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Abstract

The motivation behind this article is to generalize a new type of class of nondifferentiable multiob-
jective fractional programming problem in which each component of objective functions contains a
term including the support function of a compact convex set. For a differentiable function, we con-
sider the class of pseudoquasi /strictly pseudoquasi/weak strictly pseudoquasi/quasistrictly pseudo
(V, ρ, θ)-bonvex-type-I. Further, we formulate unified (mixed type) dual models and derive duality
relations under aforesaid assumptions.
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1. Introduction

The optimization theory has found its way into all branches of science and engineering due to
its wide range of applications. Duality plays an important role in nonlinear programming. Indeed,
when the solution of a problem poses some difficulties, we shall see the solution of its dual prob-
lem provides some valuable information about the original problem. In multiobjective programming
problems, convexity plays an important role in deriving optimality conditions and duality results. To
relax convexity assumptions involved in sufficient optimality conditions and duality theorems, various
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generalized convexity notions have been proposed. Hanson [17] in his study has cited one example
which demonstrates the application of second-order duality in somewhat different perspective.

The fractional optimization problem with multiple objective functions have been the subject of
intense investigations in the past few years, which have produced a number of optimality and duality
results for these problems. Mangasarian [11] formulated a class of second order dual problems of
nonlinear programming, and gave the duality results under some conditions which none of these con-
dition imposed convexity requirements on all the functions. Preda [3] introduced (F, α, ρ, d)- convex
function which were generalized to second-order (F, α, ρ, d)-V- convex function in [4, 6]. Later on,
Yang and Hou [10] generalized the work in [12, 16] in the framework of generalized convexity.

Motivated by various concepts of generalize convexity Liang et al. [18] introduced the concept
of (F, α, ρ, d)-convex functions. Hachimi and Aghezzaf [9] generalized convexity results extended
the concept further to (F, α, ρ, d)-type I functions and introduced the optimality conditions and de-
rived duality results for multiobjective programming problem. Further, Dubey et al. [1] formulated
second-order symmetric duality model and established appropriate duality relations under (G,αf )
-bonvexity conditions. Many researchers have worked related to the second and higher-order multi-
objective symmetric fractional programming problems [5, 8, 2, 13, 7, 14, 15, 19, 20, 21].

In this article, we generalize the definitions of (V, ρ, θ)-bonvex-type-I functions for a nondiffer-
entiable multiobjective second -order fractional programming problem. We considered second-order
unified dual model and proved duality theorems under (V, ρ, θ)-bonvex-type-I assumptions.

2. Definitions and Preliminaries

Throughout this paper, we use the index sets K = {1, 2, ..., k} and M = {1, 2, ...,m}.

The following convention of vectors in Rn will be following throughout this papers:

x ≦ y ⇔ xi ≦ yi, i = 1, 2, ..., n,

x ≤ y ⇔ x ≦ y, x ̸= y,

x < y ⇔ xi < yi, i = 1, 2, ..., n,

x = y ⇔ xi = yi, i = 1, 2, ..., n.

Definition 2.1. Let C be a compact convex set in Rn. The support function of C is defined by

s (x|C) = max{xTy : y ∈ C}.

Remark 2.1. A support function πA : Rn 7→ R of a non-empty closed convex set A in Rn is given
by

πA(x) = sup{x . a : a ∈ A}, x ∈ Rn

. Its interpretation is most intuitive when x is a unit vector: by definition, A is contained in the
closed half space

{y ∈ Rn : y . x ≦ πA(x)}
and there is at least one point of A in the boundary

H(x) = {y ∈ Rn : y . x = πA(x)}
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Figure 1: A = {a} is πA(x) = x . a

of this half space. The hyperplane H(x) is therefore called a supporting hyperplane with exterior
(or outer) unit normal vector x. The word exterior is important here, as the orientation of x plays a
role, the set H(x) is in general different from H(−x). Now πA is the (signed) distance of H(x) from
the origin.

Example 1. The support function of a singleton A = {a} is πA(x) = x . a.

Example 2. If A is a line segment through the origin with endpoints −a and a then πA(x) = |x . a|.

Consider the following nondifferentiable multiobjective fractional programming problem:

(MFP) Minimize Ψ(x) =

(
ϕ1(x) + s(x|C1)

ψ1(x)− s(x|E1)
,
ϕ2(x) + s(x|C2)

ψ2(x)− s(x|E2)
, ...,

ϕk(x) + s(x|Ck)

ψk(x)− s(x|Ek)

)T

subject to x ∈ X0 = {x ∈ X : πj(x) + s(x|Dj) ≦ 0, j ∈M},

where X ⊆ Rn is an open set. The functions ϕ, ψ : X → Rk, π : X → Rm are differentiable
on X and Ci, Ei, Dj are compact convex sets in Rn for i ∈ K and j ∈ M . Let ϕi(x) + s(x|Ci) ≧ 0
and ψi(x)− s(x|Ei) > 0, i ∈ K. Next, η : X ×X → Rn, ρ ∈ Rn and θ : X ×X → Rn.

Definition 2.2. A point u ∈ X0 is said to be an efficient solution of (MFP) if there exists no x ∈ X0

such that Ψ(x) ≦ Ψ(u).

Definition 2.3.

(
ϕi(.) + (.)T zi
ψi(.)− (.)Tvi

, πj(.) + (.)Twj

)
is pseudoquasi (V, ρ, θ)-bonvex-type-I at u of

(MFP), if there exist η, ρ and θ such that, for any x ∈ X0 and p ∈ Rn, such that
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Figure 2: πA(x) = |x . a|

ϕi(x) + xT zi
ψi(x)− xTvi

<
ϕi(u) + uT zi
ψi(u)− uTvi

− 1

2
pT∇2

(
ϕi(u) + uT zi
ψi(u)− uTvi

)
p

⇒ ηT (x, u)

{
∇
(
ϕi(u) + uT zi
ψi(u)− uTvi

)
+∇2

(
ϕi(u) + uT zi
ψi(u)− uTvi

)
p

}
+ ρ1i ||θ1i (x, u)||2 < 0, ∀ i ∈ K

and
−πj(u)− uTwj ≦ −1

2
pT∇2πj(u)p

⇒ ηT (x, u){∇πj(u) + w +∇2πj(u)p}+ ρ2j ||θ2j (x, u)||2 ≦ 0, ∀ j ∈M.

Definition 2.4.

(
ϕi(.) + (.)T zi
ψi(.)− (.)Tvi

, πj(.) + (.)Twj

)
is strictly pseudoquasi (V, ρ, θ)-bonvex -type-I at

u of (MFP), if there exist η, ρ and θ such that, for any x ∈ X0 and p ∈ Rn

ϕi(x) + xT zi
ψi(x)− xTvi

≦ ϕi(u) + uT zi
ψi(u)− uTvi

− 1

2
pT∇2

(
ϕi(u) + uT zi
ψi(u)− uTvi

)
p

⇒ ηT (x, u)

{
∇
(
ϕi(u) + uT zi
ψi(u)− uTvi

)
+∇2

(
ϕi(u) + uT zi
ψi(u)− uTvi

)
p

})
+ ρ1i ||θ1i (x, u)||2 < 0, ∀ i ∈ K

and
−πj(u)− uTwj ≦ −1

2
pT∇2πj(u)p

⇒ ηT (x, u){∇πj(u) + w +∇2πj(u)p}+ ρ2j ||θ2j (x, u)||2 ≦ 0, ∀ j ∈M.

Definition 2.5.

(
ϕi(.) + (.)T zi
ψi(.)− (.)Tvi

, πj(.)+(.)Twj

)
is weak strictly pseudoquasi (V, ρ, θ)-bonvex -type-I

at u of (MFP), if there exist η, ρ and θ such that, for any x ∈ X0 and p ∈ Rn
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ϕi(x) + xT zi
ψi(x)− xTvi

≦ ϕi(u) + uT zi
ψi(u)− uTvi

− 1

2
pT∇2

(
ϕi(u) + uT zi
ψi(u)− uTvi

)
p

⇒ ηT (x, u)

{
∇
(
ϕi(u) + uT zi
ψi(u)− uTvi

)
+∇2

(
ϕi(u) + uT zi
ψi(u)− uTvi

)
p

}
+ ρ1i ||θ1i (x, u)||2 < 0, ∀ i ∈ K

and
−πj(u)− uTwj ≦ −1

2
pT∇2πj(u)p

⇒ ηT (x, u){∇πj(u) + w +∇2πj(u)p}+ ρ2j ||θ2j (x, u)||2 ≦ 0, ∀ j ∈M.

Definition 2.6.

(
ϕi(.) + (.)T zi
ψi(.)− (.)Tvi

, πj(.) + (.)Twj

)
is quasistrictly pseudo (V, ρ, θ)-bonvex -type-I at

u of (MFP), if there exist η, ρ and θ such that, for any x ∈ X0 and p ∈ Rn

ϕi(x) + xT zi
ψi(x)− xTvi

≦ ϕi(u) + uT zi
ψi(u)− uTvi

− 1

2
pT∇2

(
ϕi(u) + uT zi
ψi(u)− uTvi

)
p

⇒ ηT (x, u)

{
∇
(
ϕi(u) + uT zi
ψi(u)− uTvi

)
+∇2

(
ϕi(u) + uT zi
ψi(u)− uTvi

)
p

})
+ ρ1i ||θ1i (x, u)||2 ≦ 0, ∀ i ∈ K

and
−πj(u)− uTwj ≦ −1

2
pT∇2πj(u)p

⇒ ηT (x, u){∇πj(u) + w +∇2πj(u)p}+ ρ2j ||θ2j (x, u)||2 < 0, ∀ j ∈M.

We consider the Karush-Kuhn-Tucker necessary optimality conditions for the nondifferentiable mul-
tiobjective fractional programming problem (MFP) involving support functions in the objective and
constraint functions.

Theorem 2.1 (K-K-T-type necessary condition). Assume that u is an efficient solution of (MFP) at
which the Kuhn-Tucker constraint qualification is satisfied on X. Then there exist 0 < λ̄ ∈ Rk, 0 ≦
ȳj ∈ Rm, z̄i ∈ Rn, v̄i, w̄j ∈ Rn, i ∈ K, j ∈M such that

k∑
i=1

λ̄i∇
(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

)
+

m∑
j=1

ȳj∇(πj(u) + uT w̄j) = 0,

m∑
j=1

ȳj(πj(u) + uT w̄j) = 0,

uT z̄i = S(u|Ci), u
T v̄i = S(u|Ei), u

T w̄j = S(u|Dj),

z̄i ∈ Ci, v̄i ∈ Di, w̄j ∈ Ej, i ∈ K, j ∈M.
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3. Unified second-order duality model-I:

In this section, we consider the following unified second order dual for (MFP) and derive weak,
strong and strict converse duality theorems.

(MDP): Maximize

(
ϕ1(y) + yT z1
ψ1(y)− yTv1

−1

2
pT∇2

(
ϕ1(y)− yT z1
ψ1(y)− yTv1

)
p+

∑
j∈J0

µj{πj(y)+yTwj−
1

2
pT∇2πj(y)p}

, ...,
ϕk(y) + yT zk
ψk(y)− yTvk

− 1

2
pT∇2

(
ϕk(y)− yT zk
ψk(y)− yTvk

)
p+

∑
j∈J0

µj{πj(y) + yTwj −
1

2
pT∇2πj(y)p}

)

subject to y ∈ X,

k∑
i=1

λi

{
∇
(
ϕi(y) + yT zi
ψi(y)− yTvi

)
+∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

}

+
m∑
j=1

µj{∇πj(y) + wj +∇2πj(y)p} = 0, (3.1)

∑
j∈Jβ

µj{πj(y) + yTwj −
1

2
pT∇2πj(y)p} ≧ 0, β = 1, ..., r, (3.2)

λi ≧ 0,
k∑

i=1

λi = 1, (3.3)

µj ≧ 0, zi ∈ Ci, vi ∈ Ei, wj ∈ Dj, for i ∈ K, j ∈M, (3.4)

where Jδ ⊆ N , δ = 0, 1, ..., r with
∪r

δ=0 Jδ = N and Jδ1
∩
Jδ2 if δ1 ̸= δ2. It may be noted that J0 = N

and Jβ = ϕ(1 ≦ β ≦ r), we obtain Wolfe type dual. If J0 = ϕ, J1 = N and Jβ = ϕ (2 ≦ β ≦ r),
then (MDP) reduces to Mond-Weir Type dual. Let Z0 be set feasible solution of (MDP).

Theorem 3.1 (Weak Duality). Let x ∈ X0 and (y, λ, v, µ, z, w, p) ∈ Z0. Let∀ i ∈ K and
∀ j ∈M , such that

(i)

(
ϕi(.) + (.)T zi
ψi(.) + (.)Tvi

+ µT
J0

(
πjJ0 + (.)TwjJ0

)
e, {πj(.) + (.)Twj}µJβ

)
is weak strictly pseudo quasi (V, ρ, θ)-

bonvex-type I at y,

(ii)
k∑

i=1

λiρ
1
i ||θ1i (x, u)||2 +

m∑
j=1

µjρ
2
j ||θ2j (x, u)||2 ≧ 0.

Then, the following cannot hold

ϕi(x) + s(x|Ci)

ψi(x)− s(x|Ei)
≦ ϕi(y) + yT zi
ψi(y)− yTvi

− 1

2
pT∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

+
∑
j∈J0

µj{πj(y) + yTwj −
1

2
pT∇2πj(y)p}, for all i ∈ K (3.5)
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and
ϕj(x) + s(x|Cj)

ψj(x)− s(x|Ej)
<
ϕj(y) + yT zj
ψj(x)− yTvj

− 1

2
pT∇2

(
ϕj(y) + yT zj
ψj(y)− yTvj

)
p

+
∑
j∈J0

µj{πj(y) + yTwj −
1

2
pT∇2πj(y)p}, for some j ∈ K. (3.6)

Proof Suppose inequalities (3.5) and (3.6) hold. As xT zi ≦ s(x|Ci), x
Tvi ≦ s(x|Ei), ∀i ∈ K and∑

j∈J0

µj(πj(x) + xTwj) ≦ 0, using the inequalities and the dual constraint (3.2), hypothesis (i) gives

ηT (x, u)

{
∇
(
ϕi(y) + yT zi
ψi(y)− yTvi

)
+∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

+
∑
j∈J0

µj{∇πj(y) + wj +∇2πj(y)p}e
}
< −ρ1i ||θ1i (x, u)||2, ∀ i ∈ K

and

ηT (x, u)
∑
j∈Jβ

µj{∇πj(y) + wj +∇2πj(y)p}+ ρ2β||θ2j (x, u)||2 ≦ 0, β = 1, ..., r.

Since λ ≧ 0, λT e = 1, it gives that

ηT (x, u)

{ k∑
i=1

λi

{
∇
(
ϕi(y) + yT zi
ψi(y)− yTvi

)
+∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

}

+
∑
j∈J0

µj{∇πj(y) + wj +∇2πj(y)p}
}
< −

k∑
i=1

λiρ
1
i ||θ1i (x, u)||2

and

ηT (x, u)
∑
j∈Jβ

µj{∇πj(y) + wj +∇2πj(y)p} ≦ −ρ2β||θ2j (x, u)||2, β = 1, ..., r.

Expanding the above expressions, it follows that

ηT (x, u)

( k∑
i=1

λi

{
∇
(
ϕi(y) + yT zi
ψi(y)− yTvi

)
+∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

}
+

m∑
j=1

µj{∇πj(y) + wj +∇2πj(y)p}
)

= ηT (x, u)

( k∑
i=1

λi

{
∇
(
ϕi(y) + yT zi
ψi(y)− yTvi

)
+∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

}
+

∑
j∈J0

µj{∇πj(y) + wj +∇2πj(y)p}

+
∑
j∈J1

µj{∇πj(y) + wj +∇2πj(y)p}+ ...+
∑
j∈Jr

µj{∇πj(y) + wj +∇2πj(y)p}
)

or

ηT (x, u)

( k∑
i=1

λi

{
∇
(
ϕi(y) + yT zi
ψi(y)− yTvi

)
+∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

}
+

m∑
j=1

µj{∇πj(y) + wj +∇2πj(y)p}
)
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≦ ηT (x, u)

( k∑
i=1

λi

{
∇
(
ϕi(y) + yT zi
ψi(y)− yTvi

)
+∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

}
+
∑
j∈J0

µj{∇πj(y) +wj +∇2πj(y)p}
)

+ηT (x, u)

(∑
j∈J1 µj{∇πj(y)+wj+∇2πj(y)p}

)
+...+ηT (x, u)

(∑
j∈Jr µj{∇πj(y)+wj+∇2πj(y)p}

)

< −
( k∑

i=1

λiρ
1
i ||θ1i (x, u)||2 +

m∑
j=1

µjρ
2
j ||θ2j (x, u)||2

)
.

By hypothesis (ii), we have

ηT (x, u)

( k∑
i=1

λi

{
∇
(
ϕi(y) + yT zi
ψi(y)− yTvi

)
+∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

}

+
m∑
j=1

µj{∇πj(y) + wj +∇2πj(y)p}
)
< 0,

which contradicts the dual constraint (3.1). Hence, the result.

Theorem 3.2 (Weak Duality).Let u ∈ X0 and (y, λ, µ, v, z, w, p) ∈ Z0. Let∀ i ∈ K and ∀ j ∈M ,
such that

(i)

(
ϕi(.) + (.)T zi
ψi(.) + (.)Tvi

+ µT
J0

(
πjJ0 + (.)TwjJ0

)
e, {π(.) + (.)Tw}µJβ

)
be pseudo quasi (V, ρ, θ)-bonvex type-

I at y,

(ii)
k∑

i=1

λiρ
1
i ||θ1i (x, u)||2 +

m∑
j=1

µjρ
2
j ||θ2j (x, u)||2 ≧ 0.

Then, the following cannot hold

ϕi(x) + s(x|Ci)

ψi(x)− s(x|Ei)
≦ ϕi(y) + yT zi
ψi(y)− yTvi

− 1

2
pT∇2

(
ϕi(y) + yT zi
ψi(y)− yTvi

)
p

+
∑
j∈J0

µj{πj(y) + yTwj −
1

2
pT∇2πj(y)p}, for all i ∈ K (3.7)

and

ϕj(x) + s(x|Cj)

ψj(x)− s(x|Ej)
<
ϕj(y) + yT zj
ψj(x)− yTvj

− 1

2
pT∇2

(
ϕj(y) + yT zj
ψj(y)− yTvj

)
p

+
∑
j∈J0

µj{πj(y) + yTwj −
1

2
pT∇2πj(y)p}, for some j ∈ K. (3.8)

Proof The proof follows on the lines of Theorem 3.1.

Theorem 3.3 (Strong Duality Theorem). Let ū be an efficient solution of (MFP) and let
the Kuhn-Tucker constraint qualification are satisfied. Then there exist λ̄ ∈ Rk, ȳ ∈ Rm, z̄i ∈
Rn, v̄i ∈ Rn and w̄j ∈ Rn, i ∈ K, j ∈ M, such that (ū, z̄, v̄, ȳ, λ̄, w̄, p̄ = 0) is a feasible solution of
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(MDP) and the (MFP)and (MDP) have equal values. Furthermore, if the assumptions of Theorem
2.1 hold for all feasible solutions of (MFP) and (MDP), then (ū, z̄, v̄, ȳ, λ̄, w̄, p̄ = 0) is an efficient
solution of (MDP).

Proof . From the given conditions in the statement and using Theorem 2.1, there exist λ̄ ∈ Rk, ȳ ∈
Rm, z̄i ∈ Rn, v̄i ∈ Rn and w̄j ∈ Rn, i ∈ K, j ∈M, such that

k∑
i=1

λ̄i∇
(
ϕi(ū) + ūT z̄i
ψi(ū)− ūT v̄i

)
+

m∑
j=1

ȳj∇(πj(ū) + ūT w̄j) = 0, (3.9)

m∑
j=1

ȳj(πj(ū) + ūT w̄j) = 0, (3.10)

ūT z̄i = S(ū|Ci), ū
T v̄i = S(ū|Di), ū

T w̄j = S(ū|Ej), (3.11)

z̄i ∈ Ci, v̄i ∈ Di, w̄j ∈ Ej, (3.12)

λ̄i > 0,
k∑

i=1

λ̄i = 1, ȳj ≧ 0, i ∈ K, j ∈M. (3.13)

Hence, (ū, z̄, v̄, ȳ, λ̄, w̄, p̄ = 0) satisfy all the constraints of (MDP) and remaining part of proof is
obvious. Hence the result. □

Theorem 3.4 (Strict Converse Duality). Let u ∈ X0 and (ȳ, λ̄, µ̄, v̄, z̄, w̄, p̄) ∈ Z0, such that,∀ i ∈
K and ∀ j ∈M ,

(i)
k∑

i=1

λ̄i

{
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

}
≦

k∑
i=1

λ̄i

{
ϕi(ȳ) + ȳT z̄i
ψi(ȳ)− ȳT v̄i

− 1

2
pT∇2

(
ϕi(ȳ) + ȳT z̄i
ψi(ȳ)− ȳT v̄i

)
p

}
+

∑
j∈J0

µ̄j{πj(ȳ)

+ ȳT w̄j − 1
2
pT∇2πj(ȳ)p},

(ii)
k∑

i=1

λiρ
1
i ||θ1i (x, u)||2 +

m∑
j=1

µjρ
2
j ||θ2j (x, u)||2 ≧ 0,

(iii)

( k∑
i=1

λ̄i

{
ϕi(.) + (.)T z̄i
ψi(.)− (.)T v̄i

}
+

∑
j∈J0

µ̄j {πj + (.)T w̄j}, {π(.) + (.)T w̄}µ̄Jβ

)
is strictly pseudoquasi

(V, ρ, d)-bonvex type I at ȳ.

Then, u = ȳ.

Proof Suppose on contradiction that is u ̸= ȳ. The dual constraint (3.2) and the hypothesis (iii),
for β = 1, ..., r yield

ηT (ȳ, u)
∑
j∈Jβ

µ̄j{∇πj(ȳ) +∇2πj(ȳ)p+ w̄j} ≦ −ρ2β||θ2j (ȳ, u)||2. (3.14)
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By the dual constraint (3.1), we have

ηT (ȳ, u)

( k∑
i=1

λ̄i

{
∇
(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

)
+∇2

(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

)
p

}

+
m∑
j=1

µ̄j

{
∇πj(ȳ) +∇2πj(ȳ)p+ w̄j

})
= 0.

Expanding the above expressions with (3.14) give

ηT (ȳ, u)

( k∑
i=1

λ̄i

{
∇
(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

)
+∇2

(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

p

)}
+

∑
j∈J0

µ̄j

{
∇πj(ȳ) +∇2πj(ȳ)p+ w̄j

})

≧ −ηT (ȳ, u)
(∑

j∈J1

µ̄j{∇πj(ȳ) +∇2πj(ȳ)p+ w̄j})− ...− ηT (ȳ, u)(
∑
j∈Jr

µ̄j{∇πj(ȳ) +∇2πj(ȳ)p+ w̄j}
)

or

ηT (ȳ, u)

( k∑
i=1

λ̄i

{
∇
(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

)
+∇2

(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

p

)}

+
∑
j∈J0

µ̄j

{
∇πj(ȳ) +∇2πj(ȳ)p+ w̄j

})
≧

m∑
j=1

µjρ
2
j ||θ2j (x, u)||2,

by assumption (ii), we have

ηT (ȳ, u)

( k∑
i=1

λ̄i

{
∇
(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

)
+∇2

(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

)
p

}

+
∑
j∈J0

µ̄j

{
∇πj(ȳ) +∇2πj(ȳ)p+ w̄j

})
≧ −ρ1i ||θ1i (x, u)||2.

It follows that

ηT (ȳ, u)

( k∑
i=1

λ̄i

{
∇
(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

)
+∇2

(
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

)
p

}

+
∑
j∈J0

µ̄j

{
∇πj(ȳ) +∇2πj(ȳ)p+ w̄j

})
≧ −ρ1i ||θ1i (x, u)||2.

Further, from hypothesis (iii) in view of
∑
j∈J0

µj{πj(u) + uT w̄j} ≦ 0 yields

k∑
i=1

λ̄i

{
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

}
>

k∑
i=1

λ̄i

{
ϕi(ȳ) + ȳT z̄i
ψi(ȳ)− ȳT v̄i

− 1

2
pT∇2

(
ϕi(ȳ) + ȳT z̄i
ψi(ȳ)− ȳT v̄i

)
p

}
+

∑
j∈J0

µ̄j{πj(ȳ) + ȳT w̄j −
1

2
p̄T∇2πj(ȳ)p̄},
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which contradicts hypothesis (i). Hence, the result.

Theorem 3.5 (Strict Converse Duality). Let u ∈ X0 and (ȳ, λ̄, µ̄, v̄, z̄, w̄, p̄) ∈ Z0, such that,∀ i ∈
K and ∀ j ∈M ,

(i)
k∑

i=1

λ̄i

{
ϕi(u) + uT z̄i
ψi(u)− uT v̄i

}
≦

k∑
i=1

λ̄i

{
ϕi(ȳ) + ȳT z̄i
ψi(ȳ)− ȳT v̄i

− 1

2
pT∇2

(
ϕi(ȳ) + ȳT z̄i
ψi(ȳ)− ȳT v̄i

)
p

}
+

∑
j∈J0

µ̄j{πj(ȳ) + ȳT w̄j −
1

2
pT∇2πj(ȳ)p},

(ii)
k∑

i=1

λiρ
1
i ||θ1i (x, u)||2 +

m∑
j=1

µjρ
2
j ||θ2j (x, u)||2 ≧ 0,

(iii)

( k∑
i=1

λ̄i

{
ϕi(.) + (.)T z̄i
ψi(.)− (.)T v̄i

}
+

∑
j∈J0

µ̄j {πj + (.)T w̄j}, {π(.) + (.)T w̄}µ̄Jβ

)
is quasistrictly pseudo

(V, ρ, d)-bonvex type I at ȳ.
Then, u = ȳ.

Proof Proof follows on the lines of theorem 3.4.

Lemma 3.1 u ∈ X is an efficient solution for (MFP) if and only if there exists ν̄i ∈ Rk
+ such

that u is an efficient solution for (MFP)ν̄i , where ν̄i =
ϕi(u) + S(u|Ci)

ψi(u)− S(u|Ei)
, i = 1, 2, ..., k.

With the help of above lemma (lemma 3.1), we can reformulate a nondifferentiable multiobjec-
tive programming problem (MFP) as :

(MFP)ν̄i Minimize π(x) =

(
ϕ1(x) + s(x|C1)− ν1(ψ1(x)− s(x|E1)), ϕ2(x) + s(x|C2)− ν2(ψ2(x)

−s(x|E2)), ..., ϕk(x)+s(x|Ck)−νk(ψk(x)−s(x|Ek))

)T

subject to x ∈ X0 = {x ∈ X : πj(x) + s(x|Dj) ≦ 0, j ∈M}.

4. Unified second-order duality model-II:

In this section, we formulate the following unified second order dual for (MFP)ν̄ as:

(MDP)ν̄i: Maximize

(
ϕ1(y)+y

T z1−ν1(ψ1(y)−yTv1)−
1

2
pT∇2

(
ϕ1(y)+y

T z1−ν1(ψ1(y)−yTv1)
)
p

+
∑
j∈J0

µj{πj(y) + yTwj −
1

2
pT∇2πj(y)p}, ..., ϕk(y) + yT zk

− νk(ψk(y)− yTvk)− 1
2
pT∇2

(
ϕk(y) + yT zk − νk(ψk(y)− yTvk)

)
p

+
∑
j∈J0

µj{πj(y) + yTwj −
1

2
pT∇2πj(y)p}

)
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subject to y ∈ X,

k∑
i=1

λi

{
∇(ϕi(y) + yT zi − νi(ψi(y)− yTvi)) +∇2

(
ϕi(y) + yT zi − νi(ψi(y)− yTvi)

)
p

}
+

m∑
j=1

µj{∇πj(y) + wj +∇2πj(y)p} = 0, (4.1)

∑
j∈Jβ

µj{πj(y) + yTwj −
1

2
pT∇2πj(y)p} ≧ 0, β = 1, ..., r, (4.2)

ϕi(y) + yT zi − νi(ψi(y)− yTvi) ≧ 0, ∀ i, (4.3)

λi ≧ 0,
k∑

i=1

λi = 1, (4.4)

µj ≧ 0, zi ∈ Ci, vi ∈ Ei, wj ∈ Dj, for i ∈ K, j ∈M, (4.5)

where Jδ ⊆ N , δ = 0, 1, ..., r with
∪r

δ=0 Jδ = N and Jδ1
∩
Jδ2 if δ1 ̸= δ2. It may be noted that J0 = N

and Jβ = ϕ(1 ≦ β ≦ r), we obtain Wolfe type dual. If J0 = ϕ, J1 = N and Jβ = ϕ(2 ≦ β ≦ r), then
(MDP)ν̄ reduces to Mond-Weir Type dual.

For the above models

(
see (MFP)ν̄ and (MDP)ν̄

)
, proof follows on the same lines as theorems

(3.1)− (3.5) under the aforesaid assumptions.

5. Conclusion

In this article, we have considered a mixed (unified) type nondifferentiable second order fractional
dual model and prove duality theorems under weak strictly pseudo quasi (V, ρ, θ)-bonvex/pseudo
quasi (V, ρ, θ)-bonvex/strictly pseudoquasi (V, ρ, θ)-bonvex type-I assumptions. The present work
can further be extended to nondifferentiable higher order fractional programming arbitrary over
cones. This will orient the future task of the authors/researchers.
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