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Inertial approximation method for split variational
inclusion problem in Banach spaces
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Abstract

In this paper, we introduce a new iterative algorithm of inertial form for approximating the solution
of Split Variational Inclusion Problem (SVIP) involving accrective operators in Banach space. Mo-
tivated by the inertial technique, we incorporate the inertial term to accelerate the convergence of
the proposed method. Under standard and mild assumption of monotonicity of the SVIP associated
mappings, we establish the weak convergence of the sequence generated by our algorithm. Some
applications and numerical example are presented to illustrate the performance of our method as
well as comparing it with the non-inertial version.
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1. Introduction

Let H be a real Hilbert space, (-,-) an inner product and || - || the corresponding norm on H.. An
operator Q : H — 2 is said to be monotone if (u — v,z —y) > 0 for all u € Q(z), v € Q(y). It is
said to be maximal monotone if, in addition, the graph G(Q) of @ is not properly contained in the
graph of any other monotone mapping i.e (z,u) € H x H, (x —y,u —v) > 0 for every (y,v) € G(Q)
implies u € Q(z). A single-valued operator @) : H — H is called « inverse-strongly monotone if
there exists a positive real number « such that (Qz — Qy,x —y) > a||x — y||? for all x,y € H, see
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21, 22, 23]. It is well known that for each x € H and A > 0, there is a unique z € H such that
xr € (I + A\Q)z, where ) is a maximal monotone operator and I is an identity operator on H. The
single-valued operator J @ = (I + Q)™ ! is called the resolvent of Q of parameter \. It is a firmly
nonexpansive and nonexpansive mapping which is everywhere defined and satisfies z = Jg z if and
only if 0 € Qz.

We recall that a real-valued mapping h on H is lower semi-continous if h(z) < liminf h(z,) for all
n— oo

sequence {z,} C X such that x, — x (strongly). Similarly h is weakly sequentially lower semi-
continuous (weakly Isc) if A(z) < liminf A(x,,) for all sequence {z,} C X such that x,, — = (weakly).
n—oo

1.1. Splitting method for sum of accretive mappings

Splitting method have received more attention recently due to the fact that many nonlinear prob-
lems arising in applied areas such as image recovery, machine learning and signal processing can be
mathematically modelled as a nonlinear operator equation, which in turn can be further decomposed
into the sum of possibly simpler nonlinear operators. Splitting method for linear equations were
introduced by Peaceman and Rachford [89] and Douglas and Rachford [16]. Extension to Hilbert
spaces were carried out by Kellog [26], Lions and Mercier [27]. The defining problem is to iteratively
find a zero of the sum of two monotone operators 77 and 75 in Hilbert space H, that is the solution
to the inclusion problem

Many problems in real life can be formulated as (IT). A prominent example is the stationary solution
to the initial value problem of the evolution

du
ot

where the governing maximal monotone F' is of the form T} +T5. This problem models the optimiza-
tion problem

min{f () + 9T(2)}, (12)

+ Fu>0, u(0)=uy,

where f, g are proper lower semicontinuous functions from H to the extended real line R = {—o0, +00}
and T is a bounded linear operator on H. The minimization problem (I2) is widely used in image
recovery, machine learning and signal processing. A splitting method for solving () involves an
iterative algorithm for which each iteration involves only with the individual operators T} and T5,
but not the sum 77 + 75 concurrently. To solve (), Lions and Mercier [27] introduced the nonlinear
Peaceman-Rachford and Douglas-Rachford which generate a sequence {xz,} by the recursion formula
Tni1 = (271 —1)(2J)* — 1)z, and a sequence {z,} generated by z,, 1 = J1*(2J,> —Dap+(I—J}*)z,,
where J/\T1 denotes the resolvent of the monotone operator T7. Of the two recursion formula, the
Douglas-Rachford algorithm always converges in the weak topology to a point y* and y* = JATQa:
is a solution of (ICT), since the generating operator Jy*(2J1* — I) + (I — JJ?) for this algorithm is
firmly nonexpansive. The Peaceman-Rachford algorithm however fails to converge even in the weak
topology in the infinite dimensional settings.
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1.2. Split monotone variational inclusion

In 2011, Moudafi [31] introduced the following Split Monotone Variational Inclusion Problem (SMVIP):
Find 2* € Hy, such that

{o € (Ty(z*) + Sy (2*))

y* = Az* € Hy: 0 € (To(y*) + Sa(y*)), (1.3)

where Ty : H; — 29t and T : Hy — 282 are set-valued maximal monotone mappings, S; : H; — H,
and Sy : Hy — Hy are single valued monotone operators and A : H; — H, is a bounded linear
operator. In [B1], Moudafi obtained a weak convergence theorem for approximating the solution
SMVIP in Hilbert spaces.

The SMVIP includes as special cases, split common fixed points problem, split variational inequality
problem, the split feasibility problem and split zero problem. All of which have been studied by
several authors (see [6, I5, 19, B0, 85, B6] and the references therein).

Very recently, Zhang and Wang [47] proposed an iterative algorithm and proved that the algorithm
converges weakly and strongly to a split common fixed point problem for nonexpansive semigroups
in Banach spaces under some suitable conditions. Precisely, they proved the following theorem:

Theorem 1.1. Let X; be a real uniformly conver and 2-uniformly smooth Banach space satisfying
Opial’s condition and with the best smoothness constant k satisfying 0 < k < \%, X5 be a real Banach
space, A : X1 — Xo be a bounded linear operator, and A* be the adjoint of A. Let {S(t) : t > 0} :
Xy — X1 be a uniformly asymptotically regular nonexpansive semigroup with C := My>oF(S(t)) # 0
and {T'(t) : t > 0} : Xo — Xo be a uniformly asymptotically regular nonexpansive semigroup with
Q =N F(T(t)) # 0. Let {x,} be a sequence generated by: x1 € X,

(1.4)

2y = T + I A (T (t,) — 1) Az,
Tpr1 = (1 —ap)zn + @, S(ty)zn, ¥V n>1,

where {t,} is sequence of real numbers, {ay,} a sequence in (0,1) and ~y is a positive constant satisfying
(1) t, >0 and lim t, = co;
n—oo

1—2k2
[|A]2

(2) liminf a,,(1 — ;) >0 and 0 < v <
n—oo

(I) T ={peC:Ape Q} #0, then {x,} converges weakly to a split common fixed point x* € T.
(II) In addition, if T' ={p € C: Ap € Q} # 0, and there is at least one S(t) € {S(t) : t > 0} which

is semi-compact, then {x,} converges strongly to a split common fized point x* € T.

1.3. Inertial technique

Polyak [40] proposed an inertial extrapolation as an acceleration process for solving the smooth
convex minimization problem. It is based on the heavy ball method of the second order dynamical
system with friction:

Z(t) + anz(t) + aV(x(t)) = 0,

where a1, as > 0 are friction parameters. The inertial algorithm is given as a two step iterative
method which is written as

{yn =z, + Oén(xn - xn—l)

1.5
Tpn+1 = Yn — )\an(llfn), n > ]-7 ( )
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where f: H — R is a smooth convex function, «,, € (0,1) is an extrapolation factor and A\, > 0 is a
stepwise positive parameter which has to be sufficiently small. The inertial term in (I=3) is introduced
as a means of speeding up the rate of convergence properties of the scheme. This is due to the fact
that the new iterate is given by taking a step which is a combination of the direction x,, — x,_1
and the current anti-gradient —V f(z,,). Because of this increase in the speed of convergence rates
of iterative algorithms, there have been an increasing interest in the study of inertial type iterative
schemes (see e.g [, 00, 3, 23, 29]). Moreover the acceleration scheme developed by Nestrov [34]
improves the theoretical rate of convergence of forward-backward method from the standard O(k™1)
down to O(k~?) and the inertial extrapolation scheme of Nestorov’s accelerated forward-backward
method which is actually o(k~2) rather than the O(k~?2) see [{].

Alvarez and Attouch [8], applied the idea of the heavy ball method to the setting of a general maximal
monotone operator using the proximal point algorithm. They came up with the following inertial
proximal point algorithm.

{yn :xn—i_an(xn_mnfl); (1 6)

Tpp1= ([ +7r,T) 'y, n>1

They proved a weak convergence theorem using (C8B) to a zero of the maximal monotone operator T
with conditions that {r,} is nondecreasing and a;, € (0,1) is such that Y -, ||z, — 21| < 00
Moudafi and Oliny [33] improved on Algorithm (IZ8) by introducing an additional single-valued
co-coercive, and Lipschitz continuous operator S into the inertial proximal point algorithm as:

{yn =z, + an(xn - xn—l)7 (1 7)

Tnt1 = (I+TNT>_1([ - Tns)yna n > 1.

They obtained a weak convergence theorem for finding the zero of the sum (S + T') provided that
the conditions given on the parameters in (ICH) are satisfied.

It is worthy of mention that most of the works involving the inertial extrapolation were carried out
in Hilbert spaces, in which weak convergence results were obtained in most cases.

Inspired by the ongoing research interest in inertial extrapolation, we consider the following split
variational inclusion problem involving accretive operators: Let X; and X, be Banach spaces. The
split variational inclusion problem for accretive operators is given as: Find z; € X; such that

(1.8)
y* = Ax* € XQ : y* € (TQ +Sg),

{O € X, :a*€ (Tl +Sl),
where T : X; — 2% Ty X5 — 2%2 are set-valued accretive operators, S; : X1 — X1, S5 : Xo — Xo
are inverse strongly accretive operators and A : X; — X5 is a bounded linear operator.
Furthermore, we introduce an inertial-type iterative scheme and prove a weak convergence theorem
of the scheme to the solution of (I).

2. Preliminaries

Let X be a Banach space with the dual X*, and let (-,-) denotes the duality pairing between the
elements of X and X*. Let B = {z € X : ||z|| = 1} be the unit sphere in X. Then, X is said to be
strictly convex, if for any =,y € B,

[l + yll

5 <L (2.1)

x #y implies
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Define a function ¢ : [0,2] — [0, 1] called the modulus of convexity as follows:

. ||z + yll
o(e) =inf {1 = === @,y € X, ||zl = |lyll, llx = yll = e}, (2:2)

for all e € [0,2]. X is said to be uniformly convex if and only if 6(¢) > 0 for all € € [0, 2]. The Banach
space X is said to be smooth if the limit

ety o]
t—0 t

(2.3)

exists for every x,y € B. It is said to be uniformly smooth if the limit (223) is attained uniformly
for z,y € X, (see [44]). The norm of X is said to be Fréchet differentiable if, for each z € X, the
limit (2.3) exists and is attained uniformly for all y such that ||y|| = 1. It is therefore trivial that a
uniformly smooth Banach space is Fréchet differentiable. The normalized duality mapping J from
X to 2% is defined by

Jr ={z* € X*: (x,2%) = ||z||% ||z|| = ||=*]|}, ¥ =€ X. (2.4)

It is widely known that J is single-valued and norm-to-norm uniformly continuous on each bounded
subsets of X if X is a real smooth and uniformly convex Banach space, (see [37, A2] ). Let X be a
Banach space and C' a nonempty, closed and convex subset of X. An operator T': C' — (' is said to
be L-Lipschitz if there exists a constant L > 0 such that

1Tz = Ty|| < Ll|lz —yl| V 2,y €C. (2.5)

In particular, if L = 1 then the operator T is nonexpansive. We denote by F(T) the set of fixed
points of T, that is F(T) = {z € C: Tx = x}. It is known that if T is nonexpansive then F(T") # (.
A set-valued mapping G : X — 2% with domain D(G) and range R(G), is said to be accretive if,
for all ¢ > 0 and every x,y € D(G) C X,

|z =yl <llz =y +tlu=0)ll, v Gz, v Gy (2.6)

An equivalent definition for the accretive operator was derived by Kato [25], that is G is said to be
accretive if and only if, for each x,y € D(G), there exists j(x —y) € J(xz — y) such that

(u—v,jlx—y)) >0, ue Gz, veGy. (2.7)

In addition, an operator G is said to be m-accretive if it is accretive and R(I +rG) is X for all r > 0.
Given o > 0 and g € (0,00), we say that an accretive operator G is a-inversely strongly accretive
(a-isa) of order g, if for each x,y € D(G), there exists j, (v — y) € Jy(x — y) such that

(u—v,j,(xr—y)) > allu—2||Y, uwe Gz, veGy. (2.8)
For ¢ = 2, we simply say G is a-isa, that is G is a-isa if,
(u—v,j(x—y)) >allu—2v||?, vweGr, veqy. (2.9)

We remark that every a- inverse strongly accretive operator T' is accretive and i—Lipschitz. For
more on accretive operators see [2] and the references contained therein. If G is accretive, then we
can define a nonexpansive single-valued mapping Jy, : R(I + A\,G) — D(G) for each nondecreasing
An > 0 by Jy, := (I +\,G)~!, which is called the resolvent of G of parameter \,. Denote by G~1(0)
the set of zero of G; that is G7(0) := {z € D(G) : 0 € Gza}. Tt is well known that F(J{ ) = G~1(0).
The following results will be useful in this sequel:
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Lemma 2.1. [29] Let {¢,} C [0,00) and {0,,} C [0,00) satisfying:
(1) ¢ns1— On < Op(dn — Pp—1) + 0,
(2) 220n < 00,
(3) 6, C[0,0], where 8 € [0,1).
Then ¢, is a convergent sequence and » [Gn+1 — ¢n|+ < 00, where [t]; := max{t,0} for any t € R.

Lemma 2.2. [/G] Given a number r > 0. A real Banach space X is uniformly convex if and only if
there exists a continuous strictly increasing function g : [0,00) — [0, 00) with g(0) = 0 such that

1Az + (1= Nyll* < All[]* + (1= Myl = AL = Ng(llz = yl]),
for all z,y € X, A € [0,1], with ||z|| < r and ||y|| < r.

Recall that a Banach space X is said to satisfy the Opial’s condition, if whenever {z,} is a sequence
in X which converges weakly to x as n — 0o, then

limsup ||z, — z|| < limsup ||z, —y||, V vy € X, y#x. (2.10)

n—o0 n—oo

Lemma 2.3. [I7]] Let X be a uniformly convex Banach space, let C' be a nonempty closed convex
subset of X and let T : X — X be a nonexpansive mapping. Then (I —T) is demiclosed at zero.

Lemma 2.4. [1]] Let X be a real Banach space with Fréchet differentiable norm. For x € X, let
B*(t) be defined fort € (0,00) by

[l + tyl[* — [l=l]* _

6) = sup { 2007600 Il = 1}

t
Then, lim §*(t) =0 and
t—0t
[l + hl|* < [J2]|* + 2(h, j(x)) + [|R]15"|Al] (2.11)

for all h € X{0}.

Remark 2.5. In Lemma we will assume B*(t) < ct, t > 0 for some ¢ > 1. It is easy therefore to
obtain the following estimate

2(h, j(x)) < [l2l|* + c|[h]]* = [lz = hI*,

(2.12)

by replacing h in (2Z10) by —h.

Lemma 2.6. [28] Let X be a real Banach space. Let Ty : X — 2% be an m-accretive operator and
S1: X = X be an a-inverse strongly accretive mapping on X. Then we have
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(i) for A > 0, F(Qx) = (Ty + 51)7'(0),
(1t) for 0 <A< pand x € X, ||z — Q|| < 2|z — Quz||,
where Qy = JIH(I —\S;) = (I +AT1) "' (1 — AS)).

Lemma 2.7. [/§] Let X be a 2-uniformly smooth Banach space with the best of smoothness constants
k > 0. Then the following inequality holds:

2 +yll* < fal* +2((2). y) + 2K7|]y[]>. ¥V =,y € X. (2.13)

In this sequel we shall use the following notations Py, := JATE(] —AS9) = (I + X, T2) (I — \,.S2)
and Qy, == J{H(I = A1) = (I + AT1) 71 (1 — A\uSi), where Ty, Sp, T and S, are as defined in (IC8).
3. Main results

In this section, we give our main results.

Lemma 3.1. Let X, be real uniformly convex and 2-uniformly smooth Banach spaces, Xs a real
Banach space with Féchet differentiable norm, A : X1 — X5 a bounded linear operator and A* the
adjoint of A. Let Ty : X1 — 2%, Ty + Xy — 2%2 be set-valued accretive operators and S; : X, —
X1,S5 1 Xo = Xy be a-inverse strongly accretive operators. Assume I := {q € (T, +S1)"*(0) : Aq €
(Ty, + S5)710)} # 0. Let {\,} be a sequence of non-negative real numbers, for x, € Xy, let {x,} be
a sequence given by

Up = Ty + ‘gn(xn - xn—l)v
Yn = Up + I, PA* Jo(Py, — 1) Auy, (3.1)
Tpi41 = Qpln + (1 - an)Q)\nyna vV n > ]-7

where {ay,} is a sequence in (0,1), v is a positive constant and 0,, C [0, 0] where 0 € [0,1) satisfying
the following conditions:

(1) 3 im0 Onllzn — 2 []* < 00;
(2) 0 <y < %, where k is the smoothness constant satisfying 0 < k* < %;
(3) \u€(0,22), V n>1, ¢>1.

Then {x,} is bounded.

Proof . For eachn > 1, let Qill = J/\Ti(l—/\nSl) and fix ¢ € T', then ¢ € (T1451) and Aq € (T2+S55).
For all z,y € X, using the nonexpansivity of J,, and Lemma 24, we have

|Qx,z — Q. y|[?

X = AuSt) — 3 (I = AS1)yl[?

|z —y — A(s12 — Siy)|]?

|z = yl| — 2X(S12 — S1y, j(z — y)) + eA2[|S1a — Sy

|z = yl* = An(20 — X)) S12 — Sy

|z — yl|>. (3:2)

VAN VAN VANVAN
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Thus, @), is nonexpansive for all n > 1. Similary, P, is nonexpansive.
So, it follows from (B) and Lemma P72, that

|znr —all® = llan(yn —p) + (1 — ) (@40 — @)
< anlyn — gl + (1= o) [|Qx, 40 — al” — an(1 — ) g(||yn — Q. ynll)
< anllyn — allP + (1= a)llyn — dl’ — an(1 — an)g([|yn — Qr,unl|)
< lyn = ql]? = an(1 = an)g(|lyn — Q. all)- (3.3)

Again, from (Bd) and Lemma 272, we have

ym — all? = [(un — @) + 77 A" TPy, — T) Au||?
< |y JT AT T (P, — D) Aug|]? + 29 (un — q, A" Jo(Py, — 1) Auy) + 262 ||u, — g
< APNAIPNPy, = 1) Aun||? + 29 {un — g, A* Jo(Py, — I) Auy) + 22| [u, — g|?
< APNAIPI(Py, = 1) Aun||? + 29(Au, — Ap, Jo(Py, — ) Auy) + 2k [u, — g]]?
= Y|A|P||(Py, — D||* + 2v(Au, — Py, Au, + Py, Auy, — Ap, Jo(Py, — I)Auy) + 2K?||u, — q|?
= Y| AIP[|(Py, — I)Au,||?
4 29(Py, Aup — Py Ap, Jo(Py, — I)Auy) — 29||Au, — Py, Aug| > + 26%||un — q||?
< ANAIPI(P, = D Aun||* = 29||Auy, — Py, Au,||?
+ I PuAuy — Py, Apl)? + [|(Py, — T) Au,|[*]+
2k [y — q||?
< APNAIPNP, = 1) Aun||? = 3| Auy, — Py, Aun|* + 23| Jup — g|* + || Py, Au, — Py, Apl|?
< PNAIPI(Py, = 1) Aun||* = || Auy — Py, Auy|[* + 282 |[uy, — ] + || A]*[|un — gl|?
<AOANZ = DI(Pr, = 1) Aug]* + (Y| A]]? + 262)][un — q|?
< (YIAI? + 252 [Jun — ql]? = (1 = AJAIP)[(Py, — 1) Aul]?.

(3.4)
Furthermore, from (Bl), Lemma 24 and Remark P4, we have
||wn — qH2 = |[[(xn — q) + On(xy — 20 — 1)H2
< n — QH2 + 2007y — Tp1, j (20 — q)) + CQZHxn - xn—1||2
< o = all” + ulllzn — al* + cllzn — 2o l]” = a1 — al*] + by ll2n — zna |
< aw = all? + Oulllzn — gl® = (|01 — ql[] + 260n| 20 — 201 |, (3.5)

which together with (B3), implies

lyn = all* < VAIP + 26%)[[lzn — glI” + Onllzn — al* = N2y — ql[*) + 260020 — 20|’ -
V(@ =AAIP(Pr, = T)Aunl . (3.6)

Thus, from (B33), we obtain

2w —all* < AP + 26 [[len — al” + Ou(llzn — all* = [|20-1 = gl|*) + 2¢bnJwn — za|]’] -
Y@ = AAIDNPr, — D Aun|*) = an(l = ) g(llyn — Qr,Ynl)- (3.7)
Since 0 < 7||A||* + 2k? < 1, we obtain

2w —all* < lon = gll* + Oalllzn — all* = llon — all"] + 260020 — 2na|* =
V(= AAPIAP, = D) Aun]]* = (1 = 0n)g([ |y — Qx,yal])- (3.8)
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That is,
1201 = all* < lzn = al* + 0ullon — all® = llza-1 — all?) + 260n]|z0 — 2. (3.9)

Since Y7, oo Onlln — 241|[* < 00, and 6, C [0,0], [0 € (0,1), we obtain from Lemma T that
the sequence {||x, — q||} is convergent, hence bounded. Consequently, the sequence {||y, — ¢l||} is

bounded. [J

Theorem 3.2. Let Xy be a real uniformly convex Banach space and 2-uniformly smooth satisfying
Opial’s condition, Xo a real Banach space with Fréchet differentiable norm, A : X1 — Xs a bounded
linear operator and A* the adjoint of A. Let T : X; — 2%X1. Ty : Xo — 2%2 be set-valued accretive
operators and Sy : X1 — X1,9 : Xo — Xy be a-inverse strongly accretive operators. Assume
[:={qe (T1+5)0): Ag € (Tr + S2)"1(0)} # 0. Let {\,} be a sequence of non-negative real
numbers, for vy € Xy, {x,} be the sequence given by (B) where o, is a sequence in (0,1), v is a
positive constant and 6,, C [0,0) where 6 € [0,1) satisfying the following conditions:

(1) 350 Onllzn — Tn1|[* < o0

(2) liminf a,,(1 — «v,) > 0;

n—oo
(8) 0 <y < %, where k is the smoothness constant satisfying 0 < k* < %;
(4) 0<A< A, <b<2 Vn>1, ¢>1

Then {x,} converges weakly to x* € T.

Proof . Let ¢ € I, then by Lemma P and (8H), we obtain > _o[||zn, — q|* = [|zn-1 — ¢|*]+ < o0,
also from (B3R), we have -

YL =AAIPI(PL, = DAu|P + (L = an)g(llyn = Qxnll) < s —all® = [Jon —ql* +
Onll|n — qll” = [lzn-1 — al]’]+
2¢O |20 — Tu_t||?. (3.10)

Hence, we obtain

> @ =AAPIP, = DA+ an(l = an)g(llyn — Qu,yal)] < oo. (3.11)

n>0

This implies that

nh_{](f)lo ||(Py, — I)Auy,|| = 0. (3.12)
Also, condition (2) and the property of the function g in Lemma =2, we obtain

Tim{lyn — Qx,ynl| = 0. (3.13)

From Condition (4) we have A, > 0, ¥V n > 1 therefore, there exists € > 0 such that A\, > ¢ for all
n > 1. Then, by Lemma P8,

lim |[Qery, — 2n|| <2 lim ||Qy, 2z, — x4|| = 0. (3.14)

Since, Q. is nonexpansive, we have F(Q.) = (T; + 5;)71(0) # 0.
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Same argument holds for P., hence, P, is nonexpansive and F(P,) = (Ty + S)71(0) # 0.
From condition (1), we have Y - 0,||z, — 2,-1]]* < co, which implies 0,,||x,, — x,,_1|] — 0.
Observe that -

lun = || = [|(zn = 2n) + On(@n — 2p-1)|[ = 0.
Hence,
lim ||u, — x,|| = 0. (3.15)
n—oo
Also,
g = zall = [|(un — 20) + 7 JT A (P, — I) Auy|
< un =zl + [y A" (P, — 1) Auy||- (3.16)

Using (B12) and (BT3), we obtain
lim ||y, — || = 0. (3.17)
n—o0

By Lemma B, {z,} is bounded and by the reflexivity of the Banach space X, there exists a
subsequence {z,,} of {z,} which converges weakly to z*. Using (813), we have {u,,} of {u,}
converges weakly to z*. (B11), also implies that {y,,} of {y,} converges weakly to z*. From (B13),
we have that |[y,, — Qx,yn,|| = 0, as n — oo. Since @), is nonexpansive, then by Lemma 223 and
Lemma Z8(i) we have that z* €= (T} + S1)71(0).

Furthermore, since the operator A is linear and bounded, we know that { Az, } converges weakly to
Az*. Tt follows from (BI2) and the fact that Py, is demiclosed at zero that Az* € (Ty + S2)~*(0).
Hence, x* belongs to I'.

Now, suppose there exists another subsequence {z,,} of {z,} which converges to y* € X, we know
by (BI8) and previous analysis that y* € (Ty+.5)71(0). Applying the Opial’s condition on the space
Xy, we conclude that {z,} converges weakly to z*. J

The following results are easily obtained as corollaries to our main result.

Corollary 3.3. Let H; and Hy be real Hilbert spaces with Hy satisfying the Opial’s condition, and
A Hy — H, a bounded linear operator A* the adjoint of A. Let Ty : Hy — 281 Ty : Hy — 252 pe
set-valued monotone operators and Sy : Hi — Hy,Sy : Hy — Hy be a-inverse strongly monotone.
Assume T :={q € (T1 + S1)71(0) : Aq € (Ty+S2)71(0)} # 0. Let {\,} be a sequence of non-negative
real numbers, for xy € Hy, let {x,} be a sequence given by

Up = Ty + en(xn - xn—l)v
Yn = Uy + YA*(Py, — I)Auy, (3.18)
Tn4+1 = Opln + (1 - an)Q)\nyna vV n > ]-7

where , is a sequence in (0,1), v is a positive constant and 6,, C [0,60), where 8 € [0,1) satisfying
the following conditions:

(1) 3oz Onlln — xna|[* < 00;

(2) liminf a,,(1 — av,) > 0;
n—00
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1.
(3) 0<y< AR
(4) 0<A<A, <b<2 Vn>1, ¢>1

Then {x,} converges weakly to * € T

Suppose in S; = 0 and Sy = 0 in (IX), then the split accretive variational inclusion problem (CR)
reduces to split variational inclusion problem: Find z* € X; such that

{o € Ti(z*)

3.19

Therefore, we obtain the following corollary.

Corollary 3.4. Let X; be a real uniformly convex Banach space and 2-uniformly smooth satisfying
Opial’s condition, X5 a real Banach space with Féchet differentiable norm, A : X1 — X5 a bounded
linear operator and A* the adjoint of A. Let Ty : X; — 2%t and Ty : X5 — 2%2 multi-valued mazimal
accretive operators. Assume T := {q € T71(0) : Aqg € T, 1(0)} # 0. Let {\,} be a sequence of
non-negative real numbers, for x1 € X1, let {z,} be a sequence given by

Uy = Tp + en(xn - xn—l)a
o =ty + 3 AN T — T) Au,, (3.20)
Tnt1 = QnYn + (1 — an>J/\T;3/m vV on>1,

where oy, is a sequence in (0,1), v is a positive constant and 6, C [0,60) where 0 € [0,1) satisfying
the following conditions:

(1) 2oz Onlln — Tna|[* < 00;

(2) liminf a,,(1 — «v,) > 0;
n—oo

(3) 0 <y < %, where k is the smoothness constant satisfying 0 < k* < %

Then {x,} converges weakly to x* € T'.

4. Application and numerical example.

4.1. Convex Minimization Problem

Recall that the concept of accretivity in Banach space coincides with that of monotonicity in Hilbert
space. Thus, we apply our result to solve convex minimization problem, which is an important
optimization problem.

Let H be a Hilbert space, M : H — (—00, 4+00] a proper convex and lower semi-continuous function
and N : H — R a convex and continuously differentiable function. Then the subdifferential of M
denoted 0M is maximal monotone and the gradient VN of N is monotone and continuous (see [A1]).
Moreover ,

M(x*) + N(a*) = min[M(2) + N(2)] <= 0 € d(M(a") + VN(a")). (4.1)
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We consider the following Split Convex Minimization Problem (SCMP): Find z* € H;, such that

Mi(®) + Ni(2%) = min[My(z) + Ni(2))],

y = Aw € Hy : My(y") + Na(y) = min[Ma(y) + No(y)],
2
where A : Hi — H, is a bounded linear operator M;, M; are proper convex lower semi-continuous

functions and Ny, Ny are convex and differentiable functions. We denote the solution set of (E=2) by
r

By setting S; = 0Ny, Sy = 0Ny, Ty = VM, and Ty = VM, in Corollary B33, we obtain the following
result for solving SCMP (B22):

Theorem 4.1. Let Hy and Hs be real Hilbert spaces with Hy satisfying the Opial’s condition, and
A : Hy — Hy a bounded linear operator A* the adjoint of A. Let My : Hy — (—o0,+0o0], My :
Hjy(—o00, +00] be proper convex and continuously differentiable function and Ny : Hy — R, Ny : Hy —
R be convex and continuously differentiable function such that VN; is é-Lz’pschz’tz fori =12 .

Assume T #£ 0, for let {\,} be a sequence of non-negative real numbers, for x1 € Hy, let {x,} be a
sequence given by

Uy = Tp + en(xn - xn—l)7
U = i+ YA (I + MDMa) ") (I — Ay T Ny) — T) Ay, (4.3)
Tpi1 = QlYn + (1 — ap)) (I + XOM) M (I — N\, VNY )Y, ¥V n>1,

where o, is a sequence in (0,1), v is a positive constant and 6, C [0,0) where 6 € [0,1) satisfying
the following conditions:

(1) 2oz Onlln — Tna|[* < 00;

(2) liminf oy, (1 — o) > 0;
n—o0

1 .
(3) O<'7< IPIER

(4) 0< A<\, <b<Z VYn>1 c>1.

c?

Then {x,} converges weakly to x* € T.

Let A, M; and M, be defined as above, we define the Convex Minimization Problem (CMP) as
follows: Find z* € H; such that

M, (x*) = min M, (z),
reHq
y* = Ax* € Hy : My(y*) = min Ms(y).

yEH>

(4.4)

We denote the solution set of the CMP (E4) by denoted by I'. Several authors have used different
iterative algorithms to approximate solutions of SCMP (£=2) and CMP (E=) and related optimization
problems, see [3, 4, &, IR, 9, 20, &3].

By setting T} = OM; and T, = 0M, in Theorem B2, with S; = Sy = 0, we obtain the following
result:
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Corollary 4.2. Let H; and Hy be real Hilbert spaces with Hy satisfying the Opial’s condition, and
A : Hy — Hy a bounded linear operator, A* the adjoint of A. Let My : Hi — (—oo,~+00], My :
Hy(—00, +00] be proper convex and continuously differentiable function. Assume T # 0, let {\,} be
a sequence of non-negative real numbers, for x1 € Hy, let {x,} be a sequence given by

Uy = Tp + Op(Tp — Tp1),
Yp = Up + ’yA*(inV[? — I)Au,, (4.5)
P = g+ (1 P, ¥ > 1,

where oy, is a sequence in (0,1), v is a positive constant and 6,, C [0,0), where 6 € [0,1) satisfying
the following conditions:

(1) ano Ol — In_1|!2 < 00;

(2) liminf a,,(1 — o) > 0;
n—oo

1
(8) 0 <y < TATE -
Then {x,} converges weakly to x* € T.

4.2. Numerical ezample

Here we present a numerical example in (R?,||.||2) to our result Theorem B=2.
Let X; = Xy = R?, we define A(x) : R* — R? by

Alz) = (g 3) (i;) then, A*(z) = (g g) (ﬁ;).

Let 71 : R* — R? and T3 : R? — R? be defined by T1(Z) = (—x1 — 29, 71 + 22) and Ty(T) = (21, o).
We obtain the resolvent mappings associated with T} and T, as follows:

-1
_ 10 A =\ T
e = GG )] ()
A D S U
o _)\n 1— >\n )
= ((1 + )\n)xl + >\n$27 (1 - An)x2 - )\nxl))

Similarly, we obtain

JE(@) = Ké ?)*(Ao” AO)] <>

1 1
= X e .
T+, 14,2

Let S : R? — R? respectively Sy : R? — R? be defined by S1(7) = (21, —25) and So(Z) = (21, —T2).
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Let o), =

po= A~ % Then, A, = 2L Hence, our Algorithm B becomes:

n
2n+17 10n+470"

For g, 71, € R?

(un =, + en(*xn - xn71)7
11—\ 0
Yo = Un + v J7 AT, HO“ L) 1| Aun n 20,

(14 X)) (1 —2),) An(1—=2),)

Tp1 = (277_1)«7/” + (27?11) Yoy n2 1.
\ + + (20, — 1) (1—=X)(1—2),)

Case I: a_jo — (01, OOl)T, i‘l = (17 2)T and Qn = —4n?+1.

Case II: 7y = (1, 2)T, 71 = (0.1, 0~01)T and 0, = 277,?-1—1'
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Figure 1: Errors vs number of iterations for Case I.



302

Table 1: Showing numerical results for Case I.

No. of iterations

Accelerated Algorithm 3.1

Unaccelerated Algorithm

1

2 0.0021 0.4435
3 0.0025 0.0120
4 0.0029 0.0100
5 0.0032 0.0110
6 0.0034 0.0119
7 0.0036 0.0125
8 0.0038 0.0131
9 0.0039 0.0136
10 0.0041 0.0140
11 0.0041 0.0143
12 0.0042 0.0145
13 0.0043 0.0147
14 0.0043 0.0149
15 0.0044 0.0150
16 0.0044 0.0151
17 0.0044 0.0151
18 0.0044 0.0152
19 0.0044 0.0152
20 0.0044 0.0152
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Table 2: Showing numerical results for Case II.

No. of iterations Accelerated Algorithm 3.1 Unaccelerated Algorithm

1

2 0.0236 0.7576
3 0.0283 0.1216
4 0.0323 0.0515
5 0.0356 0.0516
6 0.0383 0.0548
7 0.0405 0.0577
8 0.0423 0.0601
9 0.0438 0.0621
10 0.0451 0.0637
11 0.0461 0.0651
12 0.0469 0.0662
13 0.0476 0.0671
14 0.0481 0.0677
15 0.0485 0.0682
16 0.0487 0.0686
17 0.0489 0.0688
18 0.0490 0.0689
19 0.0490 0.0690
20 0.0490 0.0689
21 0.0489 0.0687
22 0.0685

0.0487

23 0.0485 0.0682
24 0.0483 0.0679
25 0.0480 0.0675
26 0.0477 0.0670
27 0.0473 0.0665
28 0.0470 0.0660
29 0.0466 0.0655
30 0.0462 0.0649
31 0.0458 0.0643
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Figure 2: Errors vs number of iterations for Case 2.
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