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Abstract

In this paper, we introduce a new iterative algorithm of inertial form for approximating the solution
of Split Variational Inclusion Problem (SVIP) involving accrective operators in Banach space. Mo-
tivated by the inertial technique, we incorporate the inertial term to accelerate the convergence of
the proposed method. Under standard and mild assumption of monotonicity of the SVIP associated
mappings, we establish the weak convergence of the sequence generated by our algorithm. Some
applications and numerical example are presented to illustrate the performance of our method as
well as comparing it with the non-inertial version.
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1. Introduction

Let H be a real Hilbert space, ⟨·, ·⟩ an inner product and || · || the corresponding norm on H.. An
operator Q : H → 2H is said to be monotone if ⟨u − v, x − y⟩ ≥ 0 for all u ∈ Q(x), v ∈ Q(y). It is
said to be maximal monotone if, in addition, the graph G(Q) of Q is not properly contained in the
graph of any other monotone mapping i.e (x, u) ∈ H ×H, ⟨x− y, u− v⟩ ≥ 0 for every (y, v) ∈ G(Q)
implies u ∈ Q(x). A single-valued operator Q : H → H is called α inverse-strongly monotone if
there exists a positive real number α such that ⟨Qx − Qy, x − y⟩ ≥ α||x − y||2 for all x, y ∈ H, see
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[21, 22, 23]. It is well known that for each x ∈ H and λ > 0, there is a unique z ∈ H such that
x ∈ (I + λQ)z, where Q is a maximal monotone operator and I is an identity operator on H. The
single-valued operator JQ

λ = (I + λQ)−1 is called the resolvent of Q of parameter λ. It is a firmly
nonexpansive and nonexpansive mapping which is everywhere defined and satisfies z = JQ

λ z if and
only if 0 ∈ Qz.

We recall that a real-valued mapping h on H is lower semi-continous if h(x) ≤ lim inf
n→∞

h(xn) for all

sequence {xn} ⊂ X such that xn → x (strongly). Similarly h is weakly sequentially lower semi-
continuous (weakly lsc) if h(x) ≤ lim inf

n→∞
h(xn) for all sequence {xn} ⊂ X such that xn ⇀ x (weakly).

1.1. Splitting method for sum of accretive mappings

Splitting method have received more attention recently due to the fact that many nonlinear prob-
lems arising in applied areas such as image recovery, machine learning and signal processing can be
mathematically modelled as a nonlinear operator equation, which in turn can be further decomposed
into the sum of possibly simpler nonlinear operators. Splitting method for linear equations were
introduced by Peaceman and Rachford [39] and Douglas and Rachford [16]. Extension to Hilbert
spaces were carried out by Kellog [26], Lions and Mercier [27]. The defining problem is to iteratively
find a zero of the sum of two monotone operators T1 and T2 in Hilbert space H, that is the solution
to the inclusion problem

0 ∈ (T1 + T2)x. (1.1)

Many problems in real life can be formulated as (1.1). A prominent example is the stationary solution
to the initial value problem of the evolution

∂u

∂t
+ Fu ∋ 0, u(0) = u0,

where the governing maximal monotone F is of the form T1+T2. This problem models the optimiza-
tion problem

min
x∈H

{f(x) + gT (x)}, (1.2)

where f, g are proper lower semicontinuous functions fromH to the extended real line R = {−∞,+∞}
and T is a bounded linear operator on H. The minimization problem (1.2) is widely used in image
recovery, machine learning and signal processing. A splitting method for solving (1.1) involves an
iterative algorithm for which each iteration involves only with the individual operators T1 and T2,
but not the sum T1+T2 concurrently. To solve (1.1), Lions and Mercier [27] introduced the nonlinear
Peaceman-Rachford and Douglas-Rachford which generate a sequence {xn} by the recursion formula
xn+1 = (2JT1

λ −I)(2JT2
λ −I)xn and a sequence {xn} generated by xn+1 = JT1

λ (2JT2
λ −I)xn+(I−JT2

λ )xn,
where JT1

λ denotes the resolvent of the monotone operator T1. Of the two recursion formula, the
Douglas-Rachford algorithm always converges in the weak topology to a point y∗ and y∗ = JT2

λ x
is a solution of (1.1), since the generating operator JT1

λ (2JT2
λ − I) + (I − JT2

λ ) for this algorithm is
firmly nonexpansive. The Peaceman-Rachford algorithm however fails to converge even in the weak
topology in the infinite dimensional settings.
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1.2. Split monotone variational inclusion

In 2011, Moudafi [31] introduced the following Split Monotone Variational Inclusion Problem (SMVIP):
Find x∗ ∈ H1, such that{

0 ∈ (T1(x
∗) + S1(x

∗))

y∗ = Ax∗ ∈ H2 : 0 ∈ (T2(y
∗) + S2(y

∗)),
(1.3)

where T1 : H1 → 2H1 and T2 : H2 → 2H2 are set-valued maximal monotone mappings, S1 : H1 → H1

and S2 : H2 → H2 are single valued monotone operators and A : H1 → H2 is a bounded linear
operator. In [31], Moudafi obtained a weak convergence theorem for approximating the solution
SMVIP in Hilbert spaces.
The SMVIP includes as special cases, split common fixed points problem, split variational inequality
problem, the split feasibility problem and split zero problem. All of which have been studied by
several authors (see [6, 15, 19, 30, 35, 36] and the references therein).
Very recently, Zhang and Wang [47] proposed an iterative algorithm and proved that the algorithm
converges weakly and strongly to a split common fixed point problem for nonexpansive semigroups
in Banach spaces under some suitable conditions. Precisely, they proved the following theorem:

Theorem 1.1. Let X1 be a real uniformly convex and 2-uniformly smooth Banach space satisfying
Opial’s condition and with the best smoothness constant k satisfying 0 < k < 1√

2
, X2 be a real Banach

space, A : X1 → X2 be a bounded linear operator, and A∗ be the adjoint of A. Let {S(t) : t ≥ 0} :
X1 → X1 be a uniformly asymptotically regular nonexpansive semigroup with C := ∩t≥0F (S(t)) ̸= ∅
and {T (t) : t ≥ 0} : X2 → X2 be a uniformly asymptotically regular nonexpansive semigroup with
Q := ∩t≥0F (T (t)) ̸= ∅. Let {xn} be a sequence generated by: x1 ∈ X1{

zn = xn + γJ−1
1 A∗J2(T (tn)− I)Axn,

xn+1 = (1− αn)zn + αnS(tn)zn, ∀ n ≥ 1,
(1.4)

where {tn} is sequence of real numbers, {αn} a sequence in (0, 1) and γ is a positive constant satisfying

(1) tn > 0 and lim
n→∞

tn = ∞;

(2) lim inf
n→∞

αn(1− αn) > 0 and 0 < γ < 1−2k2

||A||2 .

(I) If Γ = {p ∈ C : Ap ∈ Q} ≠ ∅, then {xn} converges weakly to a split common fixed point x∗ ∈ Γ.

(II) In addition, if Γ = {p ∈ C : Ap ∈ Q} ̸= ∅, and there is at least one S(t) ∈ {S(t) : t ≥ 0} which
is semi-compact, then {xn} converges strongly to a split common fixed point x∗ ∈ Γ.

1.3. Inertial technique

Polyak [40] proposed an inertial extrapolation as an acceleration process for solving the smooth
convex minimization problem. It is based on the heavy ball method of the second order dynamical
system with friction:

ẍ(t) + α1ẋ(t) + α2▽(x(t)) = 0,

where α1, α2 > 0 are friction parameters. The inertial algorithm is given as a two step iterative
method which is written as{

yn = xn + αn(xn − xn−1)

xn+1 = yn − λn▽f(xn), n ≥ 1,
(1.5)
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where f : H → R is a smooth convex function, αn ∈ (0, 1) is an extrapolation factor and λn > 0 is a
stepwise positive parameter which has to be sufficiently small. The inertial term in (1.5) is introduced
as a means of speeding up the rate of convergence properties of the scheme. This is due to the fact
that the new iterate is given by taking a step which is a combination of the direction xn − xn−1

and the current anti-gradient −▽f(xn). Because of this increase in the speed of convergence rates
of iterative algorithms, there have been an increasing interest in the study of inertial type iterative
schemes (see e.g [1, 10, 13, 23, 29]). Moreover the acceleration scheme developed by Nestrov [34]
improves the theoretical rate of convergence of forward-backward method from the standard O(k−1)
down to O(k−2) and the inertial extrapolation scheme of Nestorov’s accelerated forward-backward
method which is actually o(k−2) rather than the O(k−2) see [7].
Alvarez and Attouch [8], applied the idea of the heavy ball method to the setting of a general maximal
monotone operator using the proximal point algorithm. They came up with the following inertial
proximal point algorithm.{

yn = xn + αn(xn − xn−1),

xn+1 = (I + rnT )
−1yn, n ≥ 1.

(1.6)

They proved a weak convergence theorem using (1.6) to a zero of the maximal monotone operator T
with conditions that {rn} is nondecreasing and αn ∈ (0, 1) is such that

∑
n≥0 αn||xn − xn−1||2 < ∞.

Moudafi and Oliny [33] improved on Algorithm (1.6) by introducing an additional single-valued
co-coercive, and Lipschitz continuous operator S into the inertial proximal point algorithm as:{

yn = xn + αn(xn − xn−1),

xn+1 = (I + rnT )
−1(I − rnS)yn, n ≥ 1.

(1.7)

They obtained a weak convergence theorem for finding the zero of the sum (S + T ) provided that
the conditions given on the parameters in (1.6) are satisfied.
It is worthy of mention that most of the works involving the inertial extrapolation were carried out
in Hilbert spaces, in which weak convergence results were obtained in most cases.
Inspired by the ongoing research interest in inertial extrapolation, we consider the following split
variational inclusion problem involving accretive operators: Let X1 and X2 be Banach spaces. The
split variational inclusion problem for accretive operators is given as: Find x1 ∈ X1 such that{

0 ∈ X1 : x
∗ ∈ (T1 + S1),

y∗ = Ax∗ ∈ X2 : y
∗ ∈ (T2 + S2),

(1.8)

where T1 : X1 → 2X1 , T2 : X2 → 2X2 are set-valued accretive operators, S1 : X1 → X1, S2 : X2 → X2

are inverse strongly accretive operators and A : X1 → X2 is a bounded linear operator.
Furthermore, we introduce an inertial-type iterative scheme and prove a weak convergence theorem
of the scheme to the solution of (1.8).

2. Preliminaries

Let X be a Banach space with the dual X∗, and let ⟨·, ·⟩ denotes the duality pairing between the
elements of X and X∗. Let B = {x ∈ X : ||x|| = 1} be the unit sphere in X. Then, X is said to be
strictly convex, if for any x, y ∈ B,

x ̸= y implies
||x+ y||

2
< 1. (2.1)
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Define a function δ : [0, 2] → [0, 1] called the modulus of convexity as follows:

δ(ϵ) = inf
{
1− ||x+ y||

2
: x, y ∈ X, ||x|| = ||y||, ||x− y|| ≥ ϵ

}
, (2.2)

for all ϵ ∈ [0, 2]. X is said to be uniformly convex if and only if δ(ϵ) > 0 for all ϵ ∈ [0, 2]. The Banach
space X is said to be smooth if the limit

lim
t→0

||x+ ty|| − ||x||
t

(2.3)

exists for every x, y ∈ B. It is said to be uniformly smooth if the limit (2.3) is attained uniformly
for x, y ∈ X, (see [44]). The norm of X is said to be Fréchet differentiable if, for each x ∈ X, the
limit (2.3) exists and is attained uniformly for all y such that ||y|| = 1. It is therefore trivial that a
uniformly smooth Banach space is Fréchet differentiable. The normalized duality mapping J from
X to 2X

∗
is defined by

Jx = {x∗ ∈ X∗ : ⟨x, x∗⟩ = ||x||2, ||x|| = ||x∗||}, ∀ x ∈ X. (2.4)

It is widely known that J is single-valued and norm-to-norm uniformly continuous on each bounded
subsets of X if X is a real smooth and uniformly convex Banach space, (see [37, 42] ). Let X be a
Banach space and C a nonempty, closed and convex subset of X. An operator T : C → C is said to
be L-Lipschitz if there exists a constant L > 0 such that

||Tx− Ty|| ≤ L||x− y|| ∀ x, y ∈ C. (2.5)

In particular, if L = 1 then the operator T is nonexpansive. We denote by F (T ) the set of fixed
points of T , that is F (T ) = {x ∈ C : Tx = x}. It is known that if T is nonexpansive then F (T ) ̸= ∅.
A set-valued mapping G : X → 2X , with domain D(G) and range R(G), is said to be accretive if,
for all t > 0 and every x, y ∈ D(G) ⊂ X,

||x− y|| ≤ ||x− y + t(u− v)||, u ∈ Gx, v ∈ Gy. (2.6)

An equivalent definition for the accretive operator was derived by Kato [25], that is G is said to be
accretive if and only if, for each x, y ∈ D(G), there exists j(x− y) ∈ J(x− y) such that

⟨u− v, j(x− y)⟩ ≥ 0, u ∈ Gx, v ∈ Gy. (2.7)

In addition, an operator G is said to be m-accretive if it is accretive and R(I+rG) is X for all r > 0.
Given α > 0 and q ∈ (0,∞), we say that an accretive operator G is α-inversely strongly accretive
(α-isa) of order q, if for each x, y ∈ D(G), there exists jq(x− y) ∈ Jq(x− y) such that

⟨u− v, jq(x− y)⟩ ≥ α||u− v||q, u ∈ Gx, v ∈ Gy. (2.8)

For q = 2, we simply say G is α-isa, that is G is α-isa if,

⟨u− v, j(x− y)⟩ ≥ α||u− v||2, u ∈ Gx, v ∈ Gy. (2.9)

We remark that every α- inverse strongly accretive operator T is accretive and 1
α
-Lipschitz. For

more on accretive operators see [2] and the references contained therein. If G is accretive, then we
can define a nonexpansive single-valued mapping Jλn : R(I + λnG) → D(G) for each nondecreasing
λn > 0 by Jλn := (I +λnG)−1, which is called the resolvent of G of parameter λn. Denote by G−1(0)
the set of zero of G; that is G−1(0) := {x ∈ D(G) : 0 ∈ Gx}. It is well known that F (JG

λn
) = G−1(0).

The following results will be useful in this sequel:
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Lemma 2.1. [29] Let {ϕn} ⊂ [0,∞) and {δn} ⊂ [0,∞) satisfying:

(1) ϕn+1 − ϕn ≤ θn(ϕn − ϕn−1) + δn,

(2)
∑

δn < ∞,

(3) θn ⊂ [0, θ], where θ ∈ [0, 1).

Then ϕn is a convergent sequence and
∑

[ϕn+1 − ϕn]+ < ∞, where [t]+ := max{t, 0} for any t ∈ R.

Lemma 2.2. [46] Given a number r > 0. A real Banach space X is uniformly convex if and only if
there exists a continuous strictly increasing function g : [0,∞) → [0,∞) with g(0) = 0 such that

||λx+ (1− λ)y||2 ≤ λ||x||2 + (1− λ)||y||2 − λ(1− λ)g(||x− y||),

for all x, y ∈ X, λ ∈ [0, 1], with ||x|| < r and ||y|| < r.

Recall that a Banach space X is said to satisfy the Opial’s condition, if whenever {xn} is a sequence
in X which converges weakly to x as n → ∞, then

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||, ∀ y ∈ X, y ̸= x. (2.10)

Lemma 2.3. [17] Let X be a uniformly convex Banach space, let C be a nonempty closed convex
subset of X and let T : X → X be a nonexpansive mapping. Then (I − T ) is demiclosed at zero.

Lemma 2.4. [14] Let X be a real Banach space with Fréchet differentiable norm. For x ∈ X, let
β∗(t) be defined for t ∈ (0,∞) by

β∗(t) = sup

{∣∣∣∣ ||x+ ty||2 − ||x||2

t
− 2⟨y, j(x)⟩

∣∣∣∣ : ||y|| = 1

}
.

Then, lim
t→0+

β∗(t) = 0 and

||x+ h||2 ≤ ||x||2 + 2⟨h, j(x)⟩+ ||h||β∗||h|| (2.11)

for all h ∈ X{0}.

Remark 2.5. In Lemma 2.4 we will assume β∗(t) ≤ ct, t > 0 for some c > 1. It is easy therefore to
obtain the following estimate

2⟨h, j(x)⟩ ≤ ||x||2 + c||h||2 − ||x− h||2,

(2.12)

by replacing h in (2.11) by −h.

Lemma 2.6. [28] Let X be a real Banach space. Let T1 : X → 2X be an m-accretive operator and
S1 : X → X be an α-inverse strongly accretive mapping on X. Then we have
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(i) for λ > 0, F (Qλ) = (T1 + S1)
−1(0),

(ii) for 0 < λ < µ and x ∈ X, ||x−Qλx|| ≤ 2||x−Qµx||,

where Qλ = JT1
λ (I − λS1) = (I + λT1)

−1(I − λS1).

Lemma 2.7. [46] Let X be a 2-uniformly smooth Banach space with the best of smoothness constants
k > 0. Then the following inequality holds:

||x+ y||2 ≤ ||x||2 + 2⟨j(x), y⟩+ 2k2||y||2. ∀ x, y ∈ X. (2.13)

In this sequel we shall use the following notations Pλn := JT2
λn
(I−λnS2) = (I +λnT2)

−1(I−λnS2)

and Qλn := JT1
λn
(I − λnS1) = (I + λnT1)

−1(I − λnS1), where T1, S1, T2 and S2 are as defined in (1.8).

3. Main results

In this section, we give our main results.

Lemma 3.1. Let X1 be real uniformly convex and 2-uniformly smooth Banach spaces, X2 a real
Banach space with Féchet differentiable norm, A : X1 → X2 a bounded linear operator and A∗ the
adjoint of A. Let T1 : X1 → 2X1 , T2 : X2 → 2X2 be set-valued accretive operators and S1 : X1 →
X1, S2 : X2 → X2 be α-inverse strongly accretive operators. Assume Γ := {q ∈ (T1 + S1)

−1(0) : Aq ∈
(T2 + S2)

−1(0)} ≠ ∅. Let {λn} be a sequence of non-negative real numbers, for x1 ∈ X1, let {xn} be
a sequence given by

un = xn + θn(xn − xn−1),

yn = un + γJ−1
1 A∗J2(Pλn − I)Aun,

xn+1 = αnyn + (1− αn)Qλnyn, ∀ n ≥ 1,

(3.1)

where {αn} is a sequence in (0, 1), γ is a positive constant and θn ⊂ [0, θ] where θ ∈ [0, 1) satisfying
the following conditions:

(1)
∑

n≥0 θn||xn − xn−1||2 < ∞;

(2) 0 < γ < 1−2k2

||A||2 , where k is the smoothness constant satisfying 0 < k2 < 1
2
;

(3) λn ∈ (0, 2α
c
), ∀ n ≥ 1, c > 1.

Then {xn} is bounded.

Proof . For each n ≥ 1, let QT1
λn

:= JT1
λn
(I−λnS1) and fix q ∈ Γ, then q ∈ (T1+S1) and Aq ∈ (T2+S2).

For all x, y ∈ X1, using the nonexpansivity of Jλn and Lemma 2.4, we have

||Qλnx−Qλny||2 = ||JT1
λn
(I − λnS1)x− JT1

λn
(I − λnS1)y||2

≤ ||x− y − λn(s1x− S1y)||2

≤ ||x− y|| − 2λn⟨S1x− S1y, j(x− y)⟩+ cλ2
n||S1x− S1y||2

≤ ||x− y||2 − λn(2α− cλn)||S1x− S2y||2

≤ ||x− y||2. (3.2)



292

Thus, Qλn is nonexpansive for all n ≥ 1. Similary, Pλn is nonexpansive.
So, it follows from (3.1) and Lemma 2.2, that

||xn+1 − q||2 = ||αn(yn − p) + (1− αn)(Qλnyn − q)||2

≤ αn||yn − q||2 + (1− αn)||Qλnyn − q||2 − αn(1− αn)g(||yn −Qλnyn||)
≤ αn||yn − q||2 + (1− αn)||yn − q||2 − αn(1− αn)g(||yn −Qλnyn||)
≤ ||yn − q||2 − αn(1− αn)g(||yn −Qλnyn||). (3.3)

Again, from (3.1) and Lemma 2.7, we have

||yn − q||2 = ||(un − q) + γJ−1
1 A∗J2(Pλn − I)Aun||2

≤ ||γJ−1
1 A∗J2(Pλn − I)Aun||2 + 2γ⟨un − q, A∗J2(Pλn − I)Aun⟩+ 2k2||un − q||2

≤ γ2||A||2||(Pλn − I)Aun||2 + 2γ⟨un − q, A∗J2(Pλn − I)Aun⟩+ 2k2||un − q||2

≤ γ2||A||2||(Pλn − I)Aun||2 + 2γ⟨Aun − Ap, J2(Pλn − I)Aun⟩+ 2k2||un − q||2

= γ2||A||2||(Pλn − I)||2 + 2γ⟨Aun − PλnAun + PλnAun − Ap, J2(Pλn − I)Aun⟩+ 2k2||un − q||2

= γ2||A||2||(Pλn − I)Aun||2

+ 2γ⟨PλnAun − PλnAp, J2(Pλn − I)Aun⟩ − 2γ||Aun − PλnAun||2 + 2k2||un − q||2

≤ γ2||A||2||(Pλn − I)Aun||2 − 2γ||Aun − PλnAun||2

+ γ[||PnAun − PλnAp||2 + ||(Pλn − I)Aun||2]+
2k2||un − q||2

≤ γ2||A||2||(Pλn − I)Aun||2 − γ||Aun − PλnAun||2 + 2k2||un − q||2 + γ||PλnAun − PλnAp||2

≤ γ2||A||2||(Pλn − I)Aun||2 − γ||Aun − PλnAun||2 + 2k2||un − q||+ γ||A||2||un − q||2

≤ γ(γ||A||2 − 1)||(Pλn − I)Aun||2 + (γ||A||2 + 2k2)||un − q||2

≤ (γ||A||2 + 2k2)||un − q||2 − γ(1− γ||A||2)||(Pλn − I)Aun||2.
(3.4)

Furthermore, from (3.1), Lemma 2.4 and Remark 2.5, we have

||un − q||2 = ||(xn − q) + θn(xn − xn − 1)||2

≤ ||xn − q||2 + 2θn⟨xn − xn−1, j(xn − q)⟩+ cθ2n||xn − xn−1||2

≤ ||xn − q||2 + θn[||xn − q||2 + c||xn − xn−1||2 − ||xn−1 − q||2] + cθ2n||xn − xn−1||2

≤ ||xn − q||2 + θn[||xn − q||2 − ||xn−1 − q||2] + 2cθn||xn − xn−1||2, (3.5)

which together with (3.5), implies

||yn − q||2 ≤ (γ||A||2 + 2k2)[||xn − q||2 + θn(||xn − q||2 − ||xn−1 − q||2) + 2cθn||xn − xn−1||2]−
γ(1− γ||A||2)||(Pλn − I)Aun||2. (3.6)

Thus, from (3.3), we obtain

||xn+1 − q||2 ≤ (γ||A||2 + 2k2)[||xn − q||2 + θn(||xn − q||2 − ||xn−1 − q||2) + 2cθn||xn − xn−1||2]−
γ(1− γ||A||2)||(||(Pλn − I)Aun||2)− αn(1− αn)g(||yn −Qλnyn||). (3.7)

Since 0 < γ||A||2 + 2k2 < 1, we obtain

||xn+1 − q||2 ≤ ||xn − q||2 + θn[||xn − q||2 − ||xn−1 − q||2] + 2cθn||xn − xn−1||2 −
γ(1− γ||A||2)||(||(Pλn − I)Aun||2 − αn(1− αn)g(||yn −Qλnyn||). (3.8)
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That is,

||xn+1 − q||2 ≤ ||xn − q||2 + θn(||xn − q||2 − ||xn−1 − q||2) + 2cθn||xn − xn−1||2. (3.9)

Since
∑

n≥0 θn||xn − xn−1||2 < ∞, and θn ⊂ [0, θ], [θ ∈ (0, 1), we obtain from Lemma 2.1 that
the sequence {||xn − q||} is convergent, hence bounded. Consequently, the sequence {||yn − q||} is
bounded. □

Theorem 3.2. Let X1 be a real uniformly convex Banach space and 2-uniformly smooth satisfying
Opial’s condition, X2 a real Banach space with Fréchet differentiable norm, A : X1 → X2 a bounded
linear operator and A∗ the adjoint of A. Let T1 : X1 → 2X1 , T2 : X2 → 2X2 be set-valued accretive
operators and S1 : X1 → X1, S2 : X2 → X2 be α-inverse strongly accretive operators. Assume
Γ := {q ∈ (T1 + S1)

−1(0) : Aq ∈ (T2 + S2)
−1(0)} ̸= ∅. Let {λn} be a sequence of non-negative real

numbers, for x1 ∈ X1, {xn} be the sequence given by (3.1) where αn is a sequence in (0, 1), γ is a
positive constant and θn ⊂ [0, θ) where θ ∈ [0, 1) satisfying the following conditions:

(1)
∑

n≥0 θn||xn − xn−1||2 < ∞;

(2) lim inf
n→∞

αn(1− αn) > 0;

(3) 0 < γ < 1−2k2

||A||2 , where k is the smoothness constant satisfying 0 < k2 < 1
2
;

(4) 0 < λ ≤ λn ≤ b < 2α
c
, ∀ n ≥ 1, c > 1.

Then {xn} converges weakly to x∗ ∈ Γ.

Proof . Let q ∈ Γ, then by Lemma 2.1 and (3.9), we obtain
∑

n≥0[||xn − q||2 − ||xn−1 − q||2]+ < ∞,
also from (3.8), we have

γ(1− γ||A||2)||(Pλn − I)Aun||2 + αn(1− αn)g(||yn −Qλnyn||) ≤ ||xn+1 − q||2 − ||xn − q||2 +
θn[||xn − q||2 − ||xn−1 − q||2]+
+2cθn||xn − xn−1||2. (3.10)

Hence, we obtain∑
n≥0

[γ(1− γ||A||2)||(Pλn − I)Aun||2 + αn(1− αn)g(||yn −Qλnyn||)] < ∞. (3.11)

This implies that

lim
n→∞

||(Pλn − I)Aun|| = 0. (3.12)

Also, condition (2) and the property of the function g in Lemma 2.2, we obtain

lim
n→∞

||yn −Qλnyn|| = 0. (3.13)

From Condition (4) we have λn > 0, ∀ n ≥ 1 therefore, there exists ϵ > 0 such that λn ≥ ϵ for all
n ≥ 1. Then, by Lemma 2.6,

lim
n→∞

||Qϵxn − xn|| ≤ 2 lim
n→∞

||Qλnxn − xn|| = 0. (3.14)

Since, Qϵ is nonexpansive, we have F (Qϵ) = (T1 + S1)
−1(0) ̸= ∅.
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Same argument holds for Pϵ, hence, Pϵ is nonexpansive and F (Pϵ) = (T2 + S2)
−1(0) ̸= ∅.

From condition (1), we have
∑

n≥0 θn||xn − xn−1||2 < ∞, which implies θn||xn − xn−1|| → 0.
Observe that

||un − xn|| = ||(xn − xn) + θn(xn − xn−1)|| → 0.

Hence,

lim
n→∞

||un − xn|| = 0. (3.15)

Also,

||yn − xn|| = ||(un − xn) + γJ−1
1 A∗J2(Pλn − I)Aun||

≤ ||un − xn||+ ||γJ−1
1 A∗J2(Pλn − I)Aun||. (3.16)

Using (3.12) and (3.15), we obtain

lim
n→∞

||yn − xn|| = 0. (3.17)

By Lemma 3.1, {xn} is bounded and by the reflexivity of the Banach space X1, there exists a
subsequence {xnj

} of {xn} which converges weakly to x∗. Using (3.15), we have {unj
} of {un}

converges weakly to x∗. (3.17), also implies that {ynj
} of {yn} converges weakly to x∗. From (3.13),

we have that ||ynj
− Qλnynj

|| → 0, as n → ∞. Since Qλn is nonexpansive, then by Lemma 2.3 and
Lemma 2.6(i) we have that x∗ ∈= (T1 + S1)

−1(0).
Furthermore, since the operator A is linear and bounded, we know that {Axnj

} converges weakly to
Ax∗. It follows from (3.12) and the fact that Pλn is demiclosed at zero that Ax∗ ∈ (T2 + S2)

−1(0).
Hence, x∗ belongs to Γ.
Now, suppose there exists another subsequence {xni

} of {xn} which converges to y∗ ∈ X1, we know
by (3.16) and previous analysis that y∗ ∈ (T2+S2)

−1(0). Applying the Opial’s condition on the space
X1, we conclude that {xn} converges weakly to x∗. □

The following results are easily obtained as corollaries to our main result.

Corollary 3.3. Let H1 and H2 be real Hilbert spaces with H1 satisfying the Opial’s condition, and
A : H1 → H2 a bounded linear operator A∗ the adjoint of A. Let T1 : H1 → 2H1 , T2 : H2 → 2H2 be
set-valued monotone operators and S1 : H1 → H1, S2 : H2 → H2 be α-inverse strongly monotone.
Assume Γ := {q ∈ (T1+S1)

−1(0) : Aq ∈ (T2+S2)
−1(0)} ̸= ∅. Let {λn} be a sequence of non-negative

real numbers, for x1 ∈ H1, let {xn} be a sequence given by
un = xn + θn(xn − xn−1),

yn = un + γA∗(Pλn − I)Aun,

xn+1 = αnyn + (1− αn)Qλnyn, ∀ n ≥ 1,

(3.18)

where αn is a sequence in (0, 1), γ is a positive constant and θn ⊂ [0, θ), where θ ∈ [0, 1) satisfying
the following conditions:

(1)
∑

n≥0 θn||xn − xn−1||2 < ∞;

(2) lim inf
n→∞

αn(1− αn) > 0;
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(3) 0 < γ < 1
||A||2 ;

(4) 0 < λ ≤ λn ≤ b < 2α
c
, ∀ n ≥ 1, c > 1.

Then {xn} converges weakly to x∗ ∈ Γ.

Suppose in S1 ≡ 0 and S2 ≡ 0 in (1.8), then the split accretive variational inclusion problem (1.8)
reduces to split variational inclusion problem: Find x∗ ∈ X1 such that{

0 ∈ T1(x
∗)

y∗ = Ax∗ ∈ X2 : 0 ∈ T2(y
∗).

(3.19)

Therefore, we obtain the following corollary.

Corollary 3.4. Let X1 be a real uniformly convex Banach space and 2-uniformly smooth satisfying
Opial’s condition, X2 a real Banach space with Féchet differentiable norm, A : X1 → X2 a bounded
linear operator and A∗ the adjoint of A. Let T1 : X1 → 2X1 and T2 : X2 → 2X2 multi-valued maximal
accretive operators. Assume Γ := {q ∈ T−1

1 (0) : Aq ∈ T−1
2 (0)} ̸= ∅. Let {λn} be a sequence of

non-negative real numbers, for x1 ∈ X1, let {xn} be a sequence given by
un = xn + θn(xn − xn−1),

yn = un + γJ−1
1 A∗J2(J

T2
λn

− I)Aun,

xn+1 = αnyn + (1− αn)J
T1
λn
yn, ∀ n ≥ 1,

(3.20)

where αn is a sequence in (0, 1), γ is a positive constant and θn ⊂ [0, θ) where θ ∈ [0, 1) satisfying
the following conditions:

(1)
∑

n≥0 θn||xn − xn−1||2 < ∞;

(2) lim inf
n→∞

αn(1− αn) > 0;

(3) 0 < γ < 1−2k2

||A||2 , where k is the smoothness constant satisfying 0 < k2 < 1
2
.

Then {xn} converges weakly to x∗ ∈ Γ.

4. Application and numerical example.

4.1. Convex Minimization Problem

Recall that the concept of accretivity in Banach space coincides with that of monotonicity in Hilbert
space. Thus, we apply our result to solve convex minimization problem, which is an important
optimization problem.
Let H be a Hilbert space, M : H → (−∞,+∞] a proper convex and lower semi-continuous function
and N : H → R a convex and continuously differentiable function. Then the subdifferential of M
denoted ∂M is maximal monotone and the gradient ▽N of N is monotone and continuous (see [41]).
Moreover ,

M(x∗) +N(x∗) = min
x∈X

[M(x) +N(x)] ⇐⇒ 0 ∈ ∂(M(x∗) + ▽N(x∗)). (4.1)
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We consider the following Split Convex Minimization Problem (SCMP): Find x∗ ∈ H1, such thatM1(x
∗) +N1(x

∗) = min
x∈H1

[M1(x) +N1(x)],

y∗ = Ax∗ ∈ H2 : M2(y
∗) +N2(y

∗) = min
y∈H2

[M2(y) +N2(y)],
(4.2)

where A : H1 → H2 is a bounded linear operator M1, M2 are proper convex lower semi-continuous
functions and N1, N2 are convex and differentiable functions. We denote the solution set of (4.2) by
Γ.
By setting S1 = ∂N1, S2 = ∂N1, T1 = ▽M1 and T2 = ▽M2 in Corollary 3.3, we obtain the following
result for solving SCMP (4.2):

Theorem 4.1. Let H1 and H2 be real Hilbert spaces with H1 satisfying the Opial’s condition, and
A : H1 → H2 a bounded linear operator A∗ the adjoint of A. Let M1 : H1 → (−∞,+∞],M2 :
H2(−∞,+∞] be proper convex and continuously differentiable function and N1 : H1 → R, N2 : H2 →
R be convex and continuously differentiable function such that ▽Ni is 1

α
-Lipschitz for i = 1, 2 .

Assume Γ ̸= ∅, for let {λn} be a sequence of non-negative real numbers, for x1 ∈ H1, let {xn} be a
sequence given by

un = xn + θn(xn − xn−1),

yn = un + γA∗((I + λn∂M2)
−1)(I − λn▽N2)− I)Aun,

xn+1 = αnyn + (1− αn)(I + λn∂M1)
−1(I − λn▽N1)yn, ∀ n ≥ 1,

(4.3)

where αn is a sequence in (0, 1), γ is a positive constant and θn ⊂ [0, θ) where θ ∈ [0, 1) satisfying
the following conditions:

(1)
∑

n≥0 θn||xn − xn−1||2 < ∞;

(2) lim inf
n→∞

αn(1− αn) > 0;

(3) 0 < γ < 1
||A||2 ;

(4) 0 < λ ≤ λn ≤ b < 2α
c
, ∀ n ≥ 1, c > 1.

Then {xn} converges weakly to x∗ ∈ Γ.

Let A, M1 and M2 be defined as above, we define the Convex Minimization Problem (CMP) as
follows: Find x∗ ∈ H1 such thatM1(x

∗) = min
x∈H1

M1(x),

y∗ = Ax∗ ∈ H2 : M2(y
∗) = min

y∈H2

M2(y).
(4.4)

We denote the solution set of the CMP (4.4) by denoted by Γ. Several authors have used different
iterative algorithms to approximate solutions of SCMP (4.2) and CMP (4.4) and related optimization
problems, see [3, 4, 5, 18, 19, 20, 43].
By setting T1 = ∂M1 and T2 = ∂M2 in Theorem 3.2, with S1 = S2 ≡ 0, we obtain the following
result:
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Corollary 4.2. Let H1 and H2 be real Hilbert spaces with H1 satisfying the Opial’s condition, and
A : H1 → H2 a bounded linear operator, A∗ the adjoint of A. Let M1 : H1 → (−∞,+∞],M2 :
H2(−∞,+∞] be proper convex and continuously differentiable function. Assume Γ ̸= ∅, let {λn} be
a sequence of non-negative real numbers, for x1 ∈ H1, let {xn} be a sequence given by

un = xn + θn(xn − xn−1),

yn = un + γA∗(J∂M2
λn

− I)Aun,

xn+1 = αnyn + (1− αn)J
∂M1
λn

yn, ∀ n ≥ 1,

(4.5)

where αn is a sequence in (0, 1), γ is a positive constant and θn ⊂ [0, θ), where θ ∈ [0, 1) satisfying
the following conditions:

(1)
∑

n≥0 θn||xn − xn−1||2 < ∞;

(2) lim inf
n→∞

αn(1− αn) > 0;

(3) 0 < γ < 1
||A||2 .

Then {xn} converges weakly to x∗ ∈ Γ.

4.2. Numerical example

Here we present a numerical example in (R2, ||.||2) to our result Theorem 3.2.
Let X1 = X2 = R2, we define A(x) : R2 → R2 by

A(x) =

(
4 3
3 2

)(
x1

x2

)
then, A∗(x) =

(
4 3
3 2

)(
x1

x2

)
.

Let T1 : R2 → R2 and T2 : R2 → R2 be defined by T1(x̄) = (−x1 − x2, x1 + x2) and T2(x̄) = (x1, x2).
We obtain the resolvent mappings associated with T1 and T2 as follows:

JT1
λn
(x̄) =

[(
1 0
0 1

)
+

(
−λn −λn

λn λn

)]−1(
x1

x2

)

=

(
1− λn −λ
λn 1 + λn

)−1(
x1

x2

)
=

(
1 + λn λn

−λn 1− λn

)(
x1

x2

)
=

(
(1 + λn)x1 + λnx2, (1− λn)x2 − λnx1)

)
.

Similarly, we obtain

JT2
λn
(x̄) =

[(
1 0
0 1

)
+

(
λn 0
0 λn

)]−1(
x1

x2

)
=

(
1

1 + λn

x1,
1

1 + λn

x2

)
.

Let S1 : R2 → R2 respectively S2 : R2 → R2 be defined by S1(x̄) = (2x1,−2x2) and S2(x̄) = (x1,−x2).
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Let αn = n
2n+1

, r = 1−4k2

||A||2 , k = 1
2
. Then, λn = n+1

10n+70
. Hence, our Algorithm 3.1 becomes:

For x0, x1 ∈ R2

un = xn + θn(xn − xn−1),

yn = un + γJ−1
1 A∗J2

[(
1−λn

1+λn
0

0 1

)
− I

]
Aun n ≥ 0,

xn+1 =
(

n
2n+1

)
yn +

(
n+1
2n+1

)

(
(1 + λn)(1− 2λn) λn(1− 2λn)

λn(2λn − 1) (1− λn)(1− 2λn)

)
yn, n ≥ 1.

(4.6)

Case I: x̄0 = (0.1, 0.01)T , x̄1 = (1, 2)T and θn = n
4n5+1

.

Case II: x̄0 = (1, 2)T , x̄1 = (0.1, 0.01)T and θn = n
2n2+1

.
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Figure 1: Errors vs number of iterations for Case I.
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Table 1: Showing numerical results for Case I.

No. of iterations Accelerated Algorithm 3.1 Unaccelerated Algorithm 

1   

2 0.0021                              0.4435                              

3 0.0025 0.0120 

4 0.0029 0.0100 

5 0.0032 0.0110 

6 0.0034 0.0119 

7 0.0036 0.0125 

8 0.0038 0.0131 

9 0.0039   0.0136 

10 0.0041 0.0140 

11 0.0041 0.0143 

12 0.0042                                0.0145                             

13 0.0043 0.0147 

14 0.0043 0.0149 

15 0.0044 0.0150 

16 0.0044 0.0151 

17 0.0044 0.0151 

18 0.0044 0.0152 

19 0.0044 0.0152 

20 0.0044 0.0152 
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Table 2: Showing numerical results for Case II.

No. of iterations Accelerated Algorithm 3.1 Unaccelerated Algorithm 

1   

2 0.0236                              0.7576                              

3 0.0283 0.1216 

4 0.0323 0.0515 

5 0.0356 0.0516 

6 0.0383 0.0548 

7 0.0405 0.0577 

8 0.0423 0.0601 

9 0.0438 0.0621 

10 0.0451 0.0637 

11 0.0461 0.0651 

12 0.0469                               0.0662                                

13 0.0476 0.0671 

14 0.0481 0.0677 

15 0.0485 0.0682 

16 0.0487 0.0686 

17 0.0489 0.0688 

18 0.0490 0.0689 

19 0.0490 0.0690 

20 0.0490 0.0689 

21 0.0489 0.0687 

22  

0.0487 

0.0685                              

23 0.0485 0.0682 

24 0.0483 0.0679 

25 0.0480 0.0675 

26 0.0477 0.0670 

27 0.0473 0.0665 

28 0.0470 0.0660 

29 0.0466 0.0655 

30 0.0462 0.0649 

31 0.0458 0.0643 
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Figure 2: Errors vs number of iterations for Case 2.
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