1, . . . , k} and denote Ik ⊆ I as the kth subset
of the excepted units (k ∈ K)
According to the definition, the set of exceptions will be as follows:∑

i∈lk

yijxip ≤ Kk, j ∈ J, k ∈ K. (10)

In the above formula Kk �is the maximum number of units in the subset Ik� that can be serviced
concurrently.
Finally, the constraints that determine variable types are given in (11 – 13):

xij ∈ {0, 1}, i ∈ I, j ∈ J. (11)
yij ∈ {0, 1}, i ∈ I, j ∈ J. (12)
rj ≥ 0, j ∈ J. (13)
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The objective function is to minimize the sum of the squares of the reserved load, which is formulated
as follows:

min
m∑
j=1

(DjS + rj)
2 (14)

The above modeling is a mixed integer quadratic program.

4. Solution methodology

Firefly algorithm (FA), derived from the behavior of fireflies in nature, was firstly introduced
in the work of Yang (2008). According to the simulation results presented by Yang on many test
problems, this algorithm showed higher efficiency and success rates compared to GA and PSO (Yang
& Press, 2010). Since this algorithm works well in continuous optimization problems, it can be
expected to perform well in discrete optimization problems too. Consequently, after introducing the
general form of this algorithm, its discrete version is also tested. In the following, we address some
of the parameters and variables applied in the FA algorithm:
Attractiveness. The attractiveness of any firefly is a relative value that is determined by distance.
The general structure of the attraction function by distance β(r) is as follows:

β(r) = β0e
−γrm m ≥ 1 (15)

In the above function r is the distance between two fireflies, β0 �is the attraction rate at r = 0, and
γ is the constant coefficient of light attraction by the environment.
Distance. The distance between two fireflies i and j, which are in coordinates Xi �and Xj �, is
computed using equation (16).

rij = ∥Xi −Xj∥ =

√√√√ d∑
k=1

(xik − xjk)2 (16)

where, xik� is kth component of Xi� vector.
Movement. The movement of ith firefly toward jth more luminous firefly is calculated by equation
(17):

Xi = Xi + β0e
−γr2ij(Xi −Xj) + α(rand− 1

2
) (17)

The third sentence in the above relation leads to divergence. α is a random parameter and rand is
a random number uniformly distributed in [0, 1].

4.1. Discrete Firefly Optimization Algorithm

To solve the maintenance scheduling problem addressed in the previous section, the firefly algorithm,
which is of a continuous nature, needs to be manipulated for problems with integer variables.
A discrete firefly algorithm (DFA) has been developed by Jati and Manurung (2013) to solve a
traveling salesman problem with Hamming’s distance instead of Euclidean distance. Hamming’s
distance for two series of numbers (two different solutions) is determined by the number of mismatches
of the solution components. Also, in 2008, a modified discrete particle swarm algorithm was adopted
to solve GMS problem, in which it rounds the new particle location (which is not necessarily an
integer vector) to the closest integer after calculating the new particle. Since the firefly algorithm
and the particle swarm have fundamental similarities, the same approach has been adopted in this



Generator maintenance scheduling using discrete firefly algorithm 11 (2020) No. 1, 367-379 373

project to implement the firefly algorithm in the GMS problem (Aliyu, 2008). In this case, the
equation related to the movement of firefly is as follows:

Xi = Xi +Round(β0e
−γr2ij(Xi −Xj) + α(rand− 1

2
)) (18)

In equation (18), the new location vector (on the left side of the equation) is computed by sum of
two integers on the right side. Other parts of the algorithm remain unchanged.

4.2. Firefly Algorithm implementation

Firstly, an initial population is generated. Then, over several steps, the solution space is searched,
and the algorithm is led to better desirable solutions. The way to apply this algorithm to the problem
is described in the following.

4.2.1. Pseudocode
The discrete firefly pseudocode for problem-solving is presented below.

Define objective function f(x) where x = (x1, . . . , xd)
T

Generate initialize a population of n fireflies xi (i = 1, 2, . . . , n) by heuristic method
Light intensify li at xi is determined by f(xi)
Define light absorbtion coefficient γ
While (t < MaxGeneration)

choose P percent of population
For i = 1 : n× p(n×% P fireflies)

For j = 1 : i
If (lj > li)

Move firefly i towards j in d-dimension by using movement equation
End if
Attractiveness varies with Euclidian distancer via exp(−γr2)
Evaluate new solutions and update light intensify

End for j
End for i
Choose remain (100− P ) Percent of population
For i = 1 : n× (1− P )(n×%(1− P ) firefly )

If (lj > li)
Move firefly i towards j in d-dimension by using heuristic methods

End if
Attractiveness varies with Euclidian distance r
Evaluate new solutions and update light intensify

End for i
Rank the fireflies and find the current best

End While
Post process result and visualization
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4.2.2. Solution representation

In this algorithm, a solution is represented by a vector of length 32 + 1; The first element
indicates the objective function value while the subsequent elements show the maintenance time
of each generator as an integer number.

4.2.3. The main part

The algorithm’s input data are taken from an Excel file which contains three input matrices.
The first matrix contains the production amount, maintenance time window (earliest and longest
possible), length of maintenance period, and number of workers required for 32 generators. The
second matrix includes data related to the constraints of simultaneous maintenance of generators.
The third matrix gives the demand for energy over 52 weeks. Afterwards, the parameters of the
problem, including population size, light absorption coefficient (γ)�, random motion parameter, and
the number of generations to be formed, are defined.
In the next step, the solution-making function is called to construct the initial population. The
population is firstly sorted by desirability and is divided into two sections, subsequently. The first
20% of the population are utilized by the discrete firefly algorithm to search the solution space. The
remaining 80% is broken into four equal sections on each of which a specific scenario is implemented.
These scenarios are innovatively developed by the authors and are as follows:

(A) Comparing the offspring with the best solution produced in all past generations and moving
toward it through averaging maintenance times

(B) Choosing a random number from the population, selecting two generators at random and
swapping their maintenance times

(C) Shifting generators’ maintenance times randomly within the time window
(D) Replacing the least desirable solutions with new randomly generated solutions.

After the new generation is produced, the solution-correcting function is called to correct some of the
violated constraints and determine the objective function value of the solution. In each generation,
by recalling the solution-making function, the duplicated solutions are replaced by new ones and the
entire population is sorted by the objective function. Finally, the best results are stored in each
generation, and the next generation is created.

4.2.4. Solution-making function

This function has two inputs, including the first and the third matrices defined previously. Each
calling of this function generates an initial solution such that model constraints are maintained except
for limitations on simultaneous repair of generators. Additionally, a maximum of five weeks out of
52 weeks is permitted to violate the positive constraint of the reserved amount. That is, every time
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this function is executed, a solution is generated for which a maximum of 12 constraints out of 175
constraints can be violated. This number is chosen so that a good balance can be established between
the speed of solution production and its quality.

4.2.5. Solution-correcting function

This function modifies a part of the selected solutions and entails four main inputs: three problem
data matrices and one solution vector. The output of this function is a response vector balanced
by the value of the given function. By this function, the violated constraints in the solution are
identified and counted. Some of these constraints, which relate to the maximum available workers,
are corrected. For other violations, proportionate to their number, a penalty is imposed on the
objective function. This approach is adopted because correcting the solution vector with respect to
all 175 constraints is exhaustive and time-consuming.
The new form of the objective function by adding the mentioned penalties is as follows:

f(x) = f(x) + wlPl + wePe

Pl� and �Pe are respectively the violated constraints of the reserved load, and the constraint of
concurrent repair prohibition, for which weights wl� and we� are considered proportionally.

4.3. An example

The algorithm was implemented 20 times by setting the parameter values as the following:
Generation production number: 50
Number of fireflies: 20
Light absorption coefficient (γ) : 0.001
Random Motion Parameter (α) : 1
Here is an example answer to the problem:

Table 3: Generator Maintenance Problem Sample

Generator No. 1 2 3 4 5 6 7 8 9 10 11
Starting week for maintenance 10 6 13 27 8 27 23 49 3 46 24

Generator No. 12 13 14 15 16 17 18 19 20 21 22
Starting week for maintenance 15 11 34 10 10 2 1 17 20 31 1

Generator No. 23 24 25 26 27 28 29 30 31 32
Starting week for maintenance 45 29 32 51 40 18 35 19 42 37

The objective function for the above answer is 3.45107MW 2, which is obtained in 172 seconds which
is a satisfactory performance compared to the literature.

4.4. Combining with heuristic local search

Heuristic neighborhood production structures have also been employed to produce more diverse
solutions. To this end, the solution population is subdivided into subgroups. In each of these
subgroups, a variety of heuristics are used to search for local solutions. Comparison of the produced
solution with the best one and moving toward it, pair replacements, and shifting repair times are
some of these heuristic methods utilized in the local search.
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5. Computational results

The data of a benchmark problem was taken from the literature to examine the performance of the
proposed algorithm. Parameters were adjusted using a trial and error approach. Parameter of light
absorption coefficient (γ) was set to 0.001. α was chosen to be 3 according to the response vector
scale. Noteworthy, the firefly algorithm showed insignificant sensitivity regarding its parameters’
values and its performance was only affected by remarkable changes in parameters’ values. Running
this algorithm on several test problems indicated that the algorithm has a high convergence rate at
the initial steps and obtains desirable solutions.

5.1. Test problem

The 32-unit GMS problem is originated from the IEEE 1979 Reliability Testing System, which
intends to minimize the reserved load over the planning horizon by considering maintenance time
window constraints, satisfying demand reliably, labor constraints, and a set of concurrent repair
prohibition constraints. The theoretical lower bound for this problem is 33363252MW 2.
The developed discrete firefly algorithm was coded in MATLAB version 7.8.0 (R2009a) and run on
a computer with an Intel Pentium P6200 2.13GHz processor with 2GB of RAM and Windows 7
Ultimate 64-Bit as operating system.
In Fig.1, the minimum and average values of the objective function obtained from the implementation
of the discrete firefly algorithm were compared with four simulated annealing temperature reduction
functions (Geo-Huang-VanL-Triki). The best solution obtained by the discrete firefly algorithm was
34509254 MW 2, which is only 3.43% higher than the theoretical lower bound.

Figure 1: Discrete firefly algorithm versus the four simulated annealing temperature reduction functions
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In Table 4 the mean and standard deviation of computing times in the discrete firefly algorithm
is compared with the four simulated annealing temperature reduction functions. It can be clearly
seen that DFA outperforms Triki on both measures. Moreover, since the computation capabilities of
the Computer used in this paper was weaker than that of the benchmark paper, it can be claimed
that its performance was also acceptable regarding other SA settings.

Table 4: Comparison of the solution time of the discrete firefly algorithm and the simulated annealing

SA DFA
Geo Huang VanL Triki

Average (seconds) 78.95 13.78 119.89 286.01 158.83

Standard deviation 3.49 1.19 6.74 1008.9 22.12

Table 5 compares the performance of a discrete firefly algorithm with the four simulated annealing
temperature reduction functions. After 50 times of the algorithm execution, the number of solutions
was improved, and the average of the solutions was obtained every time the algorithm was executed
and its maximum improvement was obtained. Since the discrete firefly algorithm in the early steps
usually yields good results, the number of improved solutions in the 50 iterations of the algorithm
was smaller than that of the simulated annealing.

Table 5: Comparison of the performance of the discrete firefly algorithm and the simulated annealing

SA DFA

Geo Huang VanL Triki

number of improved solutions 27 28 41 29 6
in 50 iterations

Average improvement (%) 0.03 0.05 0.03 0.9 0.06

Maximum improvement (%) 0.22 0.42 0.18 0.75 0.11

6. Conclusions

In this project, a discrete firefly algorithm was executed on a generator maintenance problem,
with the aim of minimizing the square of the reserved load over the planning horizon by considering
the time window of maintenance, meeting the demand with reliability margin, labor constraints, and
the set of constraints on concurrent repairs. The results of this implementation revealed that the
firefly algorithm was able to obtain suitable solutions for this problem at acceptable CPU times.
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Moreover, by embedding multiple heuristic structures in the DFA to search more efficiently in the
solution space, its convergence performance was enhanced significantly.
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