Fixed and coincidence points for hybrid rational Geraghty contractive mappings in ordered b-metric spaces

Arslan Hojat Ansaria ${ }^{\text {a }}$, Abdolrahman Razani ${ }^{\text {b,*, }}$, Nawab Hussain ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
${ }^{b}$ Department of Mathematics, Faculty of Science, Imam Khomeini International University, Postal code 34149-16818, Qazvin, Iran
${ }^{c}$ Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

(Communicated by M.B. Ghaemi)

Abstract

In this paper, we present some fixed and coincidence point theorems for hybrid rational Geraghty contractive mappings in partially ordered b-metric spaces. Also, we derive certain coincidence point results for such contractions. An illustrative example is provided here to highlight our findings.

Keywords: Fixed point; coincidence point; ordered b-metric space.
2010 MSC: Primary 47H10; Secondary 54H25.

1. Introduction and preliminaries

In 2009 Suzuki [17] extended Edelstein's fixed point theorem [19]. Base on Suzuki's paper, many researchers studied different spaces, like complete metric spaces endowed with a partial order, b-metric space (metric type pace) and obtained many fixed point results in such spaces (see [7, 12, 16, 20, 21]).

Czerwik 4] introduced the concept of the b-metric space. Several papers dealt with fixed point theory for single-valued and multivalued operators in b-metric spaces are written (see, e.g., [2, 10, [11, 13, 14, 15]).

Definition 1.1. Let X be a (nonempty) set and $s \geq 1$ be a given real number. A function d : $X \times X \rightarrow R^{+}$is a b-metric if, for all $x, y, z \in X$, the following conditions are satisfied:

[^0]\[

$$
\begin{aligned}
& \left(b_{1}\right) d(x, y)=0 \text { iff } x=y, \\
& \left(b_{2}\right) d(x, y)=d(y, x), \\
& \left(b_{3}\right) d(x, z) \leq s[d(x, y)+d(y, z)] .
\end{aligned}
$$
\]

The pair (X, d) is called a b-metric space.
A b-metric is a metric if (and only if) $s=1$. The following example shows that in general a b-metric need not to be a metric.

Example 1.2. [1] Let (X, d) be a metric space and $\rho(x, y)=(d(x, y))^{p}$, where $p \geq 1$ is a real number. Then ρ is a b-metric with $s=2^{p-1}$. However, (X, ρ) is not necessarily a metric space. For example, if $X=\mathbb{R}$ is the set of real numbers and $d(x, y)=|x-y|$ is the usual Euclidean metric, then $\rho(x, y)=(x-y)^{2}$ is a b-metric on \mathbb{R} with $s=2$, but it is not a metric on \mathbb{R}.

Definition 1.3. [3] Let (X, d) be a b-metric space. Then a sequence $\left\{x_{n}\right\}$ in X is called:
(a) b-convergent if and only if there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$, as $n \rightarrow \infty$. In this case, we write $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) b-Cauchy if and only if $d\left(x_{n}, x_{m}\right) \rightarrow 0$, as $n, m \rightarrow \infty$.

Proposition 1.4. ([3, Remark 2.1]) In a b-metric space (X, d) the following assertions hold:
p_{1}. A b-convergent sequence has a unique limit.
p_{2}. Each $b-$ convergent sequence is b-Cauchy.
p_{3}. In general, a b-metric is not continuous.
The b-metric space (X, d) is b-complete if every b-Cauchy sequence in X is b-converges.
Note that a b-metric might not be a continuous function. The following example (see also [7]) illustrates this fact.

Example 1.5. Let $X=\mathbb{N} \cup\{\infty\}$ and let $d: X \times X \rightarrow \mathbb{R}$ be defined by

$$
d(m, n)= \begin{cases}0, & \text { if } m=n, \\ \left|\frac{1}{m}-\frac{1}{n}\right|, & \text { if one of } m, n \text { is even and the other is even or } \infty \\ 5, & \text { if one of } m, n \text { is odd and the other is odd }(\text { and } m \neq n) \text { or } \infty \\ 2, & \text { otherwise }\end{cases}
$$

Then considering all possible cases, it can be checked that for all $m, n, p \in X$, we have

$$
d(m, p) \leq \frac{5}{2}(d(m, n)+d(n, p)) .
$$

Thus (X, d) is a b-metric space (with $s=5 / 2$). Let $x_{n}=2 n$ for each $n \in \mathbb{N}$. Then

$$
d(2 n, \infty)=\frac{1}{2 n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

that is $x_{n} \rightarrow \infty$ but $d\left(x_{n}, 1\right)=2 \nrightarrow 5=d(\infty, 1)$ as $n \rightarrow \infty$.

Let \mathfrak{S} denote the class of all real functions $\beta:[0,+\infty) \rightarrow[0,1)$ satisfying the condition

$$
\beta\left(t_{n}\right) \rightarrow 1 \text { implies } t_{n} \rightarrow 0 \text {, as } n \rightarrow \infty
$$

In order to generalize the Banach contraction principle, Geraghty proved the following result.
Theorem 1.6. [6] Let (X, d) be a complete metric space, and let $f: X \rightarrow X$ be a self-map. Suppose that there exists $\beta \in \mathfrak{S}$ such that

$$
d(f x, f y) \leq \beta(d(x, y)) d(x, y)
$$

holds for all $x, y \in X$. Then f has a unique fixed point $z \in X$ and for each $x \in X$ the Picard sequence $f^{n} x$ converges to z.

In [5] some fixed point theorems for mappings satisfying Geraghty-type contractive conditions are proved in various generalized metric spaces. As in [5] we will consider the class of functions \mathcal{F}, where $\beta \in \mathcal{F}$ if $\beta:[0, \infty) \rightarrow[0,1 / s)$ and has the property

$$
\beta\left(t_{n}\right) \rightarrow \frac{1}{s} \text { implies } t_{n} \rightarrow 0, \text { as } n \rightarrow \infty
$$

Theorem 1.7. 5et $s>1$ and (X, D, s) be a complete metric type space. Suppose that a mapping $f: X \rightarrow X$ satisfies the condition

$$
D(f x, f y) \leq \beta(D(x, y)) D(x, y)
$$

for all $x, y \in X$ and some $\beta \in \mathcal{F}$. Then f has a unique fixed point $z \in X$, and for each $x \in X$ the Picard sequence $\left\{f^{n} x\right\}$ converges to z in (X, D, s).

In this paper, we present some fixed point and coincidence point theorems for hybrid rational Geraghty contractive mappings in partially ordered b-metric spaces.

2. The main results

Let Ψ be the family of all nondecreasing functions $\psi:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\lim _{n \rightarrow \infty} \psi^{n}(t)=0
$$

for all $t>0$.
Lemma 2.1. If $\psi \in \Psi$, then the following are satisfied.
(a) $\psi(t)<t$ for all $t>0$;
(b) $\psi(0)=0$.

By the same idea of [9], we now prove following new result.

Theorem 2.2. Let (X, \preceq) be a partially ordered set and there exists a b-metric d on X such that (X, d) is a b-complete b-metric space. Suppose $s>1$ and $f: X \rightarrow X$ is an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f\left(x_{0}\right)$. Assume that

$$
\begin{equation*}
s\left(\frac{1+s d(x, y)}{1+\frac{1}{2} d(x, f x)}\right) d(f x, f y) \leq \psi(M(x, y))+L N(x, y) \tag{2.1}
\end{equation*}
$$

for all comparable elements $x, y \in X$, where $L \geq 0$,

$$
M(x, y)=\max \left\{d(x, y), \frac{d(x, f x) d(y, f y)}{1+d(f x, f y)}\right\}
$$

and

$$
N(x, y)=\min \{d(x, f x), d(x, f y), d(y, f x), d(y, f y)\} .
$$

If f is continuous, then f has a fixed point.
Proof . Since $x_{0} \preceq f\left(x_{0}\right)$ and f is an increasing function we obtain by induction that

$$
x_{0} \preceq f\left(x_{0}\right) \preceq f^{2}\left(x_{0}\right) \preceq \cdots \preceq f^{n}\left(x_{0}\right) \preceq f^{n+1}\left(x_{0}\right) \preceq \cdots .
$$

Putting $x_{n}=f^{n}\left(x_{0}\right)$, we have

$$
x_{0} \preceq x_{1} \preceq x_{2} \preceq \ldots \preceq x_{n} \preceq x_{n+1} \preceq \cdots .
$$

If there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}}=x_{n_{0}+1}$ then, $x_{n_{0}}=f x_{n_{0}}$ and so we have no thing for prove. Hence, for all $n \in \mathbb{N}$ we assume $d\left(x_{n}, x_{n+1}\right)>0$.

Step I. We will prove that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0
$$

Since $\frac{1+s d\left(x_{n-1}, x_{n}\right)}{1+\frac{1}{2} d\left(x_{n-1}, f x_{n-1}\right)}=\frac{1+s d\left(x_{n-1}, x_{n}\right)}{1+\frac{1}{2} d\left(x_{n-1}, x_{n}\right)} \geq \frac{1+d\left(x_{n-1}, x_{n}\right)}{1+\frac{1}{2} d\left(x_{n-1}, x_{n}\right)} \geq 1$ and using condition 2.1), we obtain

$$
d\left(x_{n+1}, x_{n}\right) \leq s d\left(x_{n+1}, x_{n}\right)=s d\left(f x_{n}, f x_{n-1}\right) \leq \psi\left(M\left(x_{n}, x_{n-1}\right)\right) \leq \psi\left(d\left(x_{n}, x_{n-1}\right)\right)
$$

Because

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{d\left(x_{n-1}, x_{n}\right), \frac{d\left(x_{n-1}, f x_{n-1}\right) d\left(x_{n}, f x_{n}\right)}{1+d\left(f x_{n-1}, f x_{n}\right)}\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), \frac{d\left(x_{n-1}, x_{n}\right) d\left(x_{n}, x_{n+1}\right)}{1+d\left(x_{n}, x_{n+1}\right)}\right\} \\
& =d\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
N\left(x_{n-1}, x_{n}\right) & =\min \left\{d\left(x_{n-1}, f x_{n}\right), d\left(x_{n}, f x_{n}\right), d\left(x_{n-1}, f x_{n-1}\right), d\left(x_{n}, f x_{n-1}\right)\right\} \\
& =\min \left\{d\left(x_{n-1}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n}\right)\right\} \\
& =0 .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq s d\left(x_{n}, x_{n+1}\right) \leq \psi\left(d\left(x_{n-1}, x_{n}\right)\right)<d\left(x_{n-1}, x_{n}\right) . \tag{2.2}
\end{equation*}
$$

By induction, we get that

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right) \leq \psi\left(d\left(x_{n}, x_{n-1}\right)\right) \leq \psi^{2}\left(d\left(x_{n-1}, x_{n-2}\right)\right) \leq \cdots \leq \psi^{n}\left(d\left(x_{1}, x_{0}\right)\right) . \tag{2.3}
\end{equation*}
$$

As $\psi \in \Psi$, we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 . \tag{2.4}
\end{equation*}
$$

Step II. $\left\{x_{n}\right\}$ is a b-Cauchy sequence, suppose not, i.e. $\left\{x_{m}\right\}$ is not a b-Cauchy sequence. There exists $\varepsilon>0$ for which we can find two subsequences $\left\{x_{m_{i}}\right\}$ and $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that n_{i} is the smallest index for which

$$
\begin{equation*}
n_{i}>m_{i}>i \text { and } d\left(x_{m_{i}}, x_{n_{i}}\right) \geq \varepsilon . \tag{2.5}
\end{equation*}
$$

This means that

$$
\begin{equation*}
0 \leq d\left(x_{m_{i}}, x_{n_{i}-1}\right)<\varepsilon . \tag{2.6}
\end{equation*}
$$

From (2.5) and using the triangular inequality

$$
\varepsilon \leq d\left(x_{m_{i}}, x_{n_{i}}\right) \leq s d\left(x_{m_{i}}, x_{m_{i}+1}\right)+s d\left(x_{m_{i}+1}, x_{n_{i}}\right) .
$$

By taking the upper limit as $i \rightarrow \infty$

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \limsup _{i \rightarrow \infty} d\left(x_{m_{i}+1}, x_{n_{i}}\right) . \tag{2.7}
\end{equation*}
$$

By using the triangular inequality

$$
d\left(x_{m_{i}}, x_{n_{i}}\right) \leq s d\left(x_{m_{i}}, x_{n_{i}-1}\right)+s d\left(x_{n_{i}-1}, x_{n_{i}}\right) .
$$

Taking the upper limit as $i \rightarrow \infty$ in the above inequality and using (2.6) we get

$$
\begin{equation*}
\limsup _{i \rightarrow \infty} d\left(x_{m_{i}}, x_{n_{i}}\right) \leq \varepsilon s . \tag{2.8}
\end{equation*}
$$

From the definition of $M(x, y), N(x, y)$ and the above limits,

$$
\begin{aligned}
M\left(x_{m_{i}}, x_{n_{i}-1}\right) & =\max \left\{d\left(x_{m_{i}}, x_{n_{i-1}}\right), \frac{d\left(x_{m_{i}}, f x_{m_{i}}\right) d\left(x_{n_{i-1}}, f x_{n_{i-1}}\right)}{1+d\left(f x_{m_{i}}, f x_{n_{i-1}}\right)}\right\} \\
& =\left\{d\left(x_{m_{i}}, x_{n_{i-1}}\right), \frac{d\left(x_{m_{i}}, x_{m_{i+1}}\right) d\left(x_{n_{i-1}}, x_{n_{i}}\right)}{1+d\left(x_{m_{i+1}}, x_{n_{i}}\right)}\right\} \\
& =d\left(x_{m_{i}}, x_{n_{i-1}}\right)
\end{aligned}
$$

and

$$
\left.\begin{array}{rl}
N\left(x_{m_{i}}\right.
\end{array}, x_{n_{i}-1}\right)=\min \left\{d\left(x_{m_{i}}, f\left(x_{m_{i}}\right)\right), d\left(x_{m_{i}}, f\left(x_{n_{i}-1}\right)\right), d\left(x_{n_{i}-1}, f\left(x_{m_{i}}\right)\right), d\left(x_{n_{i}-1}, f\left(x_{n_{i}-1}\right)\right)\right\} .
$$

If $i \rightarrow \infty$, by (2.6)

$$
\begin{align*}
\limsup _{i \rightarrow \infty} M\left(x_{m_{i}}, x_{n_{i}-1}\right) & \leq \varepsilon \tag{2.9}\\
\limsup _{i \rightarrow \infty} N\left(x_{m_{i}}, x_{n_{i}-1}\right) & =0 .
\end{align*}
$$

Also from (2.1)

$$
\begin{aligned}
s\left(\frac{1+s d\left(x_{m_{i}}, x_{n_{i-1}}\right)}{1+\frac{1}{2} d\left(x_{m_{i}}, f x_{m_{i}}\right)}\right) d\left(x_{m_{i+1}}, x_{n_{i}}\right) & =s \frac{1+d\left(x_{m_{i}}, x_{n_{i-1}}\right)}{1+\frac{1}{2} d\left(x_{m_{i}}, f x_{m_{i}}\right)} d\left(f x_{m_{i}}, f x_{n_{i-1}}\right) \\
& \leq \psi\left(M\left(x_{m_{i}}, x_{n_{i-1}}\right)\right)+L N\left(x_{m_{i}}, x_{n_{i}-1}\right) \\
& =\psi\left(d\left(x_{m_{i}}, x_{n_{i-1}}\right)\right) .
\end{aligned}
$$

Again if $i \rightarrow \infty$ by (2.6), (2.4) and (2.9), we obtain

$$
\begin{equation*}
\varepsilon=s\left(\frac{\varepsilon}{s}\right) \leq\left(s \lim \sup _{i \rightarrow \infty} d\left(x_{m_{i+1}}, x_{n_{i}}\right)\right) \leq \psi(\varepsilon)<\varepsilon \tag{2.10}
\end{equation*}
$$

which is a contradiction. Thus $\left\{x_{n}\right\}$ is a b-Cauchy sequence. Completeness of X yields that $\left\{x_{n}\right\}$ converges to a point $u \in X$.

Step III. Since f is continuous, u is a fixed point of f,

$$
u=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f x_{n}=f u
$$

Theorem 2.3. Under the same hypotheses of Theorem 2.2 , instead of the continuity assumption of f, we suppose for any nondecreasing sequence $\left\{x_{n}\right\}$ in X with $x_{n} \rightarrow u \in X$, we have $x_{n} \preceq u$ for all $n \in \mathbb{N}$. Then f has a fixed point.

Proof . Repeating the proof of Theorem 2.2, we construct an increasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow u \in X$. Using the assumption on X we have $x_{n} \preceq u$. Now we show that $u=f u$.

Suppose that there exists $n_{0} \in N_{1}$ such that

$$
\frac{1}{2} d\left(x_{n_{0}}, f x_{n_{0}}\right)>\operatorname{sd}\left(x_{n_{0}}, u\right)
$$

and

$$
\frac{1}{2} d\left(x_{n_{0}+1}, f x_{n_{0}+1}\right)>s d\left(x_{n_{0}+1}, u\right) .
$$

Then, from (2.2), it follows that

$$
\begin{aligned}
d\left(x_{n_{0}+1}, x_{n_{0}}\right) & \leq s d\left(x_{n_{0}}, u\right)+s d\left(x_{n_{0}+1}, u\right)<\frac{1}{2} d\left(x_{n_{0}}, f x_{n_{0}}\right)+\frac{1}{2} d\left(x_{n_{0}+1}, f x_{n_{0}+1}\right) \\
& =\frac{1}{2} d\left(x_{n_{0}}, x_{n_{0}+1}\right)+\frac{1}{2} d\left(x_{n_{0}+1}, x_{n_{0}+2}\right) \leq \frac{1}{2} d\left(x_{n_{0}}, x_{n_{0}+1}\right)+\frac{1}{2} d\left(x_{n_{0}}, x_{n_{0}+1}\right) \\
& =d\left(x_{n_{0}+1}, x_{n_{0}}\right)
\end{aligned}
$$

which is a contradiction. Hence either

$$
\frac{1}{2} d\left(x_{n}, f x_{n}\right) \leq s d\left(x_{n}, u\right)
$$

and

$$
\frac{1}{2} d\left(x_{n+1}, f x_{n+1}\right) \leq s d\left(x_{n+1}, u\right)
$$

for all $n \in N_{1}$. It is not restrictive to assume that one of these inequalities holds for all $n \in N_{1}$, for example

$$
\begin{equation*}
\frac{1}{2} d\left(x_{n}, f x_{n}\right) \leq s d\left(x_{n}, u\right) \tag{2.11}
\end{equation*}
$$

By (2.1) and (2.11) we have

$$
\begin{equation*}
s\left(\frac{1+d\left(x_{n}, u\right)}{1+\frac{1}{2} d\left(x_{n}, f x_{n}\right)}\right) d\left(f u, x_{n}\right)=s d\left(f u, f x_{n-1}\right) \leq \psi\left(M\left(u, x_{n-1}\right)\right)+L N\left(u, x_{n-1}\right) \tag{2.12}
\end{equation*}
$$

where

$$
\begin{align*}
M\left(u, x_{n-1}\right) & =\max \left\{d\left(u, x_{n-1}\right), \frac{d(u, f u) d\left(x_{n-1}, f x_{n-1}\right)}{1+d\left(f u, f x_{n-1}\right)}\right\} \tag{2.13}\\
& =\max \left\{d\left(u, x_{n-1}\right), \frac{d(u, f u) d\left(x_{n-1}, x_{n}\right)}{1+d\left(f u, x_{n-1}\right)}\right\}
\end{align*}
$$

And

$$
\begin{align*}
N\left(u, x_{n-1}\right) & =\min \left\{d\left(x_{n-1}, f u\right), d\left(u, f x_{n-1}\right), d\left(x_{n-1}, f x_{n-1}\right), d(u, f u)\right\} \tag{2.14}\\
& =\min \left\{d\left(x_{n-1}, f u\right), d\left(u, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d(u, f u\} .\right.
\end{align*}
$$

Letting $n \rightarrow \infty$ in (2.13) and (2.14) we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} M\left(u, x_{n-1}\right)=\limsup _{n \rightarrow \infty} N\left(u, x_{n-1}\right)=0 . \tag{2.15}
\end{equation*}
$$

Again, taking the upper limit as $n \rightarrow \infty$ in (2.12) and use of (2.15) we have

$$
\begin{aligned}
d(u, f u) & =s\left[d\left(u, x_{n}\right)+d\left(x_{n}, f u\right)\right] \\
& \leq\left[s d\left(u, x_{n+1}\right)+\left(\frac{1+\frac{1}{2} d\left(x_{n}, f x_{n}\right)}{1+d\left(x_{n}, u\right)}\right) \psi\left(M\left(x_{n-1}, u\right)\right)+L N\left(u, x_{n-1}\right)\right] \rightarrow 0 .
\end{aligned}
$$

So $d(f u, u)=0$ i.e. $f u=u$.
Set $\psi(t)=r t$ in Theorem 2.2 and Theorem 2.3, we have the following corollaries.
Corollary 2.4. Let (X, \preceq) be a partially ordered set and suppose that there exists a b-metric d on X such that (X, d) is a b-complete b-metric space. Assume $f: X \rightarrow X$ is an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f\left(x_{0}\right)$. Suppose that

$$
s\left(\frac{1+s d(x, y)}{1+\frac{1}{2} d(x, f x)}\right) d(f x, f y) \leq r M(x, y)+L N(x, y)
$$

for all comparable elements $x, y \in X$, where $L \geq 0$,

$$
M(x, y)=\max \left\{d(x, y), \frac{d(x, f x) d(y, f y)}{1+d(f x, f y)}\right\}
$$

and

$$
N(x, y)=\min \{d(x, f x), d(x, f y), d(y, f x), d(y, f y)\} .
$$

If f is continuous, or, for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow u \in X$ one has $x_{n} \preceq u$ for all $n \in N$, then f has a fixed point.

Corollary 2.5. Let (X, \preceq) be a partially ordered set and suppose that there exists a b-metric d on X such that (X, d) is a b-complete b-metric space. Assume $f: X \rightarrow X$ is an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f\left(x_{0}\right)$. Suppose that

$$
s\left(\frac{1+s d(x, y)}{1+\frac{1}{2} d(x, f x)}\right) d(f x, f y) \leq r \max \left\{d(x, y), \frac{d(x, f x) d(y, f y)}{1+d(f x, f y)}\right\}
$$

for all comparable $x, y \in X$ where $0 \leq r \leq 1$. If f is continuous, or, for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow u \in X$ one has $x_{n} \preceq u$ for all $n \in \mathbb{N}$, then f has a fixed point.

Corollary 2.6. Let (X, \preceq) be a partially ordered set and suppose that there exists a b-metric d on X such that (X, d) is a b-complete b-metric space. Assume $f: X \rightarrow X$ is an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f\left(x_{0}\right)$. Suppose that

$$
s\left(\frac{1+s d(x, y)}{1+\frac{1}{2} d(x, f x)}\right) d(f x, f y) \leq a d(x, y)+b \frac{d(x, f x) d(y, f y)}{1+d(f x, f y)}
$$

for all comparable elements $x, y \in X$, where $a, b \geq 0$ and $0 \leq a+b \leq 1$. If f is continuous, or, for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow u \in X$ one has $x_{n} \preceq u$ for all $n \in N$, then f has a fixed point.

Proof . Since

$$
\begin{equation*}
a d(x, y)+b \frac{d(x, f x) d(y, f y)}{1+d(f x, f y)} \leq(a+b) \max \left\{d(x, y), \frac{d(x, f x) d(y, f y)}{1+d(f x, f y)}\right\} \tag{2.16}
\end{equation*}
$$

then from (2.16), we have

$$
s\left(\frac{1+s d(x, y)}{1+\frac{1}{2} d(x, f x)}\right) d(f x, f y) \leq r \max \left\{d(x, y), \frac{d(x, f x) d(y, f y)}{1+d(f x, f y)}\right\}
$$

where $r=a+b$. Hence, all the conditions of Corollary 2.5 hold and f has a fixed point.
Theorem 2.7. Let (X, \preceq) be a partially ordered set and suppose that there exists a b-metric d on X such that (X, d) is a b-complete b-metric space. Assume $f: X \rightarrow X$ is an increasing mapping with respect to \preceq such that there exists an element $x_{0} \in X$ with $x_{0} \preceq f\left(x_{0}\right)$. Suppose that

$$
\begin{equation*}
\left(\frac{1+s d(x, y)}{1+\frac{1}{2} d(x, f x)}\right) d(f x, f y) \leq \beta(d(x, y)) M(x, y)+L N(x, y) \tag{2.17}
\end{equation*}
$$

for all comparable elements $x, y \in X$, where $L \geq 0$,

$$
M(x, y)=\max \left\{d(x, y), \frac{d(x, f x) d(y, f y)}{1+d(f x, f y)}\right\}
$$

and

$$
N(x, y)=\min \{d(x, f x), d(x, f y), d(y, f x), d(y, f y)\} .
$$

If f is continuous, then f has a fixed point.

Proof . Put $x_{n}=f^{n}\left(x_{0}\right)$. Since $x_{0} \preceq f\left(x_{0}\right)$ and f is an increasing function we obtain by induction that

$$
x_{0} \preceq f\left(x_{0}\right) \preceq f^{2}\left(x_{0}\right) \preceq \ldots \preceq f^{n}\left(x_{0}\right) \preceq f^{n+1}\left(x_{0}\right) \preceq \cdots .
$$

Step I: We will show that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$.
Since $x_{n} \preceq x_{n+1}$, so for each $n \in N$,

$$
\frac{1+s d\left(x_{n-1}, x_{n}\right)}{1+\frac{1}{2} d\left(x_{n-1}, f x_{n-1}\right)}=\frac{1+s d\left(x_{n-1}, x_{n}\right)}{1+\frac{1}{2} d\left(x_{n-1}, x_{n}\right)} \geq \frac{1+d\left(x_{n-1}, x_{n}\right)}{1+\frac{1}{2} d\left(x_{n-1}, x_{n}\right)} \geq 1 .
$$

Thus by (2.17)

$$
\begin{align*}
d\left(x_{n}, x_{n+1}\right) & =d\left(f x_{n-1}, f x_{n}\right) \\
& \leq \beta\left(d\left(x_{n-1}, x_{n}\right)\right) M\left(x_{n-1}, x_{n}\right)+L N\left(x_{n-1}, x_{n}\right) \\
& \leq \beta\left(d\left(x_{n-1}, x_{n}\right)\right) d\left(x_{n-1}, x_{n}\right) \tag{2.18}\\
& \leq \frac{1}{s} d\left(x_{n-1}, x_{n}\right) \\
& \leq d\left(x_{n-1}, x_{n}\right),
\end{align*}
$$

because

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{d\left(x_{n-1}, x_{n}\right), \frac{d\left(x_{n-1}, f x_{n-1}\right) d\left(x_{n}, f x_{n}\right)}{1+d\left(f x_{n-1}, f x_{n}\right)}\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), \frac{d\left(x_{n-1}, x_{n}\right) d\left(x_{n}, x_{n+1}\right)}{1+d\left(x_{n}, x_{n+1}\right)}\right\} \\
& =d\left(x_{n-1}, x_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
N\left(x_{n-1}, x_{n}\right) & =\min \left\{d\left(x_{n-1}, f x_{n}\right), d\left(x_{n}, f x_{n}\right), d\left(x_{n-1}, f x_{n-1}\right), d\left(x_{n}, f x_{n-1}\right)\right\} \\
& =\min \left\{d\left(x_{n-1}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n}\right)\right\} \\
& =0 .
\end{aligned}
$$

So $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is decreasing. There exists $r \geq 0$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r$. Let $r>0$ and $n \rightarrow \infty$ in (2.18), we have

$$
\frac{r}{s} \leq r \leq \lim _{n \rightarrow \infty} \beta\left(d\left(x_{n-1}, x_{n}\right)\right) r \leq \frac{r}{s} .
$$

So $\lim _{n \rightarrow \infty} \beta\left(d\left(x_{n-1}, x_{n}\right)\right)=\frac{1}{s}$ and since $\beta \in \mathcal{F}$ we deduce that $\lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n}\right)=0$ which is a contradiction. Hence $r=0$, that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n}\right)=0 \tag{2.19}
\end{equation*}
$$

Step II:We will prove that $\left\{x_{n}\right\}$ is a b-Cauchy sequence. Suppose the contrary, i.e., $\left\{x_{n}\right\}$ is not a b-Cauchy sequence. Then there exists $\varepsilon>0$ for which we can find two subsequences $\left\{x_{m_{i}}\right\}$ and $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that n_{i} is the smallest index for which

$$
\begin{equation*}
n_{i}>m_{i}>i \text { and } d\left(x_{m_{i}}, x_{n_{i}}\right) \geq \varepsilon . \tag{2.20}
\end{equation*}
$$

This means that

$$
\begin{equation*}
0 \leq d\left(x_{m_{i}}, x_{n_{i}-1}\right)<\varepsilon \tag{2.21}
\end{equation*}
$$

From 2.20 and using the triangular inequality, we get

$$
\varepsilon \leq d\left(x_{m_{i}}, x_{n_{i}}\right) \leq s d\left(x_{m_{i}}, x_{m_{i}+1}\right)+s d\left(x_{m_{i}+1}, x_{n_{i}}\right) .
$$

By taking the upper limit as $i \rightarrow \infty$, we get

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \limsup _{i \rightarrow \infty} d\left(x_{m_{i}+1}, x_{n_{i}}\right) . \tag{2.22}
\end{equation*}
$$

Using the triangular inequality, we have

$$
d\left(x_{m_{i}}, x_{n_{i}}\right) \leq s d\left(x_{m_{i}}, x_{n_{i}-1}\right)+\operatorname{sd}\left(x_{n_{i}-1}, x_{n_{i}}\right) .
$$

Taking the upper limit as $i \rightarrow \infty$ in the above inequality and using (2.21) we get

$$
\begin{equation*}
\limsup _{i \rightarrow \infty} d\left(x_{m_{i}}, x_{n_{i}}\right) \leq \varepsilon s . \tag{2.23}
\end{equation*}
$$

From the definition of $M(x, y), N(x, y)$ and the above limits,

$$
\begin{aligned}
M\left(x_{m_{i}}, x_{n_{i}-1}\right) & =\max \left\{d\left(x_{m_{i}}, x_{n_{i-1}}\right), \frac{d\left(x_{m_{i}}, f x_{m_{i}}\right) d\left(x_{n_{i-1}}, f x_{n_{i-1}}\right)}{1+d\left(f x_{m_{i}}, f x_{n_{i-1}}\right)}\right\} \\
& =\left\{d\left(x_{m_{i}}, x_{n_{i-1}}\right), \frac{d\left(x_{m_{i}}, x_{m_{i+1}}\right) d\left(x_{n_{i-1}}, x_{n_{i}}\right)}{1+d\left(x_{m_{i+1}}, x_{n_{i}}\right)}\right\} \\
& =d\left(x_{m_{i}}, x_{n_{i-1}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
N\left(x_{m_{i}}, x_{n_{i}-1}\right) & =\min \left\{d\left(x_{m_{i}}, f\left(x_{m_{i}}\right)\right), d\left(x_{m_{i}}, f\left(x_{n_{i}-1}\right)\right), d\left(x_{n_{i}-1}, f\left(x_{m_{i}}\right)\right), d\left(x_{n_{i}-1}, f\left(x_{n_{i}-1}\right)\right)\right\} \\
& =\min \left\{d\left(x_{m_{i}}, x_{m_{i}+1}\right), d\left(x_{m_{i}}, x_{n_{i}}\right), d\left(x_{n_{i}-1}, x_{m_{i}+1}\right), d\left(x_{n_{i}-1}, x_{n_{i}}\right)\right\} .
\end{aligned}
$$

If $i \rightarrow \infty$, by (2.21) and (2.19) we have

$$
\begin{align*}
\limsup _{i \rightarrow \infty} M\left(x_{m_{i}}, x_{n_{i}-1}\right) & \leq \varepsilon \tag{2.24}\\
\limsup _{i \rightarrow \infty} N\left(x_{m_{i}}, x_{n_{i}-1}\right) & =0
\end{align*}
$$

Also from (2.17) we have

$$
\begin{align*}
&\left(\frac{1+s d\left(x_{m_{i}}, x_{n_{i-1}}\right)}{1+\frac{1}{2} d\left(x_{m_{i}}, f x_{m_{i}}\right)}\right) d\left(x_{m_{i+1}}, x_{n_{i}}\right)=\left(\frac{1+d\left(x_{m_{i}}, x_{n_{i-1}}\right)}{1+\frac{1}{2} d\left(x_{m_{i}}, f x_{m_{i}}\right)}\right) d\left(f x_{m_{i}}, f x_{n_{i-1}}\right) \tag{2.25}\\
& \leq \psi\left(M\left(x_{m_{i}}, x_{n_{i-1}}\right)\right)+L N\left(x_{m_{i}}, x_{n_{i}-1}\right)
\end{align*}
$$

Again, if $i \rightarrow \infty$ by (2.19), (2.22), (2.24) and (2.25) we obtain

$$
\begin{aligned}
\frac{\varepsilon}{s} & \left.\left.\leq \limsup _{i \rightarrow \infty} d\left(x_{m_{i+1}}, x_{n_{i}}\right)\right) \leq \limsup _{i \rightarrow \infty}\left(\frac{1+s d\left(x_{m_{i}}, x_{n_{i-1}}\right)}{1+\frac{1}{2} d\left(x_{m_{i}}, f x_{m_{i}}\right)}\right) \limsup _{i \rightarrow \infty} d\left(x_{m_{i+1}}, x_{n_{i}}\right)\right) \\
& \left.=\limsup _{i \rightarrow \infty}\left[\left(\frac{1+s d\left(x_{m_{i}}, x_{n_{i-1}}\right)}{1+\frac{1}{2} d\left(x_{m_{i}}, f x_{m_{i}}\right)}\right) d\left(x_{m_{i+1}}, x_{n_{i}}\right)\right)\right] \\
& \leq \limsup _{i \rightarrow \infty}\left[\beta\left(d\left(x_{m_{i}}, x_{n_{i}-1}\right)\right) M\left(x_{m_{i}}, x_{n_{i}-1}\right)+L N\left(x_{m_{i}}, x_{n_{i}-1}\right)\right] \\
& \left.\leq \limsup _{i \rightarrow \infty} \beta\left(d\left(x_{m_{i}}, x_{n_{i}-1}\right)\right) \limsup _{i \rightarrow \infty} M\left(x_{m_{i}}, x_{n_{i}-1}\right)+L \limsup _{i \rightarrow \infty} N\left(x_{m_{i}}, x_{n_{i}-1}\right)\right] \\
& =\frac{1}{s} \limsup _{i \rightarrow \infty} \beta\left(d\left(x_{m_{i}}, x_{n_{i}-1}\right)\right) \leq \frac{\varepsilon}{s}
\end{aligned}
$$

$$
\begin{equation*}
\limsup _{i \rightarrow \infty} \beta\left(d\left(x_{m_{i}}, x_{n_{i}-1}\right)\right)=\frac{1}{s} . \tag{2.26}
\end{equation*}
$$

So

$$
\limsup _{i \rightarrow \infty} d\left(x_{m_{i}}, x_{n_{i}-1}\right)=0
$$

which is a contradiction. Thus $\left\{x_{n}\right\}$ is a b-Cauchy sequence. Completeness of X yields that $\left\{x_{n}\right\}$ converges to a point $u \in X$, that is, $x_{n} \rightarrow u$ as $n \rightarrow \infty$.

Step III : Since f is continuous, u is a fixed point of f,

$$
u=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f x_{n}=f u
$$

Note that the continuity of f in Theorem 2.7 is not necessary and can be dropped.
Theorem 2.8. Under the same hypotheses of Theorem 2.7, instead of the continuity assumption of f, assume that whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow u \in X$, one has $x_{n} \preceq u$ for all $n \in \mathbb{N}$. Then f has a fixed point.

Proof . Repeating the proof of Theorem 2.7, we construct an increasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow u \in X$. Using the assumption on X we have $x_{n} \preceq u$. Now, we show that $u=f u$. Suppose that there exists $n_{0} \in N_{1}$ such that

$$
\frac{1}{2} d\left(x_{n_{0}}, f x_{n_{0}}\right)>\operatorname{sd}\left(x_{n_{0}}, u\right)
$$

and

$$
\frac{1}{2} d\left(x_{n_{0}+1}, f x_{n_{0}+1}\right)>s d\left(x_{n_{0}+1}, u\right)
$$

Then from (2.2), it follows that

$$
\begin{aligned}
d\left(x_{n_{0}+1}, x_{n_{0}}\right) & \leq s d\left(x_{n_{0}}, u\right)+s d\left(x_{n_{0}+1}, u\right)<\frac{1}{2} d\left(x_{n_{0}}, f x_{n_{0}}\right)+\frac{1}{2} d\left(x_{n_{0}+1}, f x_{n_{0}+1}\right) \\
& =\frac{1}{2} d\left(x_{n_{0}}, x_{n_{0}+1}\right)+\frac{1}{2} d\left(x_{n_{0}+1}, x_{n_{0}+2}\right) \leq \frac{1}{2} d\left(x_{n_{0}}, x_{n_{0}+1}\right)+\frac{1}{2} d\left(x_{n_{0}}, x_{n_{0}+1}\right) \\
& =d\left(x_{n_{0}+1}, x_{n_{0}}\right)
\end{aligned}
$$

which is a contradiction. Hence either

$$
\frac{1}{2} d\left(x_{n}, f x_{n}\right) \leq s d\left(x_{n}, u\right)
$$

and

$$
\frac{1}{2} d\left(x_{n+1}, f x_{n+1}\right) \leq s d\left(x_{n+1}, u\right)
$$

for all $n \in N_{1}$. It is not restrictive to assume that one of these inequalities holds for all $n \in N_{1}$, for example

$$
\begin{equation*}
\frac{1}{2} d\left(x_{n}, f x_{n}\right) \leq s d\left(x_{n}, u\right) \tag{2.27}
\end{equation*}
$$

By (2.1) and (2.27) we have

$$
\begin{align*}
d(u, f u) & =s\left[d\left(u, x_{n+1}\right)+d\left(x_{n+1}, f u\right)\right] \tag{2.28}\\
& \leq s d\left(u, x_{n+1}\right)+\beta\left(d\left(x_{n}, u\right)\right) M\left(x_{n}, u\right)+L N\left(x_{n}, u\right) \rightarrow 0
\end{align*}
$$

because

$$
\begin{align*}
\lim _{n \rightarrow \infty} M\left(x_{n}, u\right) & =\lim _{n \rightarrow \infty} \max \left\{d\left(x_{n}, u\right), \frac{d\left(x_{n}, f x_{n}\right) d(u, f u)}{1+d\left(f x_{n}, f u\right)}\right\} \tag{2.29}\\
& =\lim _{n \rightarrow \infty} \max \left\{d\left(x_{n}, u\right), \frac{d\left(x_{n}, x_{n+1}\right) d(u, f u)}{1+d\left(x_{n+1}, f u\right)}\right\} \tag{2.30}\\
& =\max \{0,0\} \tag{2.31}\\
& =0
\end{align*}
$$

and

$$
\begin{align*}
\lim _{n \rightarrow \infty} N\left(x_{n}, u\right) & =\lim _{n \rightarrow \infty} \min \left\{d\left(x_{n}, f u\right), d\left(u, f x_{n}\right), d\left(x_{n}, f x_{n}\right), d(u, f u)\right\} \tag{2.32}\\
& =\lim _{n \rightarrow \infty} \min \left\{d\left(x_{n}, f u\right), d\left(u, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), d(u, f u\}\right. \tag{2.33}\\
& =0
\end{align*}
$$

Therefore (2.28) implies $d(u, f u)=0$.

3. Coincidence point results

In this section we study some coincidence point theorem as follows.
Theorem 3.1. Let (X, \preceq) be a partially ordered set and suppose that there exists a b-metric d on X such that (X, d) is a b-complete b-metric space. Assume $f, T: X \rightarrow X$ are such that f is an increasing mapping with respect to $T, f X \subseteq T X$ and there exists an element $x_{0} \in X$ with $T x_{0} \preceq f\left(x_{0}\right)$. Suppose that (T, f) satisfy the following condition

$$
\begin{equation*}
\left(\frac{1+s d(x, y)}{1+\frac{1}{2} d(x, f x)}\right) d(f x, f y) \leq \beta(d(T x, T y)) M^{s}(x, y)+L N^{s}(x, y) \tag{3.1}
\end{equation*}
$$

for all comparable elements $x, y \in X$, where $L \geq 0$ and

$$
M^{s}(x, y)=\max \left\{d(T x, T y), \frac{d(T x, f x) d(T y, f y)}{1+d(f x, f y)}\right\}
$$

and

$$
N^{s}(x, y)=\min \{d(T x, f x), d(T x, f y), d(T y, f x), d(T y, f y)\} .
$$

If f is continuous then (f, T) have a coincidence point.
Proof . Let $x_{0} \in X$ and $x_{1} \in X$ be such that $x_{1}=T x_{0} \preceq f x_{0}$. Having defined $x_{n} \in X$, let $x_{n+1} \in X$ be such that $x_{n+1}=T x_{n} \preceq f x_{n}$. By the same argument in the proof of Theorem 2.2, $\left\{x_{n}\right\}$ is a b-Cauchy sequence. Completeness of X yields that $\left\{x_{n}\right\}$ converges to a point $u \in X$ and the continuity of f implies (f, T) have a coincidence point.

Theorem 3.2. Under the same hypotheses of Theorem 3.1, without the continuity assumption of f, assume that whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow u \in X, x_{n} \preceq u$ for all $n \in \mathbb{N}$. Then (f, T) have a coincidence point.

Theorem 3.3. Let (X, \preceq) be a partially ordered set and suppose that there exists a b-metric d on X such that (X, d) is a b-complete b-metric space. Assume $f, T: X \rightarrow X$ are such that f is an increasing mapping with respect to $T, f X \subseteq T X$ and there exists an element $x_{0} \in X$ with $T x_{0} \preceq f\left(x_{0}\right)$. Suppose that

$$
s\left(\frac{1+s d(x, y)}{1+\frac{1}{2} d(x, f x)}\right) d(f x, f y) \leq \psi(M(x, y))
$$

where

$$
M(x, y)=\max \left\{d(T x, T y), \frac{d(T x, f x) d(T y, f y)}{1+d(f x, f y)}\right\}
$$

for all comparable elements $x, y \in X$. If f is continuous, then (f, T) have a coincidence point.

Theorem 3.4. Under the same hypotheses of Theorem 3.3, without the continuity assumption of f, assume that whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow u \in X, x_{n} \preceq u$ for all $n \in \mathbb{N}$. Then (f, T) have a fixed point.

Example 3.5. Let $X=\{(0,0),(4,0),(0,4)\}$ and define the partial order \preceq on X by

$$
\begin{aligned}
& \text { } \quad:=\{((0,0),(0,0)),((4,0),(4,0)),((0,4),(0,4)) \\
& \quad((0,0),(0,4)),((0,4),(4,0)),((0,0),(4,0))\}
\end{aligned}
$$

Consider the function $f: X \rightarrow X$ given as

$$
\mathbf{f}=\left(\begin{array}{ccc}
(0,0) & (4,0) & (0,4) \\
(0,4) & (4,0) & (4,0)
\end{array}\right)
$$

which is increasing with respect to \preceq. Let $x_{0}=(0,0)$. Hence $f\left(x_{0}\right)=(0,4)$, so $x_{0} \preceq f x_{0}$. Define first the b-metric d on X by $d((0,0),(4,0))=4, d((0,0),(0,4))=6, d((0,4),(4,0))=\frac{1}{4}$ and $d(x, x)=0$. Then (X, d) is a b-complete b-metric space with $s=\frac{24}{17}$. Define the function $\beta \in \mathcal{F}$ given by

$$
\beta(t)=\frac{17}{24} e^{\frac{-t}{6}}, t>0
$$

and $\beta(0) \in\left[0, \frac{17}{24}\right)$ and $L=100000$. Then

$$
\begin{aligned}
& \left(\frac{1+\frac{24}{17} d((0,0),(0,4))}{1+\frac{1}{2} d((0,0), f(0,0))}\right) d(f(0,0), f(0,4)) \\
= & \left(\frac{1+\frac{24}{17} d((0,0),(0,4))}{1+\frac{1}{2} d((0,0),(0,4))}\right) d((0,4),(4,0))=\left(\frac{1+\frac{24}{17} 6}{1+\frac{1}{2} 6}\right) \frac{1}{4}=\frac{151}{272} \\
\leq & \beta(d((0,0),(0,4))) M((0,0),(0,4))+100000 N((0,0),(0,4))=\beta(6) 6 .
\end{aligned}
$$

Because

$$
\begin{aligned}
M((0,0),(0,4)) & =\max \left\{d((0,0),(0,4)), \frac{d((0,0), f(0,0)) d((0,4), f(0,4))}{1+d(f(0,0), f(0,4))}\right\} \\
& =\max \left\{d((0,0),(0,4)), \frac{d((0,0),(0,4)) d((0,4),(4,0))}{1+d((0,4),(4,0))}\right\} \\
& =\max \left\{6, \frac{6 \times \frac{1}{4}}{1+\frac{1}{4}}\right\}=6
\end{aligned}
$$

and

$$
\begin{aligned}
N((0,0),(0,4))= & \min \{d((0,0), f(0,0)), d((0,0)), f(0,4)), \\
& d((0,4)), f(0,0)), d((0,4)), f(0,4))\} \\
= & \min \{d((0,0),(0,4)), d((0,0)),(4,0)), \\
& d((0,4)),(0,4)), d((0,4)),(4,0))\} \\
= & 0 .
\end{aligned}
$$

Also

$$
\begin{aligned}
s d(f 0, f 1)= & \frac{18}{13} d(3,1)=\frac{18}{13} \cdot \frac{1}{2} \leq \beta(d(0,1)) M(0,1)+L N(0,1) \leq \beta(6) M(0,1)+L N(0,1)=\beta(6) 6 . \\
& \left(\frac{1+\frac{24}{17} d((0,0),(4,0))}{1+\frac{1}{2} d((0,0), f(0,0))}\right) d(f(0,0), f(4,0)) \\
= & \left(\frac{1+\frac{24}{17} d((0,0),(4,0))}{1+\frac{1}{2} d((0,0),(0,4))}\right) d((0,4),(4,0))=\left(\frac{1+\frac{24}{17} 4}{1+\frac{1}{2} 6}\right) \frac{1}{4}=\frac{113}{272} \\
\leq & \beta(d((0,0),(4,0))) M((0,0),(4,0))+100000 N((0,0),(4,0))=\beta(4) 4 .
\end{aligned}
$$

Because

$$
\begin{aligned}
M((0,0),(4,0)) & =\max \left\{d((0,0),(4,0)), \frac{d((0,0), f(0,0)) d((4,0), f(4,0))}{1+d(f(0,0), f(0,4))}\right\} \\
& =\max \left\{d((0,0),(0,4)), \frac{d((0,0),(0,4)) d((4,0),(4,0))}{1+d((0,4),(4,0))}\right\} \\
& =\max \{4,0\}=4
\end{aligned}
$$

Also

$$
\begin{aligned}
& \left(\frac{1+\frac{24}{17} d((4,0),(0,4))}{1+\frac{1}{2} d((4,0), f(4,0))}\right) d(f(4,0), f(0,4)) \\
= & \left(\frac{1+\frac{24}{17} d((4,0),(0,4))}{1+\frac{1}{2} d((4,0),(4,0))}\right) d((4,0),(4,0))=0 \\
\leq & \beta(d((4,0),(0,4))) M((4,0),(0,4))+100000 N((4,0),(0,4))
\end{aligned}
$$

Hence f satisfies all the assumptions of Theorem 2.7 and thus it has a fixed point (which is $u=(4,0)$).

References

[1] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca 4 (2014) 941-960.
[2] H. Aydi, M. Bota, E. Karapınar and S. Mitrović, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory Appl. 2012 (2012):88.
[3] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, Int. J. Modern Math. 4 (2009) 285-301.
[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993) 5-11.
[5] D. Dukić, Z. Kadelburg and S. Radenović, Fixed points of Geraghty-type Mmappings in various generalized metric spaces, Abstr. Appl. Anal. Article ID 561245 (2011) 13 pp.
[6] M. Geraghty, On contractive mappings, Proceedings Amer. Math. Soc. 40 (1973) 604-608.
[7] N. Hussain, D.Dorić, Z. Kadelburg and S. Radenovi ć, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl. 2012 (2012):126.
[8] N. Hussain, V. Parvaneh, J.R. Roshan and Z. Kadelburg, Fixed points of cyclic weakly (ψ, φ, L, A, B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 2013 (2013):256.
[9] N. Hussain, J. R. Roshan, V. Parvaneh and M. Abbas, Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, J. Ineq. Appl. 2013 (2013):486.
[10] M. Jovanović, Z. Kadelburg and S. Radenović, Common Fixed Point Results in Metric-Type Spaces, Abstr. Appl. Anal. Article ID 978121 (2010) 15 pages.
[11] M.A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl. Article ID 315398 (2010) 7 pages.
[12] A. Latif, V. Parvaneh, P.Salimi and A.E. Al-Mazrooei, Various Suzuki type theorems in b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015) 363-377
[13] M.O. Olatinwo, Some results on multi-valued weakly Jungck mappings in b-metric space, Cent. Eur. J. Math. 6 (2008) 610-621.
[14] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, Anal. Univ. de Vest, Timisoara Seria Matematica Informatica XLVIII (2010) 125-137.
[15] V. Parvaneh, J.R. Roshan and S. Radenovi'c, Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed Point Theory Appl. 2013 (2013):130.
[16] J.R. Roshan, N. Hussain, S. Sedghi and N. Shobkolaei, Suzuki-type fixed point results in b-metric spaces, Math. Sci. 9 (2015) 153-160.
[17] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. 71 (2009) 5313-5317.
[18] F. Zabihi and A. Razani, Fixed point theorems for hybrid rational Geraghty contractive mappings in ordered b-metric spaces, J. Appl. Math., Article ID 929821 (2014) 9 pages.
[19] M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962) 74-79.
[20] P. Salimi and E. KarapJnar, Suzuki-Edelstein type contractions via auxiliary functions, Mathematical Problems in Engineering, Article ID 648528 (2013) 8 pages.
[21] H. Yingtaweesittikul, Suzuki type fixed point theorems for generalized multi-valued mappings in b-metric spaces, Fixed Point Theory Appl. 2013 (2013):215.

[^0]: *Corresponding author
 Email addresses: mathanalsisamir4@gmail.com (Arslan Hojat Ansari), razani@ipm.ir (Abdolrahman Razani), nhusain@kau.edu.sa (Nawab Hussain)

