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Abstract

In this paper, Darbo fixed-point theorem is employed as a mathematical tool to examine existence of
the solution of some nonlinear functional stochastic integral equations which arise in many physical,
chemical and biological problems. Throughout this paper, we consider

(
C[0, 1], ∥.∥

)
as Banach space

equipped with uniform norm.
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1. Introduction

Many problems in different branches of science can be modeled by using nonlinear functional integral
equations [1-4]. Solutions of some functional-integral equations in Banach algebra have been discussed
in [5]. Maleknejad et al. have studied existence of solutions for some nonlinear integral equations and
nonlinear functional- integral equations in [6] and [7], respectively. The existence and uniqueness for
Volterra-Fredholm type integral equations have been investigated by using the coupled fixed point
theorems in the framework of Banach space C([a, b],R) in [8]. Petryshyn’s fixed point theorem has
been used to establish existence of solutions for some nonlinear Volterra integral equations in [9]. A
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fixed point theorem for an appropriate operator on the cartesian product of the given spaces endowed
with directed graphs has been applied in [10]. The concept of contraction via the measure of none-
compactness on the Banach space have been employed to investigate the existence of the solution of
fractional integral equations in the paper [11]. Furthermore, some extensions of Darbo fixed point
theorem has been given using the technique of measures of noncompactness. Then it used to prove
an existence result for a quadratic integral equation of Hammerstein type on an unbounded interval
in two variables [12].

In recent years, it has become obvious that different problems classically are modeled by deter-
ministic integral equations, can be more satisfactorily modeled by using various stochastic integral
equations such as stochastic integral equations [13] or stochastic integro-differential equations [14].
Recently, development, analysis and implementation of stable methods for providing the numerical
solution of various kinds of stochastic integral equations have attracted the attention of many re-
searchers. An efficient numerical technique has been applied to provide the approximate solution
of nonlinear stochastic Itô-Volterra integral equations driven by fractional Brownian motion with
Hurst parameter H ∈ (1

2
, 1) in the paper [15]. Maleknejad et al. have used block pulse functions

and their stochastic operational matrix of integration to solve stochastic Volterra integral equations,
numerically [16]. Meshless methods based on radial basis functions have been employed to solve two
dimensional linear stochastic integral equations and fractional stochastic integro-differential equa-
tions in the papers [17] and [18], respectively. Saffarzadeh et al. have proposed a numerical iterative
approach for obtaining approximate solutions of nonlinear stochastic Itô-Volterra integral equations
[19]. Their proposed method is based on a combination of the successive approximations method, the
linear spline interpolation and Itô approximation. The shifted Legendre spectral collocation method,
which is based on P panels M -point Newton-Cotes rules with M fixed for estimating Itô integrals,
has been utilized to solve stochastic fractional integro-differential equations [20]. A new numerical
method based on triangular functions for solving nonlinear stochastic differential equations has been
presented by Asgari et al in [21].

Before starting to solve every equations, we should first be sure that these equations have exact
solutions and then start to solve them. But, in none of the published paper on numerical solution of
stochastic integral equations, existence and uniqueness of solution to these equations have not been
investigated.

In this paper, we investigate existence of the solution of nonlinear functional stochastic integral
equations which have the following form

x(t) = f
(
t,

∫ t

0

u
(
t, s, x(s)

)
dB(s), x

(
α(t)

))
·g
(
t,

∫ 1

0

v
(
t, s, x(s)

)
dB(s), x

(
β(t)

))
, (1.1)

where t ∈ [0, 1], f(t, y, x), g(t, y, x), u(t, s, x) and v(t, s, x) are known stochastic process defined on
probability space (Λ,F ,P), x(t) is unknown function which is called solution of integral equations,
and B(t) is Brownian motion process defined on the same probability space (Λ,F ,P).

Eq. (1.1) is extension of some particular stochastic integral equations. For example

(i) if g(t, y, x) ≡ 1 and f(t, y, x) = a(t) + y, then Eq. (1.1) converts to the Itô-Volterra integral
equations of the second kind as follows

x(t) = a(t) +

∫ t

0

u
(
t, s, x(s)

)
dB(s),

(ii) if f(t, y, x) ≡ 1 and g(t, y, x) = b(t) + y, then Eq. (1.1) converts to the Itô-Fredholm integral
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equations of the second kind as follows

x(t) = b(t) +

∫ 1

0

v
(
t, s, x(s)

)
dB(s).

In this paper, we prove an existence theorem of solutions to some nonlinear functional stochastic
integral equations which are extension of some particular stochastic integral equations such as non-
linear Itô-Volterra integral equations [22] or stochastic quadratic integral equations. The main tool
applied in this work is Darbo fixed-point theorem for the product of two operators.

2. Darbo fixed-point theorem

The first measure of non-compactness, the function α, was introduced by C. Kuratowski [23] in 1930.
Later in 1955, G. Darbo [24] was the first person who applied the function α to examine operators
whose properties can be described as being intermediate between those of contraction and compact
mappings. He proved that if S be a continuous operator mapping nonempty, bounded, closed and
convex subset C of a Banach space E to itself such that

α(SX) ≤ hα(X), for all X ⊂ C, (2.1)

where 0 ≤ h < 1 is a constant number, then the operator S has at least one fixed point in the set C.
If Eq. (2.1) be satisfied, we say the operator S satisfies Darbo fixed-point theorem with respect to
measure α and constant h. Darbo fixed-point theorem is a generalization of well-known Schauder’s
fixed-point theorem and it involves the existence part of Banach’s fixed-point theorem.

Theorem 2.1. [25] Suppose that Ω be a nonempty, bounded, convex and closed subset of C[0, 1]
and continuous operators F and G transform the set Ω into C[0, 1] in such a way that F (Ω) and
G(Ω) are bounded. Furthermore, suppose that the operator T = F.G transform Ω into itself. If the
operators F and G satisfies the Darbo’s condition with constant h1 and h2, respectively, then the
operator T satisfies the Darbo’s condition on Ω with the constant ∥F (Ω)∥h2 + ∥G(Ω)∥h1.

In the following, we consider the Banach space C[0, 1] which is equipped with the uniform norm
defined as

∥f∥ = sup
{
|f(t)|; t ∈ [0, 1]

}
.

J. Banas and K. Goebel introduced and studied a special measure of non-compactness in space
C[0, 1] in [26]. Let mC[0,1] denotes the family of all non-empty and bounded subset of C[0, 1]. The
modulus of continuity of x ∈ X(X ∈ mC[0,1]) is denoted by ω(x, ϵ) and is defined as follows

ω(x, ϵ) = sup
{
|x(t1)− x(t2)|; t1, t2 ∈ [0, 1], |t1 − t2| ≤ ϵ

}
.

Furthermore, we let

ω(X, ϵ) = sup{ω(x, ϵ);x ∈ X},
ω0(X) = lim

ϵ→0
ω(X, ϵ).

The function ω0(X) is a regular measure of non-compactness in the Banach space C[0, 1].
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3. Brownian motion process

In this section, we present basic definitions and properties of a important stochastic process, Brownian
motion process, which are needed in the next Section.

The motion of pollen particle suspended in fluid was studied by botanist R. Brown in 1828. He
observed that particle has an irregular and random movement. He failed to model this phenomena
and released it as an open problem. A. Einstein ,in 1905, argued that this random motion is due to
bombardment of the particle by the molecules of the fluid and provided the equations for describing
this movement. He named this process as Brownian motion due to R. Brown’s studies. Brownian
motion is used as a mathematical model for movement of stock prices by L. Bachelier in 1900. The
mathematical base for Brownian motion as a stochastic process was done by N. Wiener in 1931. For
this reason, Brownian motion process is also named the Wiener process.

The Brownian motion process B(t) serves as a basic model for the cumulative effect of pure noise.
B(t) and the displacement B(t) − B(0) denote the position of a particle at time t and the effect of
the purely random bombardment by the molecules of the fluid or the effect of noise over time t,
respectively.

Definition 3.1. Brownian motion {B(t)} is a stochastic process with the following properties [27]

1. (Independence of increments) B(t)−B(s), for t > s, is independent of the past, that is, of Bu,
0 ≤ u ≤ s, or of Fs, the σ-field generated by B(u), u ≤ s.

2. (Normal increments) B(t)−B(s) has Normal distribution with mean 0 and variance t−s. This
implies (taking s = 0) that B(t)−B(0) has N(0, t) distribution.

3. (Continuity of paths) B(t), t ≥ 0 are continuous functions of t.

The initial position of Brownian motion is not specified in the above definition. When B(0) = x,
then the Brownian motion process is started at x. If x = 0, i.e. B(0) = 0 then Brownian motion
process is called standard Brownian motion.

The next theorem obtain some conditions to exist the Itô integrals.

Definition 3.2. [27] A process Y is called adapted to the filtration F = (Ft), if for all t, Y(t) is
Ft-measurable.

Theorem 3.3. [27] If Y is a continuous adapted process then the Itô integral
∫ T

0
Y (t)dB(t) exists.

4. Existence of the solution

In this section, we illustrate the nonlinear stochastic integral equation (1.1) has at least one solution
in C[0, 1] under the following mild hypotheses

(H1) f, g : [0, 1] × R × R −→ R are continuous functions and there exists a nonnegative constant l
such that for every t ∈ [0, 1], we have ∣∣f(t, 0, 0)∣∣≤ l,∣∣g(t, 0, 0)∣∣≤ l.
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(H2) u, v : [0, 1]× [0, 1]× R −→ R are continuous functions with the continuous first derivative.

(H3) There exist four continuous functions a1, a2, b1, b2 : [0, 1] −→ [0, 1], such that∣∣f(t, y1, x1)− f(t, y2, x2)
∣∣≤ a1(t)|y1 − y2|+ a2(t)|x1 − x2|,∣∣g(t, y1, x1)− g(t, y2, x2)
∣∣≤ b1(t)|y1 − y2|+ b2(t)|x1 − x2|.

(H4) There is a nonnegative constant number k such that for every t ∈ [0, 1], we have

a1(t), a2(t), b1(t), b2(t) ≤ k.

(H5) There exist positive constant numbers α and β such that for every t, s ∈ [0, 1] and x ∈ R, we
have ∣∣u(t, s, x)∣∣≤ α + β

∣∣x∣∣,∣∣v(t, s, x)∣∣≤ α + β
∣∣x∣∣.

(H6) 4α′β′ < 1, where α′ = kηα + l and β′ = k(ηβ + 1) and η = sup
{
B(t); t ∈ [0, 1]

}
.

Theorem 4.1. Under the assumptions (H1)-(H6), the nonlinear stochastic integral equation (1.1)
has at least one solution in Banach space C[0, 1].

Proof . We define operators F and G as follows

(Fx)(t) = f
(
t,

∫ t

0

u
(
t, s, x(s)

)
dB(s), x

(
α(t)

))
,

(Gx)(t) = g
(
t,

∫ 1

0

v
(
t, s, x(s)

)
dB(s), x

(
β(t)

))
.

Therefore, the needed operator is obtained as follows

Tx = (Fx)(Gx).

We consider Br ⊂ C[0, 1] which is defined as follows

Br = {x : x ∈ C[0, 1], ∥x∥ ≤ r}.

By using hypothesis (H1)-(H5), the following estimate can be obtained for fix x ∈ C[0, 1] and t ∈ [0, 1]:∣∣(Fx)(t)
∣∣ = ∣∣∣f(t,∫ t

0

u
(
t, s, x(s)

)
dB(s), x

(
α(t)

))∣∣∣
≤

∣∣∣f(t,∫ t

0

u
(
t, s, x(s)

)
dB(s), x

(
α(t)

))
−f(t, 0, 0)

∣∣∣+∣∣f(t, 0, 0)∣∣
≤ a1(t)

∣∣∣∫ t

0

u
(
t, s, x(s)

)
dB(s)

∣∣∣+a2(t)
∣∣x(α(t))∣∣+∣∣f(t, 0, 0)∣∣

≤ a1(t)

∫ t

0

∣∣∣u(t, s, x(s))∣∣∣dB(s) + a2(t)
∣∣x(α(t))∣∣+∣∣f(t, 0, 0)∣∣

≤ kη
(
α + β

∣∣x(t)∣∣)+k
∣∣x(α(t))∣∣+l

≤ kη
(
α + β∥x∥

)
+k∥x∥+ l = β′∥x∥+ α′, (4.1)
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where α′ = kηα + l and β′ = k(ηβ + 1) and η = sup
{
B(t); t ∈ [0, 1]

}
. From Eq. (4.1), we get

∥Fx∥ ≤ β′∥x∥+ α′. (4.2)

Similarly, we can show
∥Gx∥ ≤ β′∥x∥+ α′. (4.3)

By using definition of operator T and Eqs. (4.2) and (4.3), for every x ∈ C[0, 1], we get

∥Tx∥ ≤
(
β′∥x∥+ α′)2. (4.4)

From Eq. (4.4), we deduce that the operator T transforms the ball Br to itself, T : Br → Br, for
r1 ≤ r ≤ r2, where

r1 =
1− 2α′β′ −

√
1− 4α′β′

2β′2 ,

r2 =
1− 2α′β′ +

√
1− 4α′β′

2β′2 .

In the following, we consider r = r1.
Now, we should prove that T is a continuous operator on Br. For this aim, first we establish that

F and G are continuous on Br. Consider fix ϵ > 0 and x, y ∈ Br such that ∥x − y∥ ≤ ϵ. Then for
every t ∈ [0, 1], we have

∣∣(Fx)(t)− (Fy)(t)
∣∣ = ∣∣∣f(t,∫ t

0

u
(
t, s, x(s)

)
dB(s), x

(
α(t)

))
−f

(
t,

∫ t

0

u
(
t, s, y(s)

)
dB(s), y

(
α(t)

))∣∣∣
≤ a1(t)

∣∣∣∫ t

0

u
(
t, s, x(s)

)
dB(s)−

∫ t

0

u
(
t, s, y(s)

)
dB(s)

∣∣∣+a2(t)
∣∣x(α(t))−y

(
α(t)

)∣∣
≤ a1(t)

∫ t

0

∣∣u(t, s, x(s))−u
(
t, s, y(s)

)∣∣dB(s) + a2(t)
∣∣x(α(t))−y

(
α(t)

)∣∣
≤ kηω(u, ϵ) + kϵ, (4.5)

where
ω(u, ϵ) = sup

{∣∣u(t, s, x)− u(t, s, y)
∣∣; t, s ∈ [0, 1], x, y ∈ [−r, r], |x− y| ≤ ϵ

}
.

Since every continuous function defined on the closed interval is a uniformly continuous function, so
the function u(t, s, x) is uniformly continuous on the bounded subset [0, 1]× [0, 1]× [−r, r]. It follows
that ω(u, ϵ) −→ 0 as ϵ −→ 0. From estimate (4.5), we deduce that the operator F is continuous
on Br. Similarly, we can show that the operator G is continuous and therefore T is a continuous
operator on Br.

In the following, we show operators F and G satisfy the Darbo fixed-point theorem with respect
to the measure ω0 on Br. Consider the non-empty subset X of Br and x ∈ X, then for a fixed ϵ > 0
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and t1, t2 ∈ [0, 1] where t1 ≤ t2 and t2 − t1 ≤ ϵ, we have∣∣(Fx)(t2)− (Fx)(t1)
∣∣ = ∣∣∣f(t2, ∫ t2

0
u
(
t2, s, x(s)

)
dB(s), x

(
α(t2)

))
−f

(
t1,

∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t1)

))∣∣∣
≤

∣∣∣f(t2, ∫ t2

0
u
(
t2, s, x(s)

)
dB(s), x

(
α(t2)

))
−f

(
t2,

∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t2)

))∣∣∣
+

∣∣∣f(t2, ∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t2)

))
−f

(
t1,

∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t1)

))∣∣∣
≤ a1(t)

∣∣∣∫ t2

0
u
(
t2, s, x(s)

)
dB(s)−

∫ t1

0
u
(
t1, s, x(s)

)
dB(s)

∣∣∣
+

∣∣∣f(t2, ∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t2)

))
−f

(
t1,

∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t2)

))∣∣∣
+

∣∣∣f(t1, ∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t2)

))
−f

(
t1,

∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t1)

))∣∣∣
≤ a1(t)

[∫ t1

0

∣∣u(t2, s, x(s))−u
(
t1, s, x(s)

)∣∣dB(s) +

∫ t2

t1

∣∣u(t2, s, x(s))∣∣dB(s)
]

+
∣∣∣f(t2, ∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t2)

))
−f

(
t1,

∫ t1

0
u
(
t1, s, x(s)

)
dB(s), x

(
α(t2)

))∣∣∣
+ a2(t)

∣∣x(α(t2))−x
(
α(t1)

)∣∣. (4.6)

Consider the following notations

ωu(ϵ, ., .) = sup
{∣∣u(t1, s, x)− u(t2, s, x)

∣∣; t1, t2, s ∈ [0, 1], |t1 − t2| ≤ ϵ, x ∈ [−r, r]
}
,

k′ = sup
{∣∣u(t, s, x)∣∣; t, s ∈ [0, 1], x ∈ [−r, r]

}
,

ωf (ϵ, ., .) = sup
{∣∣f(t1, y, x)− f(t2, y, x)

∣∣; t1, t2 ∈ [0, 1], |t1 − t2| ≤ ϵ, x ∈ [−r, r], y ∈ [−k′η, k′η]
}
,

ω(B, ϵ) = sup
{∣∣B(t2)−B(t1)

∣∣; t1, t2 ∈ [0, 1], |t1 − t2| ≤ ϵ
}
.

From Eq. (4.6) and above notations, we yield∣∣(Fx)(t2)− (Fx)(t1)
∣∣≤ k[ηωu(ϵ, ., .) + k′ω(B, ϵ)] + ωf (ϵ, ., .) + k

∣∣x(α(t2))− x(α(t1))
∣∣.

Thus,
ω(Fx, ϵ) ≤ k[ηωu(ϵ, ., .) + k′ω(B, ϵ)] + ωf (ϵ, ., .) + kω(x, ω(α, ϵ)). (4.7)

Since f(t, y, x), u(t, s, x) and B(t) are uniformly continuous, so ωu(ϵ, ., .) −→ 0, ωf (ϵ, ., .) −→ 0 and
ω(B, ϵ) −→ 0 as ϵ −→ 0. Hence, from Eq. (4.7), we have

ω0(FX) ≤ kω0(X). (4.8)

By using a similar way, we can show

ω0(GX) ≤ kω0(X). (4.9)

Finally, by using Eqs. (4.2), (4.3), (4.8) and (4.9) and Theorem 2.1, we deduce that the operator T
satisfies the Darbo condition with respect to measure ω0 and constant 2k(β′r + α′) on the ball Br.
Also, we have

2k(β′r + α′) = 2k(β′r1 + α′) = 2k
(
β′1− 2α′β′ −

√
1− 4α′β′

2β′2 + α′
)

=
k

β′ (1−
√

1− 4α′β′).
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Under assumption (H6), we have 1−
√
1− 4α′β′ < 1. By using assumption (H5), β > 0 and definition

η > 0, so k
β′ =

k
k(ηβ+1)

= 1
ηβ+1

< 1. So, the operator T is a contraction on Br with respect to measure
ω0 and has at least one fixed point on ball Br. Consequently, the nonlinear functional stochastic
integral equation (1.1) has at least one solution on Br and this completes the proof. □

5. Application

In this section, we present an example of stochastic integral equation which satisfies hypothesis
(H1)-(H6).

Example 5.1. Let us take

f, g : [0, 1]× R× R −→ R, u : [0, 1]× [0, 1]× R −→ R,

defined as

f(t, y, x) =
1

8
sin(

1

1 + t
) + y, g(t, y, x) =

1

8
, u(t, s, x) =

1

9
ts sin(x).

So, Eq. (1.1) can be written as

x(t) =
1

64
sin(

1

1 + t
) +

t

72

∫ t

0

s sin(x(s))dB(s). (5.1)

It is obvious that the functions f, g are continuous and u is continuous function with the continuous
first derivative and satisfy hypothesis (H1)-(H2) with l = 1

8
. Also, a1(t) = 1, a2(t) = 0, b1(t) =

0, b2(t) = 0 and therefore k = max{a1(t), a2(t), b1(t), b2(t)} = 1. Moreover, it is clear that u satisfies
the (H5) with α = 0 and β = 1

9
. With these constants, we obtain that the inequality (H6) is correct.

So, the Itô-Volterra integral equation (5.1) has at least one solution in Banach space C[0, 1].
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