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Abstract

In this paper, we present some fixed and coincidence point theorems for hybrid rational Geraghty
contractive mappings in partially ordered b-metric spaces. Also, we derive certain coincidence point
results for such contractions. An illustrative example is provided here to highlight our findings.
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1. Introduction and preliminaries

In 2009 Suzuki [17] extended Edelstein’s fixed point theorem [19]. Base on Suzuki’s paper, many
researchers studied different spaces, like complete metric spaces endowed with a partial order, b-metric
space (metric type pace) and obtained many fixed point results in such spaces (see [7, 12, 16, 20, 21]).

Czerwik [4] introduced the concept of the b-metric space. Several papers dealt with fixed point
theory for single-valued and multivalued operators in b-metric spaces are written (see, e.g., [2, 10,
11, 13, 14, 15]).

Definition 1.1. Let X be a (nonempty) set and s ≥ 1 be a given real number. A function d :
X ×X → R+ is a b-metric if, for all x, y, z ∈ X, the following conditions are satisfied:
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(b1) d(x, y) = 0 iff x = y,

(b2) d(x, y) = d(y, x),

(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

A b-metric is a metric if (and only if) s = 1. The following example shows that in general a
b-metric need not to be a metric.

Example 1.2. [1] Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p, where p ≥ 1 is a real
number. Then ρ is a b-metric with s = 2p−1. However, (X, ρ) is not necessarily a metric space. For
example, if X = R is the set of real numbers and d(x, y) = |x− y| is the usual Euclidean metric,
then ρ(x, y) = (x− y)2 is a b-metric on R with s = 2, but it is not a metric on R.

Definition 1.3. [3] Let (X, d) be a b−metric space. Then a sequence {xn} in X is called:
(a) b−convergent if and only if there exists x ∈ X such that d(xn, x) → 0, as n → ∞. In this

case, we write lim
n→∞

xn = x.

(b) b−Cauchy if and only if d(xn, xm)→ 0, as n,m→∞.

Proposition 1.4. ([3, Remark 2.1]) In a b−metric space (X, d) the following assertions hold:
p1. A b−convergent sequence has a unique limit.
p2. Each b−convergent sequence is b-Cauchy.
p3. In general, a b−metric is not continuous.

The b-metric space (X, d) is b-complete if every b-Cauchy sequence in X is b-converges.
Note that a b-metric might not be a continuous function. The following example (see also [7])

illustrates this fact.

Example 1.5. Let X = N ∪ {∞} and let d : X ×X → R be defined by

d(m,n) =


0, if m = n,

| 1
m
− 1

n
|, if one of m,n is even and the other is even or ∞,

5, if one of m,n is odd and the other is odd (and m 6= n) or ∞,
2, otherwise.

Then considering all possible cases, it can be checked that for all m,n, p ∈ X, we have

d(m, p) ≤ 5

2
(d(m,n) + d(n, p)).

Thus (X, d) is a b-metric space (with s = 5/2). Let xn = 2n for each n ∈ N. Then

d(2n,∞) =
1

2n
→ 0 as n→∞,

that is xn →∞ but d(xn, 1) = 2 6→ 5 = d(∞, 1) as n→∞.
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Let S denote the class of all real functions β : [0,+∞)→ [0, 1) satisfying the condition

β(tn)→ 1 implies tn → 0, as n→∞.

In order to generalize the Banach contraction principle, Geraghty proved the following result.

Theorem 1.6. [6] Let (X, d) be a complete metric space, and let f : X → X be a self-map. Suppose
that there exists β ∈ S such that

d(fx, fy) ≤ β(d(x, y))d(x, y)

holds for all x, y ∈ X. Then f has a unique fixed point z ∈ X and for each x ∈ X the Picard sequence
fnx converges to z.

In [5] some fixed point theorems for mappings satisfying Geraghty-type contractive conditions
are proved in various generalized metric spaces. As in [5] we will consider the class of functions F ,
where β ∈ F if β : [0,∞)→ [0, 1/s) and has the property

β(tn)→ 1

s
implies tn → 0, as n→∞.

Theorem 1.7. [5] Let s > 1 and (X,D, s) be a complete metric type space. Suppose that a mapping
f : X → X satisfies the condition

D(fx, fy) ≤ β(D(x, y))D(x, y)

for all x, y ∈ X and some β ∈ F . Then f has a unique fixed point z ∈ X, and for each x ∈ X the
Picard sequence {fnx} converges to z in (X,D, s).

In this paper, we present some fixed point and coincidence point theorems for hybrid rational
Geraghty contractive mappings in partially ordered b-metric spaces.

2. The main results

Let Ψ be the family of all nondecreasing functions ψ : [0,∞)→ [0,∞) such that

lim
n→∞

ψn(t) = 0

for all t > 0.

Lemma 2.1. If ψ ∈ Ψ, then the following are satisfied.
(a) ψ(t) < t for all t > 0;
(b) ψ(0) = 0.

By the same idea of [9], we now prove following new result.
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Theorem 2.2. Let (X,�) be a partially ordered set and there exists a b-metric d on X such that
(X, d) is a b-complete b-metric space. Suppose s > 1 and f : X → X is an increasing mapping with
respect to � such that there exists an element x0 ∈ X with x0 � f(x0). Assume that

s(
1 + sd(x, y)

1 + 1
2
d(x, fx)

)d(fx, fy) ≤ ψ(M(x, y)) + LN(x, y) (2.1)

for all comparable elements x, y ∈ X, where L ≥ 0,

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)

}
and

N(x, y) = min{d(x, fx), d(x, fy), d(y, fx), d(y, fy)}.

If f is continuous, then f has a fixed point.

Proof . Since x0 � f(x0) and f is an increasing function we obtain by induction that

x0 � f(x0) � f 2(x0) � · · · � fn(x0) � fn+1(x0) � · · · .

Putting xn = fn(x0), we have

x0 � x1 � x2 � ... � xn � xn+1 � · · · .

If there exists n0 ∈ N such that xn0 = xn0+1 then, xn0 = fxn0 and so we have no thing for prove.
Hence, for all n ∈ N we assume d(xn, xn+1) > 0.

Step I. We will prove that
lim
n→∞

d(xn, xn+1) = 0.

Since 1+sd(xn−1,xn)

1+ 1
2
d(xn−1,fxn−1)

= 1+sd(xn−1,xn)

1+ 1
2
d(xn−1,xn)

≥ 1+d(xn−1,xn)

1+ 1
2
d(xn−1,xn)

≥ 1 and using condition (2.1), we obtain

d(xn+1, xn) ≤ sd(xn+1, xn) = sd(fxn, fxn−1) ≤ ψ(M(xn, xn−1)) ≤ ψ(d(xn, xn−1)).

Because

M(xn−1, xn) = max {d(xn−1, xn),
d(xn−1, fxn−1)d(xn, fxn)

1 + d(fxn−1, fxn)
}

= max {d(xn−1, xn),
d(xn−1, xn)d(xn, xn+1)

1 + d(xn, xn+1)
}

=d(xn−1, xn)

and

N(xn−1, xn) = min {d(xn−1, fxn), d(xn, fxn), d(xn−1, fxn−1), d(xn, fxn−1)}
= min {d(xn−1, xn+1), d(xn, xn+1), d(xn−1, xn), d(xn, xn)}
=0.

Hence,
d(xn, xn+1) ≤ sd(xn, xn+1) ≤ ψ(d(xn−1, xn)) < d(xn−1, xn). (2.2)
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By induction, we get that

d(xn+1, xn) ≤ ψ(d(xn, xn−1)) ≤ ψ2(d(xn−1, xn−2)) ≤ · · · ≤ ψn(d(x1, x0)). (2.3)

As ψ ∈ Ψ, we conclude that
lim
n→∞

d(xn, xn+1) = 0. (2.4)

Step II. {xn} is a b-Cauchy sequence, suppose not, i.e. {xm} is not a b-Cauchy sequence. There
exists ε > 0 for which we can find two subsequences {xmi

} and {xni
} of {xn} such that ni is the

smallest index for which
ni > mi > i and d(xmi

, xni
) ≥ ε. (2.5)

This means that
0 ≤ d(xmi

, xni−1) < ε. (2.6)

From (2.5) and using the triangular inequality

ε ≤ d(xmi
, xni

) ≤ sd(xmi
, xmi+1) + sd(xmi+1, xni

).

By taking the upper limit as i→∞

ε

s
≤ lim sup

i→∞
d(xmi+1, xni

). (2.7)

By using the triangular inequality

d(xmi
, xni

) ≤ sd(xmi
, xni−1) + sd(xni−1, xni

).

Taking the upper limit as i→∞ in the above inequality and using (2.6) we get

lim sup
i→∞

d(xmi
, xni

) ≤ εs. (2.8)

From the definition of M(x, y), N(x, y) and the above limits,

M(xmi
, xni−1) = max {d(xmi

, xni−1
),
d(xmi

, fxmi
)d(xni−1

, fxni−1
)

1 + d(fxmi
, fxni−1

)
}

={d(xmi
, xni−1

),
d(xmi

, xmi+1
)d(xni−1

, xni
)

1 + d(xmi+1
, xni

)
}

=d(xmi
, xni−1

)

and

N(xmi
, xni−1) = min {d(xmi

, f(xmi
)), d(xmi

, f(xni−1)), d(xni−1, f(xmi
)), d(xni−1, f(xni−1))}

= min{d(xmi
, xmi+1), d(xmi

, xni
), d(xni−1, xmi+1), d(xni−1, xni

)}.

If i→∞, by (2.6)

lim sup
i→∞

M(xmi
, xni−1) ≤ ε (2.9)

lim sup
i→∞

N(xmi
, xni−1) = 0.
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Also from (2.1)

s(
1 + sd(xmi

, xni−1
)

1 + 1
2
d(xmi

, fxmi
)
)d(xmi+1

, xni
) =s

1 + d(xmi
, xni−1

)

1 + 1
2
d(xmi

, fxmi
)
d(fxmi

, fxni−1
)

≤ψ(M(xmi
, xni−1

)) + LN(xmi
, xni−1)

=ψ(d(xmi
, xni−1

)).

Again if i→∞ by (2.6), (2.4) and (2.9), we obtain

ε = s( ε
s
) ≤ (s lim supi→∞ d(xmi+1

, xni
)) ≤ ψ(ε) < ε (2.10)

which is a contradiction. Thus {xn} is a b-Cauchy sequence. Completeness of X yields that {xn}
converges to a point u ∈ X.

Step III. Since f is continuous, u is a fixed point of f ,

u = lim
n→∞

xn+1 = lim
n→∞

fxn = fu.

�

Theorem 2.3. Under the same hypotheses of Theorem 2.2, instead of the continuity assumption of
f , we suppose for any nondecreasing sequence {xn} in X with xn → u ∈ X, we have xn � u for all
n ∈ N. Then f has a fixed point.

Proof . Repeating the proof of Theorem 2.2, we construct an increasing sequence {xn} in X such
that xn → u ∈ X. Using the assumption on X we have xn � u. Now we show that u = fu.

Suppose that there exists n0 ∈ N1 such that

1

2
d(xn0 , fxn0) > sd(xn0 , u)

and
1

2
d(xn0+1, fxn0+1) > sd(xn0+1, u).

Then, from (2.2), it follows that

d(xn0+1, xn0) ≤ sd(xn0 , u) + sd(xn0+1, u) <
1

2
d(xn0 , fxn0) +

1

2
d(xn0+1, fxn0+1)

=
1

2
d(xn0 , xn0+1) +

1

2
d(xn0+1, xn0+2) ≤

1

2
d(xn0 , xn0+1) +

1

2
d(xn0 , xn0+1)

= d(xn0+1, xn0)

which is a contradiction. Hence either

1

2
d(xn, fxn) ≤ sd(xn, u)

and
1

2
d(xn+1, fxn+1) ≤ sd(xn+1, u)

for all n ∈ N1. It is not restrictive to assume that one of these inequalities holds for all n ∈ N1, for
example

1

2
d(xn, fxn) ≤ sd(xn, u). (2.11)
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By (2.1) and (2.11) we have

s(
1 + d(xn, u)

1 + 1
2
d(xn, fxn)

)d(fu, xn) = sd(fu, fxn−1) ≤ ψ(M(u, xn−1)) + LN(u, xn−1), (2.12)

where

M(u, xn−1) = max {d(u, xn−1),
d(u, fu)d(xn−1, fxn−1)

1 + d(fu, fxn−1)
} (2.13)

= max {d(u, xn−1),
d(u, fu)d(xn−1, xn)

1 + d(fu, xn−1)
}.

And

N(u, xn−1) = min {d(xn−1, fu), d(u, fxn−1), d(xn−1, fxn−1), d(u, fu)} (2.14)

= min {d(xn−1, fu), d(u, xn), d(xn−1, xn), d(u, fu}.

Letting n→∞ in (2.13) and (2.14) we get

lim sup
n→∞

M(u, xn−1) = lim sup
n→∞

N(u, xn−1) = 0. (2.15)

Again, taking the upper limit as n→∞ in (2.12) and use of (2.15) we have

d(u, fu) = s[d(u, xn) + d(xn, fu)]

≤ [sd(u, xn+1) + (
1+ 1

2
d(xn,fxn)

1+d(xn,u)
)ψ(M(xn−1, u)) + LN(u, xn−1)]→ 0.

So d(fu, u) = 0 i.e. fu = u. �

Set ψ(t) = rt in Theorem 2.2 and Theorem 2.3, we have the following corollaries.

Corollary 2.4. Let (X,�) be a partially ordered set and suppose that there exists a b-metric d on
X such that (X, d) is a b-complete b-metric space. Assume f : X → X is an increasing mapping
with respect to � such that there exists an element x0 ∈ X with x0 � f(x0). Suppose that

s(
1 + sd(x, y)

1 + 1
2
d(x, fx)

)d(fx, fy) ≤ rM(x, y) + LN(x, y)

for all comparable elements x, y ∈ X, where L ≥ 0,

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)

}
and

N(x, y) = min{d(x, fx), d(x, fy), d(y, fx), d(y, fy)}.

If f is continuous, or, for any nondecreasing sequence {xn} in X such that xn → u ∈ X one has
xn � u for all n ∈ N , then f has a fixed point.
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Corollary 2.5. Let (X,�) be a partially ordered set and suppose that there exists a b-metric d on
X such that (X, d) is a b-complete b-metric space. Assume f : X → X is an increasing mapping
with respect to � such that there exists an element x0 ∈ X with x0 � f(x0). Suppose that

s(
1 + sd(x, y)

1 + 1
2
d(x, fx)

)d(fx, fy) ≤ rmax

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)

}
for all comparable x, y ∈ X where 0 ≤ r ≤ 1. If f is continuous, or, for any nondecreasing sequence
{xn} in X such that xn → u ∈ X one has xn � u for all n ∈ N, then f has a fixed point.

Corollary 2.6. Let (X,�) be a partially ordered set and suppose that there exists a b-metric d on
X such that (X, d) is a b-complete b-metric space. Assume f : X → X is an increasing mapping
with respect to � such that there exists an element x0 ∈ X with x0 � f(x0). Suppose that

s(
1 + sd(x, y)

1 + 1
2
d(x, fx)

)d(fx, fy) ≤ ad(x, y) + b
d(x, fx)d(y, fy)

1 + d(fx, fy)

for all comparable elements x, y ∈ X, where a, b ≥ 0 and 0 ≤ a+ b ≤ 1. If f is continuous, or, for
any nondecreasing sequence {xn} in X such that xn → u ∈ X one has xn � u for all n ∈ N , then
f has a fixed point.

Proof . Since

ad(x, y) + b
d(x, fx)d(y, fy)

1 + d(fx, fy)
≤ (a+ b) max

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)

}
(2.16)

then from (2.16), we have

s(
1 + sd(x, y)

1 + 1
2
d(x, fx)

)d(fx, fy) ≤ rmax

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)

}
,

where r = a+ b. Hence, all the conditions of Corollary 2.5 hold and f has a fixed point. �

Theorem 2.7. Let (X,�) be a partially ordered set and suppose that there exists a b-metric d on X
such that (X, d) is a b-complete b-metric space. Assume f : X → X is an increasing mapping with
respect to � such that there exists an element x0 ∈ X with x0 � f(x0). Suppose that

(
1 + sd(x, y)

1 + 1
2
d(x, fx)

)d(fx, fy) ≤ β(d(x, y))M(x, y) + LN(x, y) (2.17)

for all comparable elements x, y ∈ X, where L ≥ 0,

M(x, y) = max

{
d(x, y),

d(x, fx)d(y, fy)

1 + d(fx, fy)

}
and

N(x, y) = min{d(x, fx), d(x, fy), d(y, fx), d(y, fy)}.

If f is continuous, then f has a fixed point.
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Proof . Put xn = fn(x0). Since x0 � f(x0) and f is an increasing function we obtain by induction
that

x0 � f(x0) � f 2(x0) � ... � fn(x0) � fn+1(x0) � · · · .

Step I: We will show that lim
n→∞

d(xn, xn+1) = 0.

Since xn � xn+1, so for each n ∈ N ,

1 + sd(xn−1, xn)

1 + 1
2
d(xn−1, fxn−1)

=
1 + sd(xn−1, xn)

1 + 1
2
d(xn−1, xn)

≥ 1 + d(xn−1, xn)

1 + 1
2
d(xn−1, xn)

≥ 1.

Thus by (2.17)
d(xn, xn+1) = d(fxn−1, fxn)

≤ β(d(xn−1, xn))M(xn−1, xn) + LN(xn−1, xn)
≤ β(d(xn−1, xn))d(xn−1, xn)
≤ 1

s
d(xn−1, xn)

≤ d(xn−1, xn),

(2.18)

because

M(xn−1, xn) = max {d(xn−1, xn),
d(xn−1, fxn−1)d(xn, fxn)

1 + d(fxn−1, fxn)
}

= max {d(xn−1, xn),
d(xn−1, xn)d(xn, xn+1)

1 + d(xn, xn+1)
}

=d(xn−1, xn)

and

N(xn−1, xn) = min {d(xn−1, fxn), d(xn, fxn), d(xn−1, fxn−1), d(xn, fxn−1)}
= min {d(xn−1, xn+1), d(xn, xn+1), d(xn−1, xn), d(xn, xn)}
=0.

So {d(xn, xn+1)} is decreasing. There exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. Let r > 0 and
n→∞ in (2.18), we have

r

s
≤ r ≤ lim

n→∞
β(d(xn−1, xn))r ≤ r

s
.

So limn→∞ β(d(xn−1, xn)) = 1
s

and since β ∈ F we deduce that limn→∞ d(xn−1, xn) = 0 which is a
contradiction. Hence r = 0, that is,

lim
n→∞

d(xn−1, xn) = 0 (2.19)

Step II:We will prove that {xn} is a b-Cauchy sequence. Suppose the contrary, i.e., {xn} is not a
b-Cauchy sequence. Then there exists ε > 0 for which we can find two subsequences {xmi

} and {xni
}

of {xn} such that ni is the smallest index for which

ni > mi > i and d(xmi
, xni

) ≥ ε. (2.20)

This means that
0 ≤ d(xmi

, xni−1) < ε. (2.21)
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From (2.20) and using the triangular inequality, we get

ε ≤ d(xmi
, xni

) ≤ sd(xmi
, xmi+1) + sd(xmi+1, xni

).

By taking the upper limit as i→∞, we get

ε

s
≤ lim sup

i→∞
d(xmi+1, xni

). (2.22)

Using the triangular inequality, we have

d(xmi
, xni

) ≤ sd(xmi
, xni−1) + sd(xni−1, xni

).

Taking the upper limit as i→∞ in the above inequality and using (2.21) we get

lim sup
i→∞

d(xmi
, xni

) ≤ εs. (2.23)

From the definition of M(x, y), N(x, y) and the above limits,

M(xmi
, xni−1) = max {d(xmi

, xni−1
),
d(xmi

, fxmi
)d(xni−1

, fxni−1
)

1 + d(fxmi
, fxni−1

)
}

={d(xmi
, xni−1

),
d(xmi

, xmi+1
)d(xni−1

, xni
)

1 + d(xmi+1
, xni

)
}

=d(xmi
, xni−1

)

and

N(xmi
, xni−1) = min {d(xmi

, f(xmi
)), d(xmi

, f(xni−1)), d(xni−1, f(xmi
)), d(xni−1, f(xni−1))}

= min {d(xmi
, xmi+1), d(xmi

, xni
), d(xni−1, xmi+1), d(xni−1, xni

)}.

If i→∞, by (2.21) and (2.19) we have

lim sup
i→∞

M(xmi
, xni−1) ≤ ε (2.24)

lim sup
i→∞

N(xmi
, xni−1) = 0.

Also from (2.17) we have

(
1 + sd(xmi

, xni−1
)

1 + 1
2
d(xmi

, fxmi
)
)d(xmi+1

, xni
) = (

1 + d(xmi
, xni−1

)

1 + 1
2
d(xmi

, fxmi
)
)d(fxmi

, fxni−1
) (2.25)

≤ψ(M(xmi
, xni−1

)) + LN(xmi
, xni−1).

Again, if i→∞ by (2.19), (2.22), (2.24) and (2.25) we obtain

ε

s
≤ lim sup

i→∞
d(xmi+1

, xni
)) ≤ lim sup

i→∞
(
1 + sd(xmi

, xni−1
)

1 + 1
2
d(xmi

, fxmi
)
) lim sup

i→∞
d(xmi+1

, xni
))

= lim sup
i→∞

[(
1 + sd(xmi

, xni−1
)

1 + 1
2
d(xmi

, fxmi
)
)d(xmi+1

, xni
))]

≤ lim sup
i→∞

[β(d(xmi
, xni−1))M(xmi

, xni−1) + LN(xmi
, xni−1)]

≤ lim sup
i→∞

β(d(xmi
, xni−1)) lim sup

i→∞
M(xmi

, xni−1) + L lim sup
i→∞

N(xmi
, xni−1)]

=
1

s
lim sup

i→∞
β(d(xmi

, xni−1)) ≤
ε

s
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lim supi→∞ β(d(xmi
, xni−1)) = 1

s
. (2.26)

So
lim sup

i→∞
d(xmi

, xni−1) = 0,

which is a contradiction. Thus {xn} is a b-Cauchy sequence. Completeness of X yields that {xn}
converges to a point u ∈ X, that is, xn → u as n→∞.

Step III : Since f is continuous, u is a fixed point of f ,

u = lim
n→∞

xn+1 = lim
n→∞

fxn = fu.

�

Note that the continuity of f in Theorem 2.7 is not necessary and can be dropped.

Theorem 2.8. Under the same hypotheses of Theorem 2.7, instead of the continuity assumption of
f , assume that whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X, one has
xn � u for all n ∈ N. Then f has a fixed point.

Proof . Repeating the proof of Theorem 2.7, we construct an increasing sequence {xn} in X such
thatxn → u ∈ X. Using the assumption on X we have xn � u. Now, we show that u = fu. Suppose
that there exists n0 ∈ N1such that

1

2
d(xn0 , fxn0) > sd(xn0 , u)

and
1

2
d(xn0+1, fxn0+1) > sd(xn0+1, u).

Then from (2.2), it follows that

d(xn0+1, xn0) ≤ sd(xn0 , u) + sd(xn0+1, u) <
1

2
d(xn0 , fxn0) +

1

2
d(xn0+1, fxn0+1)

=
1

2
d(xn0 , xn0+1) +

1

2
d(xn0+1, xn0+2) ≤

1

2
d(xn0 , xn0+1) +

1

2
d(xn0 , xn0+1)

= d(xn0+1, xn0),

which is a contradiction. Hence either

1

2
d(xn, fxn) ≤ sd(xn, u)

and
1

2
d(xn+1, fxn+1) ≤ sd(xn+1, u)

for all n ∈ N1. It is not restrictive to assume that one of these inequalities holds for all n ∈ N1, for
example

1

2
d(xn, fxn) ≤ sd(xn, u). (2.27)

By (2.1) and (2.27) we have

d(u, fu) = s[d(u, xn+1) + d(xn+1, fu)] (2.28)

≤ sd(u, xn+1) + β(d(xn, u))M(xn, u) + LN(xn, u)→ 0
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because

lim
n→∞

M(xn, u) = lim
n→∞

max {d(xn, u),
d(xn, fxn)d(u, fu)

1 + d(fxn, fu)
} (2.29)

= lim
n→∞

max {d(xn, u),
d(xn, xn+1)d(u, fu)

1 + d(xn+1, fu)
} (2.30)

= max {0, 0} (2.31)

=0

and

lim
n→∞

N(xn, u) = lim
n→∞

min {d(xn, fu), d(u, fxn), d(xn, fxn), d(u, fu)} (2.32)

= lim
n→∞

min{d(xn, fu), d(u, xn+1), d(xn, xn+1), d(u, fu} (2.33)

=0.

Therefore (2.28) implies d(u, fu) = 0. �

3. Coincidence point results

In this section we study some coincidence point theorem as follows.

Theorem 3.1. Let (X,�) be a partially ordered set and suppose that there exists a b-metric d on X
such that (X, d) is a b-complete b-metric space. Assume f, T : X → X are such that f is an increasing
mapping with respect to T , fX ⊆ TX and there exists an element x0 ∈ X with Tx0 � f(x0). Suppose
that (T, f) satisfy the following condition

(
1 + sd(x, y)

1 + 1
2
d(x, fx)

)d(fx, fy) ≤ β(d(Tx, Ty))M s(x, y) + LN s(x, y) (3.1)

for all comparable elements x, y ∈ X, where L ≥ 0 and

M s(x, y) = max

{
d(Tx, Ty),

d(Tx, fx)d(Ty, fy)

1 + d(fx, fy)

}
and

N s(x, y) = min{d(Tx, fx), d(Tx, fy), d(Ty, fx), d(Ty, fy)}.

If f is continuous then (f, T ) have a coincidence point.

Proof . Let x0 ∈ X and x1 ∈ X be such that x1 = Tx0 � fx0. Having defined xn ∈ X, let
xn+1 ∈ X be such that xn+1 = Txn � fxn. By the same argument in the proof of Theorem 2.2,
{xn} is a b-Cauchy sequence. Completeness of X yields that {xn} converges to a point u ∈ X and
the continuity of f implies (f, T ) have a coincidence point. �

Theorem 3.2. Under the same hypotheses of Theorem 3.1, without the continuity assumption of
f , assume that whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X, xn � u for
all n ∈ N. Then (f, T ) have a coincidence point.
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Theorem 3.3. Let (X,�) be a partially ordered set and suppose that there exists a b-metric d
on X such that (X, d) is a b-complete b-metric space. Assume f, T : X → X are such that f is
an increasing mapping with respect to T , fX ⊆ TX and there exists an element x0 ∈ X with
Tx0 � f(x0). Suppose that

s(
1 + sd(x, y)

1 + 1
2
d(x, fx)

)d(fx, fy) ≤ ψ(M(x, y))

where

M(x, y) = max

{
d(Tx, Ty),

d(Tx, fx)d(Ty, fy)

1 + d(fx, fy)

}
for all comparable elements x, y ∈ X. If f is continuous, then (f, T ) have a coincidence point.

Theorem 3.4. Under the same hypotheses of Theorem 3.3, without the continuity assumption of
f , assume that whenever {xn} is a nondecreasing sequence in X such that xn → u ∈ X, xn � u for
all n ∈ N. Then (f, T ) have a fixed point.

Example 3.5. Let X = {(0, 0), (4, 0), (0, 4)} and define the partial order � on X by

� := {((0, 0), (0, 0)), ((4, 0), (4, 0)), ((0, 4), (0, 4))

((0, 0), (0, 4)), ((0, 4), (4, 0)), ((0, 0), (4, 0))}

Consider the function f : X → X given as

f =

(
(0, 0) (4, 0) (0, 4)
(0, 4) (4, 0) (4, 0)

)
which is increasing with respect to �. Let x0 = (0, 0). Hence f(x0) = (0, 4), so x0 � fx0. Define first
the b-metric d on X by d((0, 0), (4, 0)) = 4, d((0, 0), (0, 4)) = 6, d((0, 4), (4, 0)) = 1

4
and d(x, x) = 0.

Then (X, d) is a b-complete b-metric space with s = 24
17

. Define the function β ∈ F given by

β(t) =
17

24
e

−t
6 , t > 0

and β(0) ∈ [0, 17
24

) and L = 100000. Then

(
1 + 24

17
d((0, 0), (0, 4))

1 + 1
2
d((0, 0), f(0, 0))

)d(f(0, 0), f(0, 4))

= (
1 + 24

17
d((0, 0), (0, 4))

1 + 1
2
d((0, 0), (0, 4))

)d((0, 4), (4, 0)) = (
1 + 24

17
6

1 + 1
2
6

)
1

4
=

151

272

≤ β(d((0, 0), (0, 4)))M((0, 0), (0, 4)) + 100000N((0, 0), (0, 4)) = β(6)6.

Because

M((0, 0), (0, 4)) = max {d((0, 0), (0, 4)),
d((0, 0), f(0, 0))d((0, 4), f(0, 4))

1 + d(f(0, 0), f(0, 4))
}

= max {d((0, 0), (0, 4)),
d((0, 0), (0, 4))d((0, 4), (4, 0))

1 + d((0, 4), (4, 0))
}

= max {6,
6× 1

4

1 + 1
4

} = 6
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and

N((0, 0), (0, 4)) = min {d((0, 0), f(0, 0)), d((0, 0)), f(0, 4)),

d((0, 4)), f(0, 0)), d((0, 4)), f(0, 4))}
= min {d((0, 0), (0, 4)), d((0, 0)), (4, 0)),

d((0, 4)), (0, 4)), d((0, 4)), (4, 0))}
= 0.

Also

sd(f0, f1) =
18

13
d(3, 1) =

18

13
.
1

2
≤ β(d(0, 1))M(0, 1) + LN(0, 1) ≤ β(6)M(0, 1) + LN(0, 1) = β(6)6.

(
1 + 24

17
d((0, 0), (4, 0))

1 + 1
2
d((0, 0), f(0, 0))

)d(f(0, 0), f(4, 0))

= (
1 + 24

17
d((0, 0), (4, 0))

1 + 1
2
d((0, 0), (0, 4))

)d((0, 4), (4, 0)) = (
1 + 24

17
4

1 + 1
2
6

)
1

4
=

113

272

≤ β(d((0, 0), (4, 0)))M((0, 0), (4, 0)) + 100000N((0, 0), (4, 0)) = β(4)4.

Because

M((0, 0), (4, 0)) = max {d((0, 0), (4, 0)),
d((0, 0), f(0, 0))d((4, 0), f(4, 0))

1 + d(f(0, 0), f(0, 4))
}

= max {d((0, 0), (0, 4)),
d((0, 0), (0, 4))d((4, 0), (4, 0))

1 + d((0, 4), (4, 0))
}

= max {4,0} = 4.

Also

(
1 + 24

17
d((4, 0), (0, 4))

1 + 1
2
d((4, 0), f(4, 0))

)d(f(4, 0), f(0, 4))

= (
1 + 24

17
d((4, 0), (0, 4))

1 + 1
2
d((4, 0), (4, 0))

)d((4, 0), (4, 0)) = 0

≤ β(d((4, 0), (0, 4)))M((4, 0), (0, 4)) + 100000N((4, 0), (0, 4))

Hence f satisfies all the assumptions of Theorem 2.7 and thus it has a fixed point (which is u = (4, 0)).
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[10] M. Jovanović, Z. Kadelburg and S. Radenović, Common Fixed Point Results in Metric-Type Spaces, Abstr. Appl.

Anal. Article ID 978121 (2010) 15 pages.
[11] M.A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point

Theory Appl. Article ID 315398 (2010) 7 pages.
[12] A. Latif, V. Parvaneh, P.Salimi and A.E. Al-Mazrooei, Various Suzuki type theorems in b-metric spaces, J.

Nonlinear Sci. Appl. 8 (2015) 363–377
[13] M.O. Olatinwo, Some results on multi-valued weakly Jungck mappings in b-metric space, Cent. Eur. J. Math. 6

(2008) 610–621.
[14] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, Anal. Univ. de Vest, Timisoara

Seria Matematica Informatica XLVIII (2010) 125–137.
[15] V. Parvaneh, J.R. Roshan and S. Radenovi´c, Existence of tripled coincidence points in ordered b-metric spaces

and an application to a system of integral equations, Fixed Point Theory Appl. 2013 (2013):130.
[16] J.R. Roshan, N. Hussain, S. Sedghi and N. Shobkolaei, Suzuki-type fixed point results in b-metric spaces, Math.

Sci. 9 (2015) 153–160.
[17] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. 71 (2009) 5313–5317.
[18] F. Zabihi and A. Razani, Fixed point theorems for hybrid rational Geraghty contractive mappings in ordered

b-metric spaces, J. Appl. Math., Article ID 929821 (2014) 9 pages.
[19] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962) 74–79.
[20] P. Salimi and E. KarapJnar, Suzuki-Edelstein type contractions via auxiliary functions, Mathematical Problems

in Engineering, Article ID 648528 (2013) 8 pages.
[21] H. Yingtaweesittikul, Suzuki type fixed point theorems for generalized multi-valued mappings in b-metric spaces,

Fixed Point Theory Appl. 2013 (2013):215.


	 Introduction and preliminaries
	The main results
	Coincidence point results

