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Abstract

In this article, we secure couple of exciting common fixed point theorems via simulation functions
in Branciari metric spaces context. These results improve, complement and generalize the recent
fixed point theorems of Aydi et al. [Results Math., 71(2017), no. 1-2, 73-92] and few others also.
Our findings are aptly endorsed by some interesting non-trivial examples which also illustrate the
usefulness of these generalizations. Finally, we discuss an application of our conceived results to a
certain type of integral equations.
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1. Introduction and preliminaries

The concept of a simulation function η and the notion of𝟋-contractions with respect to η were defined
by Khojasteh et al. [19]. They generalized the Banach contraction principle [6] and established several
fixed point theorems via such auxiliary functions in complete metric spaces. Firstly we note down
the definition of a simulation function.

Definition 1.1. [19] A map η : [0,∞) × [0,∞) → R is said to be a simulation function if the
following properties hold:
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(η1) η(0, 0) = 0;

(η2) η(t, s) < t− s for each s, t ∈ [0,∞);

(η3) for any two sequences (sn) and (tn) in [0,∞) such that lim
n→∞

sn = lim
n→∞

tn > 0, we have

lim sup
n→∞

η(tn, sn) < 0.

The family of simulation functions is denoted by 𝟋. The following is the definition of a Z-contraction
with respect to a simulation function η.

Definition 1.2. [19] Suppose f : X → X be any self-mapping and η ∈ Z be a simulation function.
Then f is said to be a Z-contraction with respect to η, if for all x, y ∈ X,

η(d(fx, fy), d(x, y)) ≥ 0

holds.

For some examples, notions and interesting results on simulation functions, the readers are referred
to [3, 8, 9, 18, 19, 21, 23, 25, 26]. Now we recall the idea of (c)-comparison functions. Let us consider
the set of functions ψ : [0,∞) → [0,∞) such that

(Ψ1) ψ is non-decreasing;

(Ψ2)
+∞∑
n=1

ψn(t) <∞ for all t > 0, where ψn is the nth-iterate of ψ.

These functions are known in the literature as (c)-comparison functions. The family of such functions
are denoted by Ψ. Also, it can be easily proved that if ψ is a (c)-comparison function, then ψ(t) < t
for any t > 0. Now we recollect the notion of α-admissible mappings.

Definition 1.3. [5] Given that f, g : X → X are two self-maps and α : X ×X → [0,∞). Then the
pair (f, g) is said to be α-admissible if

x, y ∈ X, α(x, y) ≥ 1 implies min{α(fx, fy), α(gx, fy), α(fx, gy), α(gx, gy)} ≥ 1. (1.1)

If f = g, then f is called α-admissible [27].

On the other hand, in 2000, Branciari [7] initiated the concept of Branciari (or rectangular) metric
spaces, where the triangular inequality is replaced by a rectangular one. Such spaces are explored
thoroughly and as a result, many fixed point results have come forth in this setting (see for example
[1, 2, 4, 11, 12, 13, 14, 15, 16, 17, 22, 29]). Here we note the following proposition by Kirk and
Shahzad [20] in Branciari metric spaces which is useful in the sequel.

Proposition 1.4. [20] Suppose that (xn) is a Cauchy sequence in a Branciari metric space such that

lim
n→∞

d(xn, u) = lim
n→∞

d(xn, z) = 0

where u, z ∈ X. Then u = z.

Recently, Aydi et al. [5] coined the notion of (α, ψ)-Meir-Keeler-contractions in the setting of Bran-
ciari metric spaces and obtained some common fixed point theorems involving these contractions.
Further, the authors also introduced the concept of a generalized (α-ψ)-contractive pair of mappings
as follows:
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Definition 1.5. Let (X, d) be a Branciari metric space and f, g : X → X be two given mappings.
We say that (f, g) is a generalized (α-ψ)-contractive pair of mappings if there are two functions
α : X ×X → [0,∞) and ψ ∈ Ψ such that

α(x, y)d(fx, gy) ≤ ψ(Mf,g(x, y)) and α(x, y)d(gx, fy) ≤ ψ(Mg,f (x, y)) (1.2)

for all x, y ∈ X, where
Mh,k(x, y) = max{d(x, y), d(x, hx), d(y, ky)},

for h, k : X → X.

In this paper, firstly we introduce the new notion of a generalized Λ-contraction pair of mappings with
respect to any simulation function η. Further, we secure a couple of common fixed point theorems
in complete Branciari metric spaces concerning such contractions. The obtained results generalize
the findings of Aydi et al. [5] and unify many other existing results in the literature. However,
our findings are suitably validated by constructive numerical examples. Moreover, we investigate for
some existence and uniqueness criteria to guarantee a unique common solution to a pair of integral
equations via our obtained findings.

2. Main Results

In this section, we first introduce the notion of a generalized Λ-contraction pair. Then we secure
couple of common fixed point results involving the aforementioned contractions. Throughout the
article, N and N0 stands for the set of natural numbers and whole numbers.

Definition 2.1. Let (X, d) be a Branciari metric space and f, g : X → X be two self-mappings. We
say that (f, g) is a generalized Λ-contraction pair of mappings with respect to a simulation function
η, if there are two functions α : X ×X → [0,∞) and ψ ∈ Ψ such that for all x, y ∈ X

(a) η
(
α(x, y)d(fx, gy),Mf,g(x, y)

)
≥ 0 and (b) η

(
α(x, y)d(gx, fy),Mg,f (x, y)

)
≥ 0. (2.1)

Whenever f = g, the mapping f is said to be a generalized Λ-contraction with respect to η. In
the case when either (a) or (b) holds, (f, g) is said to be a semi-generalized Λ-contraction pair of
mappings with respect to η.

In the following, we state our first main result.

Theorem 2.2. Let (X, d) be a complete Branciari metric space, f, g : X → X be two self-maps and
η ∈ 𝟋. Suppose that

(i) (f, g) is a generalized Λ-contraction pair of mappings with respect to η;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1, α(x0, gx0) ≥ 1 and α(x0, fgx0) ≥ 1;

(iii) both of f and g are continuous and for any sufficiently large n ∈ Z+, (fg)nx0 = (gf)nx0.

Then there exists a common fixed point u ∈ X of f and g.

Proof . From assumption (ii), there exists x0 ∈ X such that α(x0, fx0) ≥ 1, α(x0, gx0) ≥ 1 and
α(x0, fgx0) ≥ 1. We construct a sequence (xn) in X as follows:

xn =

{
gxn−1, if n is even,
fxn−1, if n is odd

(2.2)
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for all n ∈ N. So x1 = fx0 and x2 = gx1 for all n ∈ N0. Since the pair (f, g) is α-admissible, we have

α(x0, x1) = α(x0, fx0) ≥ 1 ⇒ α(x1, x2) = α(fx0, gx1) = α(fx0, gfx0) ≥ 1.

By induction, we obtain
α(xn, xn+1) ≥ 1, for all n ∈ N0. (2.3)

Starting with α(x0, x2) = α(x0, gfx0) ≥ 1 ⇒ α(x1, x3) = α(fx0, fx2) = α(fx0, f(gfx0)) ≥ 1, and so,

α(xn, xn+2) ≥ 1, for all n ∈ N0. (2.4)

Suppose that there exists n0 such that x2n0 = x2n0+1 for some n0 ∈ N. Then u = x2n0 is a com-
mon fixed point of f and g. Indeed, u = x2n0 = x2n0+1 = fx2n0 = fu. Now, we show that
d(x2n0+1, x2n0+2) = 0. Since

0 ≤ η
(
α(x2n0 , x2n0+1)d(x2n0+1, x2n0+2),Mf,g(x2n0 , x2n0+1)

)
= η

(
α(x2n0 , x2n0+1)d(x2n0+1, x2n0+2),max{d(x2n0 , x2n0+1), d(x2n0+1, x2n0+2)}

)
= η

(
α(x2n0 , x2n0+1)d(x2n0+1, x2n0+2), d(x2n0+1, x2n0+2)

)
< d(x2n0+1, x2n0+2)− α(x2n0 , x2n0+1)d(x2n0+1, x2n0+2).

Therefore

α(x2n0 , x2n0+1)d(x2n0+1, x2n0+2) < d(x2n0+1, x2n0+2) ⇒ α(x2n0 , x2n0+1) < 1,

which is a contradiction. Hence, u = x2n0+1 = x2n0+2 = gx2n0+1 = gu. Therefore, u is a common
fixed point of f and g. Similarly when x2n0−1 = x2n0 for some n0 ∈ N, then also we can deduce that
u is a common fixed point of f and g. For the rest of the proof, we can assume that

xn ̸= xn+1 for all n ∈ N. (2.5)

Set

M(xn, xm) =

{
Mg,f (xn, xm), if n is odd and if m is even,
Mf,g(xn, xm), if n is even and if m is odd

for all m,n ∈ N.
Step 1. We now prove that

lim
n→∞

d(xn, xn+1) = 0. (2.6)

First, we claim that max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n, x2n+1), for all n ∈ N0. We argue by a
contradiction. Suppose that for some n ∈ N0, max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n+1, x2n+2).
For such n ∈ N0, we have

0 ≤ η
(
α(x2n, x2n+1)d(x2n+1, x2n+2),M(x2n, x2n+1)

)
= η

(
α(x2n, x2n+1)d(x2n+1, x2n+2), d(x2n+1, x2n+2)

)
< d(x2n+1, x2n+2)− α(x2n, x2n+1)d(x2n+1, x2n+2).

Hence, α(x2n, x2n+1)d(x2n+1, x2n+2) < d(x2n+1, x2n+2), and so α(x2n, x2n+1) < 1, which is a contradic-
tion with respect to (2.3). Thus, max{d(x2n, x2n+1), d(x2n+1, x2n+2)} = d(x2n, x2n+1), for all n ∈ N0.
Using (2.3) and Definition 2.1, it follows that

0 ≤ η
(
α(x2n, x2n+1)d(x2n+1, x2n+2),M(x2n, x2n+1)

)
= η

(
α(x2n, x2n+1)d(x2n+1, x2n+2),Mf,g(x2n, x2n+1)

)
= η

(
α(x2n, x2n+1)d(x2n+1, x2n+2),max{d(x2n, x2n+1), d(x2n, fx2n), d(x2n+1, gx2n+1)}

)
= η

(
α(x2n, x2n+1)d(x2n+1, x2n+2),max{d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2)}

)
= η

(
α(x2n, x2n+1)d(x2n+1, x2n+2),max{d(x2n, x2n+1), d(x2n+1, x2n+2)}

)
= η

(
α(x2n, x2n+1)d(x2n+1, x2n+2), d(x2n, x2n+1)

)
< d(x2n, x2n+1)− α(x2n, x2n+1)d(x2n+1, x2n+2),

(2.7)
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for all n ∈ N0. Thus, we have

d(x2n+1, x2n+2) ≤ α(x2n, x2n+1)d(x2n+1, x2n+2) < d(x2n, x2n+1), (2.8)

for all n ∈ N0. Similarly, we can obtain that max{d(x2n−1, x2n), d(x2n, x2n+1)} = d(x2n−1, x2n) for all
n ∈ N. Therefore,

0 ≤ η
(
α(x2n−1, x2n)d(x2n, x2n+1),M(x2n−1, x2n)

)
= η

(
α(x2n−1, x2n)d(x2n, x2n+1),Mg,f (x2n−1, x2n)

)
= η

(
α(x2n−1, x2n)d(x2n, x2n+1),max{d(x2n−1, x2n), d(x2n−1, gx2n−1), d(x2n, fx2n)}

)
= η

(
α(x2n−1, x2n)d(x2n, x2n+1),max{d(x2n−1, x2n), d(x2n−1, x2n), d(x2n, x2n+1)}

)
= η

(
α(x2n−1, x2n)d(x2n, x2n+1),max{d(x2n−1, x2n), d(x2n, x2n+1)}

)
= η

(
α(x2n−1, x2n)d(x2n, x2n+1), d(x2n−1, x2n)

)
< d(x2n−1, x2n)− α(x2n−1, x2n)d(x2n, x2n+1),

for all n ≥ 1. Thus, we have

d(x2n, x2n+1) ≤ α(x2n−1, x2n)d(x2n, x2n+1) < d(x2n−1, x2n), (2.9)

for all n ≥ 1. From (2.8) and (2.9), we have d(xn, xn+1) < d(xn−1, xn), for all n ≥ 1. So, there
exists some ϵ ≥ 0 such that limn→∞ d(xn, xn+1) = ϵ. We shall prove that ϵ = 0. On the contrary,
suppose that ϵ > 0. From (2.8) and (2.9), we have limn→∞ α(xn−1, xn)d(xn, xn+1) = ϵ. Set sn =
α(xn−1, xn)d(xn, xn+1) and tn = d(xn, xn+1). By Definition 1.1-(η3), we have

0 ≤ lim supn→∞η (d (xn, xn+1) , α (xn−1, xn) d (xn, xn+1)) = lim supn→∞η (tn, sn) < 0,

which is a contradiction. Therefore, ϵ = 0.
Step 2. We now prove

lim
n→∞

d(xn, xn+2) = 0. (2.10)

On the contrary we consider that

lim
n→∞

d(xn, xn+2) = a > 0. (2.11)

Also, we construct another sequence (yn) defined as

y0 = x0, y1 = gy0, y2 = fy1, . . . , y2n = fx2n−1 and y2n+1 = gy2n . . . ,

for all n ∈ N. Now, by (iii), we can derive that

x2n = (TS)nx0 = (ST )nx0 = (ST )ny0 = y2n

for sufficiently large positive integer n. Also, using similar calculations as in the proof of

lim
n→∞

d(xn, xn+1) = 0,

we can obtain
lim
n→∞

d(yn, yn+1) = 0. (2.12)

Further, from (2.4) we have, α(x2n−1, x2n+1) ≥ 1 and hence,

α(x2n−1, x2n+1) = α(x2n−1, y2n+1) = α(fx2n−2, gy2n) = α(fx2n−2, gx2n) ≥ 1.
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On the other hand, we have

0 ≤ η
(
α(x2n−1, x2n+1)d(gx2n−1, fx2n+1),Mg,f (x2n−1, y2n+1)

)
< Mg,f (x2n−1, y2n+1)− α(x2n−1, y2n+1)d(gx2n−1, fx2n+1).

This implies that

α(x2n−1, y2n+1)d(gx2n−1, fx2n+1) < Mg,f (x2n−1, y2n+1). (2.13)

Now using (2.13), we have

d(x2n, x2n+2) = d(x2n, y2n+2)

= d(gx2n−1, fy2n+1)

≤ α(x2n−1, y2n+1)d(gx2n−1, fy2n+1)

≤Mg,f (x2n−1, y2n+1)

= max{d(x2n−1, x2n+1), d(x2n−1, gx2n−1), d(y2n+1, fy2n+1)}
= max{d(x2n−1, x2n+1), d(x2n−1, x2n), d(y2n+1, y2n+2)}
= d(x2n−1, x2n+1)

= d(fx2n−2, gx2n)

≤ α(x2n−2, x2n)d(fx2n−2, gx2n)

≤Mf,g(x2n−2, x2n)

= max{d(x2n−2, x2n), d(x2n−2, fx2n−2), d(x2n+1, gx2n)}
= max{d(x2n−2, x2n), d(x2n−2, x2n−1), d(x2n+1, x2n+1)}
= d(x2n−2, x2n) (2.14)

for all n ∈ N0. Thus, we have

d(x2n, x2n+2) ≤α(x2n−2, x2n)d(fx2n−2, gx2n)

=α(x2n−2, x2n)d(x2n−1, x2n+1) ≤ d(x2n−2, x2n), (2.15)

for all n ∈ N0. From (2.15), we have

lim
n→∞

α(x2n−2, x2n)d(x2n−1, x2n+1) = a.

Set sn = α(x2n−2, x2n)d(x2n−1, x2n+1) and tn = d(x2n, x2n+2). By Definition 1.1-(η3), we have

0 ≤ lim sup
n→∞

η (d (x2n, x2n+2) , α(x2n−2, x2n)d(x2n−1, x2n+1)) = lim sup
n→∞

η (tn, sn) < 0,

which is a contradiction. Therefore, a = 0.
Step 3. Here we prove that x2n+1 ̸= x2m+1 and x2n ̸= x2m for all n ̸= m. The discussion

naturally splits into the following two cases:
Case-I: if for some m,n ∈ N0, with m > n, x2n = x2m;
Case-II: if for some m,n ∈ N0, with m > n, x2n+1 = x2m+1.
In Case-I, by Step 1, the sequence (d(xn, xn+1)) is decreasing, so we have,

d(x2n, x2n+1) = d(x2n, fx2n)
= d(x2m, fx2m)
= d(x2m, x2m+1)
< d(x2n, x2n+1),



Common fixed point theorems on Branciari metric spaces 11 (2020) No. 1, 395-411 401

a contradiction. In Case-II, by Step 1, the sequence (d(xn, xn+1)) is decreasing, thus we get,

d(x2n+2, x2n+1) = d(gx2n+1, x2n+1)
= d(gx2m+1, x2m+1)
= d(x2m+2, x2m+1)
< d(x2n+2, x2n+1),

which is a contradiction. Thus, we can assume that xn ̸= xm for all n ̸= m.
Step 4. We now prove that (xn) is a Cauchy sequence. Suppose, on the contrary, that (xn) is
not a Cauchy sequence. Since (xn) is a sequence in X with distinct elements (that is, xn ̸= xm for
n ̸= m), and since from Step 1 and Step 2, d(xn, xn+1) and d(xn, xn+2) tend to 0 as n → ∞, using
Lemma 3.3 from [12], there exist ϵ > 0 and two subsequences (mk) and (nk) of positive integers such
that nk > mk > k and the following four sequences tend to ϵ as n→ ∞

d(xmk
, xnk

) , d(xmk
, xnk+1

) , d(xmk−1
, xnk

) , d(xmk−1
, xnk+1

). (2.16)

Thus, by Step 1, Step 2 and (2.16), we find that

lim sup
k→∞

M(xmk
, xnk

) = ϵ. (2.17)

Since the pair (f, g) is α-admissible, we may get α(xmk
, xnk

) ≥ 1. Regarding (f, g) is a generalized
Λ-contraction pair of mappings with respect to η and considering mk as an odd number and nk as
an even number, we get that

0 ≤ η
(
α(xmk

, xnk
)d(xnk+1

, xmk+1
),M(xmk

, xnk
)
)

= η
(
α(xmk

, xnk
)d(xnk+1

, xmk+1
),Mf,g(xmk

, xnk
)
)

= η
(
α(xmk

, xnk
)d(xnk+1

, xmk+1
),max{d(xmk

, xnk
), d(xmk

, fxmk
), d(xnk

, gxnk
)}
)

= η
(
α(xmk

, xnk
)d(xnk+1

, xmk+1
),max{d(xmk

, xnk
), d(xmk

, xmk+1
), d(xnk

, xnk+1
)}
)

< max{d(xmk
, xnk

), d(xmk
, xmk+1

), d(xnk
, xnk+1

)} − α(xmk
, xnk

)d(xnk+1
, xmk+1

),

(2.18)

for all k ∈ N. Consequently, we have

0 < d(xmk+1
, xnk+1

) ≤ α(xmk
, xnk

)d(xmk+1
, xnk+1

)
< max{d(xmk

, xnk
), d(xmk

, xmk+1
), d(xnk

, xnk+1
)}, (2.19)

for all k ∈ N. From (2.19), together with (2.16) and (2.17), we get

lim
k→∞

α(xmk
, xnk

)d(xmk+1
, xnk+1

) = ϵ.

Set sn = M(xmk
, xnk

) and tn = α(xmk
, xnk

)d(xmk+1
, xnk+1

). By Definition 1.1-(η3) and the relation
(2.17), we can conclude that

0 ≤ lim sup
k→∞

η
(
α(xmk

, xnk
)d(xmk+1

, xnk+1
),M(xmk

, xnk
)
)
< 0,

which is a contradiction. Therefore, (xn) is a Cauchy sequence. Since X is a complete Branciari
metric space, there exists u ∈ X such that (xn) converges to u. Thus,

lim
n→∞

d(xn, u) = 0. (2.20)
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Step 5. We claim that u is a common fixed point of f and g. Since, f and g are continuous,
by (2.20), we have

lim
n→∞

d(x2n+1, fu) = lim
n→∞

d(fx2n, fu) = 0,

and
lim
n→∞

d(x2n, gu) = lim
n→∞

d(gx2n−1, gu) = 0.

By Proposition 1.4, we conclude that fu = u = gu. Hence, u is a common fixed point of f and g. □
Our next result involves a semi-generalized Λ-contraction pair of mappings and here we note that

down.

Theorem 2.3. Let (X, d) be a complete Branciari metric space, f, g : X → X be two self-maps and
η ∈ Λ. Suppose that

(i) (f, g) is a semi-generalized Λ-contraction pair of mappings with respect to η;

(ii) there exists x0 ∈ X such that α(x0, fx0) ≥ 1, α(x0, gx0) ≥ 1 and α(x0, fgx0) ≥ 1;

(iii) for every x, y ∈ X, α(x, y) = α(y, x);

(iv) both of f and g are continuous and for any sufficiently large n ∈ Z+, (fg)nx0 = (gf)nx0.

Then there exists a common fixed point u ∈ X of f and g.

Proof . We omit the proof. It is similar to the proof of Theorem 2.2. □

3. Some Examples

This section takes care of constructive examples which authenticates our obtained Theorem 2.2
concerning a generalized Λ-contraction pair of self-maps.

Example 3.1. We consider the complete metric space X = {0, 1
n
: n ∈ N, n ≥ 2} endowed with the

Branciari metric,

d(x, y) =


0, if x = y;
2, if x, y ∈ { 1

n
: n ∈ N, n ≥ 2};

1
2n
, if x = 1

n
, y = 0, x = 0, y = 1

n
.

It can be easily verified that d is not a metric but it is a Branciari metric. Now we define mappings
f : X → X such that

fx =

{
0, if x = 0;
1
n
, if x = 1

n
,

and g : X → X such that gx = 0 for all x ∈ X. We also consider η(t, s) = λs− t, t, s ∈ [0,∞), as
the required simulation function, where λ = 9

10
and define α : X ×X → [0,∞) as

α(x, y) =


1
2
, if x = y;

0, if x = 1
n
, y = 1

m
with n ̸= m;

1
n
, x = 1

n
, y = 0 or x = 0, y = 1

n
.

Therefore, we have,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =λMf,g(x, y)− α(x, y)d(fx, gy). (3.1)

Here we have three cases.
Case-I: when x = y;
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Subcase-I: x = 0 = y;
In this case, we obtain

Mf,g(x, y) =max{d(x, y), d(x, fx), d(y, gy)}
=max{d(0, 0), d(0, f0), d(0, g0)}
=max{d(0, 0), d(0, 0), d(0, 0)}
=0,

and
d(f0, g0) = 0.

Putting these values in (3.1), we obtain,

η(α(x, y)d(fx, gy),Mf,g(x, y)) = η(0, 0) =0

≥0.

This is the trivial case.
Subcase-II: x = 1

n
= y;

We get,

Mf,g(x, y) =max{d(x, y), d(x, fx), d(y, gy)}

=max

{
d

(
1

n
,
1

n

)
, d

(
1

n
, f

1

n

)
, d

(
1

n
, g

1

n

)}
=max

{
d

(
1

n
,
1

n

)
, d

(
1

n
,
1

n

)
, d

(
1

n
, 0

)}
=max

{
0,

1

2n

}
=

1

2n
,

and

d

(
f
1

n
, g

1

n

)
= d

(
1

n
, 0

)
=

1

2n
.

Putting the values in (3.1), we obtain,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η

(
1

4n
,
1

2n

)
=

9

10
.
1

2n
− 1

4n

=
1

4n

(
9

5
− 1

)
≥0.

Case-II: x = 1
n
, y = 0 or x = 0, y = 1

n
;

Subcase-I: x = 1
n
, y = 0;
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For this case, we have,

Mf,g(x, y) =max{d(x, y), d(x, fx), d(y, gy)}

=max

{
d

(
1

n
, 0

)
, d

(
1

n
, f

1

n

)
, d(0, g0)

}
=max

{
1

2n
, d

(
1

n
,
1

n

)
, d(0, 0)

}
=

1

2n
,

and

d

(
f
1

n
, g0

)
= d

(
1

n
, 0

)
=

1

2n
.

From (3.1), we obtain,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η

(
1

n
.
1

2n
,
1

2n

)
=

9

10
.
1

2n
− 1

2n2

=
1

2n

(
9

10
− 1

n

)
≥0, [as n ≥ 2].

Subcase-II: x = 0, y = 1
n
;

We get,

Mf,g(x, y) =max{d(x, y), d(x, fx), d(y, gy)}

=max

{
d

(
0,

1

n

)
, d(0, f0), d

(
1

n
, g

1

n

)}
=max

{
1

2n
, d(0, 0), d

(
1

n
, 0

)}
=max

{
1

2n
, 0

}
=

1

2n
,

and

d

(
f0, g

1

n

)
= d(0, 0) = 0.

Hence taking care of (3.1), we obtain,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η

(
0,

1

2n

)
=

9

10
.
1

2n
≥0.
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Case-III: x = 1
n
, y = 1

m
with n ̸= m;

So, we obtain,

Mf,g(x, y) =max

{
d

(
1

n
,
1

m

)
, d

(
1

n
, f

1

n

)
, d

(
1

m
, g

1

m

)}
=max

{
2, d

(
1

n
,
1

n

)
, d

(
1

m
, 0

)}
=max

{
2, 0,

1

2m

}
=2,

and

d

(
f
1

n
, g

1

m

)
= d

(
1

n
, 0

)
=

1

2n
.

Putting the values in (3.1), we obtain,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η (0, 2)

=
9

10
.2

≥0.

So condition (a) of Theorem 2.2 is satisfied. Similarly, one can check for condition (b). We skip the
verification. Therefore, f and g satisfy both the hypotheses of Theorem 2.2 and using the theorem, f
and g have a common fixed point and it is w = 0 ∈ X.

Example 3.2. Consider X = {1
2
, 2
3
, 3
4
, 4
5
} and define the generalized metric d on X as follows:

d

(
1

2
,
2

3

)
=d

(
3

4
,
4

5

)
= 0.2,

d

(
1

2
,
4

5

)
=d

(
2

3
,
3

4

)
= 0.3,

d

(
1

2
,
3

4

)
=d

(
2

3
,
4

5

)
= 0.6,

d(x, x) =0 for all x ∈ X.

We define mappings f, g : X → X such that fx = 3
4
for all x ∈ X and g : X → X such that

gx =


3
4
, if x = 1

2
, 3
4
;

4
5
, if x = 2

3
;

2
3
, if x = 4

5
.

We also consider η(t, s) = s
s+1

− t, t, s ∈ [0,∞), as the required simulation function and α(x, y) = 1,
x, y ∈ X. Therefore, we have,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =
Mf,g(x, y)

Mf,g(x, y) + 1
− α(x, y)d(fx, gy) (3.2)

To verify criteria (a), we have to consider the following cases.
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Case-Ia: x = 1
2
, y = 2

3
.

For this case, we get,

Mf,g

(
1

2
,
2

3

)
=max

{
d

(
1

2
,
2

3

)
, d

(
1

2
, f

1

2

)
, d

(
2

3
, g

2

3

)}
=max

{
d

(
1

2
,
2

3

)
, d

(
1

2
,
3

4

)
, d

(
2

3
,
4

5

)}
=max{0.2, 0.6, 0.6}
=0.6,

and

d

(
f
1

2
, g

2

3

)
= d

(
3

4
,
4

5

)
= 0.2.

Using these in (3.2), we obtain,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η(0.2, 0.6)

=0.175

≥0.

Case-IIa: x = 1
2
, y = 3

4
.

Therefore we have,

Mf,g

(
1

2
,
3

4

)
=max

{
d

(
1

2
,
3

4

)
, d

(
1

2
, f

1

2

)
, d

(
3

4
, g

3

4

)}
=max

{
d

(
1

2
,
3

4

)
, d

(
1

2
,
3

4

)
, d

(
3

4
,
3

4

)}
=max{0.6, 0.6, 0}
=0.6,

and

d

(
f
1

2
, g

3

4

)
= d

(
3

4
,
3

4

)
= 0.

However, considering (3.2), we get

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η(0, 0.6)

=0.375

≥0.

Case-IIIa: x = 1
2
, y = 4

5
.

In this case, we have

Mf,g

(
1

2
,
4

5

)
=max

{
d

(
1

2
,
4

5

)
, d

(
1

2
, f

1

2

)
, d

(
4

5
, g

4

5

)}
=max

{
d

(
1

2
,
4

5

)
, d

(
1

2
,
3

4

)
, d

(
4

5
,
2

3

)}
=max{0.3, 0.6, 0.6}
=0.6,
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and

d

(
f
1

2
, g

4

5

)
= d

(
3

4
,
2

3

)
= 0.3.

Using the values in (3.2), we obtain,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η(0.3, 0.6)

=0.075

≥0.

Case-IVa: x = 2
3
, y = 3

4
.

Hence we have,

Mf,g

(
2

3
,
3

4

)
=max

{
d

(
2

3
,
3

4

)
, d

(
2

3
, f

2

3

)
, d

(
3

4
, g

3

4

)}
=max

{
d

(
2

3
,
3

4

)
, d

(
2

3
,
3

4

)
, d

(
3

4
,
3

4

)}
=max{0.3, 0}
=0.3,

and

d

(
f
2

3
, g

3

4

)
= d

(
3

4
,
3

4

)
= 0.

Indeed, from (3.2), we obtain,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η(0, 0.3)

=0.375

≥0.

Case-Va: x = 2
3
, y = 4

5
.

For this case, we get,

MT,S

(
2

3
,
4

5

)
=max

{
d

(
2

3
,
4

5

)
, d

(
2

3
, f

2

3

)
, d

(
4

5
, g

4

5

)}
=max

{
d

(
2

3
,
4

5

)
, d

(
2

3
,
3

4

)
, d

(
4

5
,
2

3

)}
=max{0.6, 0.3, 0.6}
=0.6,

and

d

(
f
2

3
, g

4

5

)
= d

(
3

4
,
2

3

)
= 0.3.

Using these in (3.2), we obtain,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η(0.3, 0.6)

=0.075

≥0.
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Case-VIa: x = 3
4
, y = 4

5
.

Here we obtain,

Mf,g

(
3

4
,
4

5

)
=max

{
d

(
3

4
,
4

5

)
, d

(
3

4
, f

3

4

)
, d

(
4

5
, g

4

5

)}
=max

{
d

(
3

4
,
4

5

)
, d

(
3

4
,
3

4

)
, d

(
4

5
,
2

3

)}
=max{0.2, 0, 0.6}
=0.6,

and

d

(
f
3

4
, g

4

5

)
= d

(
3

4
,
2

3

)
= 0.3.

Putting the values in (3.2), we get,

η(α(x, y)d(fx, gy),Mf,g(x, y)) =η(0.3, 0.6)

=0.075

≥0.

So condition (a) of Theorem 2.2 is satisfied. Similarly, we can check for condition (b). We skip
the calculation here. Therefore, f and g satisfy both the hypotheses of Theorem 2.2 and using the
theorem, f and g have a unique common fixed point and it is w = 3

4
∈ X.

4. Application

Fixed point and common fixed point results for various contractions in different metric setting
are hugely investigated and have been found diverse applications in differential equations, integral
equations and thermostat models (see [24, 10, 28] and references therein). The common fixed point
theorem secured in this article makes way for an interesting application on complete Branciari metric
spaces to warrant the existence and uniqueness of a common solution of the subsequent integral
equations.

Theorem 4.1. Consider the integral equations

x(t) = g(t) +

∫ 1

0

K1(t, s, x(s))ds, t ∈ [0, 1], (4.1)

x(t) = g(t) +

∫ 1

0

K2(t, s, x(s))ds, t ∈ [0, 1]. (4.2)

Suppose that

(1) K1, K2 : [0, 1]
2 × R → R and g : [0, 1] → R are members of L1([0, 1]);

(2) there exists λ ∈ [0, 1) such that for t, s ∈ [0, 1] and u, v ∈ R,

|K1(t, s, u)−K2(t, s, v)| ≤ λ|u− v|.

Then the Integral Equations (4.1) and (4.2) have a unique solution in C([0, 1]).
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Proof . Let X = C([0, 1]). We define d : X ×X → [0,∞) by

d(f, g) = ||f − g||∞ = max
s∈[0,1]

|f(s)− g(s)|.

Then (X, d) is a metric space and hence is a Branciari metric space. We define α : X ×X → [0,∞)
by

α(x, y) =

{
1, if x, y ∈ [0, 1],
0, otherwise.

Let S, T : X → X be

T (x(t)) = g(t) +

∫ 1

0

K1(t, s, x(s))ds, t ∈ [0, 1],

S(x(t)) = g(t) +

∫ 1

0

K2(t, s, x(s))ds, t ∈ [0, 1].

We mention that Integral Equations (4.1) and (4.2) have a unique common solution if and only if
the operators T and S have a common fixed point. Thus we have,

d(T, S) = ||Tx(t)− Sy(t)|| =
∣∣∣ ∫ 1

0

(K1(t, s, x(s))−K2(t, s, y(s)))ds
∣∣∣

≤
∫ 1

0

|K1(t, s, x(s))−K2(t, s, y(s))|ds

≤
∫ 1

0

λ|x(s)− y(s)|ds

= λ||x− y||∞
= λd(x, y)

≤ λMT,S(x, y)

⇒ λMT,S(x, y)− d(T, S) ≥ 0. (4.3)

Again,

d(S, T ) = ||Sx(t)− Ty(t)|| =
∣∣∣ ∫ 1

0

(K2(t, s, x(s))−K1(t, s, y(s)))ds
∣∣∣

≤
∫ 1

0

|K2(t, s, x(s))−K1(t, s, y(s))|ds

=

∫ 1

0

|K1(t, s, y(s))−K2(t, s, x(s))|ds

≤
∫ 1

0

λ|y(s)− x(s)|ds

≤
∫ 1

0

λ|x(s)− y(s)|ds

= λ||x− y||∞
= λd(x, y)

≤ λMS,T (x, y)

⇒ λMS,T (x, y)− d(S, T ) ≥ 0. (4.4)
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We consider the simulation function as η(t, s) = λs− t. Then from (4.3) and (4.4), and considering
α(x, y) = 1 we have, for all T, S ∈ X

η
(
α(x, y)d(T, S),MT,S(x, y)

)
≥ 0 and η

(
α(x, y)d(S, T ),MS,T (x, y)

)
≥ 0.

Then by Theorem 2.2, the Integral Equations (4.1) and (4.2) have a unique solution. □
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[13] Z. Kadelburg, S. Radenović, Fixed point results in generalized metric spaces without Hausdorff property, Math.
Sci., 8:125, (2014).
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