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This study presents a robust hybrid meta-heuristic optimization algorithm by merging 
Modified Colliding Bodies Optimization and Genetic Algorithm that is called GMCBO. One 
of the inabilities of Colliding Bodies Optimization (CBO) is collapsing into the trap of local 
minima and not finding global optima. In this paper, to rectify this weak point, at first, some 
modifications are accomplished on the CBO process and then by using the concept of the 
genetic algorithm able to enhance the convergence rate, establishing a balance between 
the feature exploration and exploitation processes, the increasing power of finding global 
optimal design and escaping of local optimal. For evaluating the performance of the 
proposed method, the optimal design of laminated composite materials has been 
considered. Compare the results of structural analysis with GMCBO and other optimization 
methods shows a high convergence rate and its ability to find the global optimal solution 
of the proposed algorithm for structural optimization problems.  

1. Introduction 

In recent years, various meta heuristic 
optimization methods have been applied to solve 
engineering optimization problems. In general, 
based on the type of design variables, there are 
two categories of optimization methods, 
including discrete and continuous variable 
methods. Recent studies have mostly focused on 
optimal design of engineering problems with 
continuous variables meanwhile the standard 
size of sections available in the market has 
discrete values. Therefore, engineers must select 
the material from a list with available discrete 
values. Solving discrete optimization problems is 
far more difficult than continuous problems [1-
2]. Usually, researchers use mathematical 
methods such as rounding on continuous 
solutions in order to solve discrete optimization 
problems. These methods may cause problems 
such as violation of the problem constraints (to 
fall in the infeasible space). This disadvantage has 
caused researchers to solve engineering 
optimization problems by using meta-heuristic 
optimization algorithms with discrete variables. 

Genetic Algorithm is one of the meta-heuristic 
optimization methods that has led to a big 
evolution in solving engineering optimization 

problems [3]. The Genetic Algorithm (GA) was 
first proposed by Goldberg based on inspiration 
from the laws governing the nature and survival 
of animals [4]. In recent years, many optimization 
methods have been developed such as Imperialist 
Competitive Algorithm (ICA) by Atashpaz and 
Locas [5], Ant Colony Optimization (ACO) by 
Dorigo [6], Numbers Cup Optimization (NCO) by 
Riyahi et al. [7], Harmony Search (HS) by Jim et al. 
[8], Charged System Search (CSS) by Kaveh and 
Talatahari [9], Water Cycle Algorithm (WCA) by 
Eskandar et al [10], PathFinder Algorithm (PFA) 
by Yapici and Cetinkaya [11], Mine Blast 
Algorithm (MBA) by Sadollah et al. [12], Color 
harmony algorithm (CHA) by Zaeimi and 
Ghoddosian [13], Time Evolutionary 
Optimization (TEO) by Sheikhi et al. [14, 15], 
Colliding Bodies Optimization (CBO) by Kaveh 
and Mahdavi [16] and others. 

Each of the proposed optimization methods, 
already introduced, have certain specifications. If 
the strengths and weaknesses of each method can 
be detected, two or more optimization methods 
can be combined to strengthen the strengths and 
overcome their weaknesses. For this purpose, 
researchers have recently focused on hybrid 
optimization techniques. Kaveh and Talatahari 
have worked on combining optimization 
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methods of particle swarm, ant colony and 
harmony search [17], as well as charged particles 
and particle swarm [18], Sheikhi and Goddosian 
have merged imperialist competitive algorithm 
and the ant colony [19, 20], Shen et al have 
incorporated the two methods of particle swarm 
and tabu search [21], Sadallah et al have 
combined water cycle with mine blast algorithm 
[22], Sheikhi et al have incorporated Dolphin 
echolocation and Ant colony [23]. 

One of the strengths of the genetic algorithm 
is the ability to escape from the local optimum, 
especially with regard to optimization problems 
with discrete variables [24]. On the other hand, 
inability to escape from the local optimal trap is 
one of the weaknesses of the optimization 
algorithm of colliding bodies optimization [25]. 

This paper presented a robust hybrid meta 
heuristic optimization method deals with the 
combination of two methods of genetic algorithm 
and modified colliding bodies optimization. Here, 
it is tried to use the strengths of the genetic 
method to solve the weaknesses of colliding 
bodies optimization in the analysis of 
optimization problems with discrete design 
variables. The excellence criterion is associated 
with the function of meta-heuristic algorithms for 
a general exploration of the three main factors of 
solving problems faster, solving bigger problems 
(problems with high number of design variables 
and constraints), and increasing the potency of 
finding a better optimum point (reaching the 
global optimal point) [26, 27]. 

By combination of the two methods 
mentioned, the research has raised the 
convergence rate of the method in addition to 
increasing the potency of the colliding bodies 
optimization in engineering problems with 
discrete variables. 

In this paper, in order to evaluate the 
efficiency of the proposed method, designing 
composite laminated materials using discrete 
design variables is proposed to achieve the 
minimum weight and required mechanical 
properties. For this purpose, programming of the 
hybrid optimization method of GMCBO and the 
analysis of the composite laminated are provided 
in MATLAB software.  

2. Colliding Bodies Optimization 
Algorithm  

Colliding bodies optimization algorithm was 
introduced for the first time by Kaveh and 
Mahdavi for continuous variables [16]. This 
algorithm is inspired by engineering rules 
governing objects dynamic collision at various 
speeds [28]. In this section, moving two objects 
with different speeds and masses is considered in 
order to obtain the equations governing objects 
collisions. Given that the contact forces are equal 

and opposite during the collision, the linear 
motion magnitude of the system remains stable, 
and the law of conservation of the linear motion 
magnitude can be written as Eq. (1). 

1 1 2 2 1 1 2 2mv m v m v m v + = +  (1) 

In the above relation, respectively, 
1m  and 

2m

represent the mass of objects; 
1v and 

2v represent 

the speed of objects before collision; 
1v   and 

2v 

represent speed of objects after the collision. To 
obtain the velocity of objects after the collision 
requires another equation. For this purpose, the 
concept of an extraction coefficient can be used 
that indicates the ability of objects to recover 
their speed after the collision. The coefficient of 
restitution is expressed as the ratio of the relative 
velocity after collision to before it as the relation 
(2). 

2 1

1 2

v v
e
v v

 −
=

−
 (2) 

In the above relations e represents the 
restitution coefficient. Considering the Eqs. (1) 
and (2) simultaneously, as well as having the 
initial velocities of the objects and the restitution 
coefficient, the velocity of the objects after the 
collision can be calculated. 

1 2 1 2 2 2

1

1 2

( ) ( )m em v m em v
v

m m

− + +
 =

+
 (3) 

2 1 2 1 1 1

2
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( ) ( )m em v m em v
v

m m

− + +
 =

+
 (4) 

Some energy will be lost during the collision 
process. According to the classic collision theory, 
if the value of the restitution coefficient is 1, it 
means the maximum ability of the two objects to 
recover the velocity after the collision. This is the 
condition for an elastic collision without energy 
loss. On the other hand, if the value of the 
restitution coefficient is zero, it shows a 
completely plastic collision. In this case, objects 
stick together after the collision and their energy 
dissipation is maximal. All collisions occur at the 
point between the two modes of elastic and fully 
plastic collisions, and so the magnitude of the 
restitution coefficient is between 0 and 1. Details 
of the relations governing objects collision are 
presented in [29]. 

Colliding bodies optimization algorithm is a 
multi-agent algorithm like other meta-heuristic 
optimization algorithms. In this algorithm, for 
each agent (object), according to its fitness value, 
a mass value is assigned using Eq. (5). 
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In the above relation, 
im  represents the mass 

value of the particle i; N is the total number of 
objects; and ( )fit k (or ( )fit i  ) indicates the value 

of the objective function for the object k (or i). In 
order to choose a pair of objects to collide with 
each other, the objects are sorted from the 
highest to the smallest value, depending on their 
mass, and then divided into two equal groups of 
fixed and moving objects. Moving objects collide 
with steady objects to improve their position and 
move toward a new position after the collision. 
The velocity of steady objects is zero before the 
collision. The velocity of any moving object 
before the collision is calculated according to the 
Eq. (6). The velocity of any fixed and moving 
object after the collision is calculated as Eqs. (7) 
and (8), respectively. 

2

,

1, 2, , N
2 2

M i N i
i

v X X

N N
i

−
= −

= + + 

 (6) 
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In Eqs. (6), (7) and (8), the M and S indexes are 
related to the characteristics of moving and fixed 
objects; 

ix is the position of the object i; 
iv and 

iv  , respectively, indicate the velocity of the ith 

object before and after the collision; and e is the 
restitution coefficient. In this paper, the 
restitution coefficient decreases in the process of 
optimization as the Eq. (9) [30]. 

max

e 1
iter

iter
= −  (9) 

In the above relation, iter is the number of 
current repetitions and 

maxiter  represents the 

total number of repetitions during the 
optimization process. New positions of objects 
are updated according to their speed after the 
collision; as well as, the positions of fixed objects 
are updated. The new position of any fixed and 
moving object is calculated by Eqs. (10) and (11), 
respectively. 

 , 1, 2, ,
2

new

Si Si Si

N
X X rand v i= +  =   (10) 

2

 ,

1, 2, ,
2 2

new

Mi n Mi
Mi

X X rand v

N N
i N

−

= + 

= + + 

 (11) 

In the above relations, the rand parameter is a 
random vector with uniform distribution in the 

range [-1, 1]. The sign '' '' denotes the vectors 
element to element multiplication. 

3. Hybrid Genetic Modified Colliding 
Bodies Optimization 

In this section, a robust hybrid optimization 
algorithm is presented with combination of 
modified colliding bodies optimization and 
genetic algorithm (GMCBO) for discrete variables 
[31]. Genetic algorithm is one of the first meta-
heuristic optimization algorithms containing 
various strengths to solve engineering problems, 
especially optimization problems with discrete 
variables. Here, first, a list of allowed discrete 
values of the design variables is given to the 
algorithm. Then, steps of the proposed algorithm 
are presented as the below [31]. 

Step 1- Random formation of the initial 
population in the feasible space. 

Step 2- Assigning mass to objects based on the 
objective function with the Eq. (5). 

Step 3. Elitism and storage of objects having 
the best position: At this stage, according to the 
concept of elitism in the genetic algorithm, 
between 5 to 10 percent of the elite population in 
each repetition are transmitted to the next stage 
alike. This step is in practice the use of the 
migration operator in the genetic algorithm. This 
operation can increase the efficiency and speed of 
the algorithm [9]. 

Step 4- To sort objects based on fitness and 
categorize them into two equal groups of fixed 
and moving objects. 

Step 5. To assign the velocity of objects before 
the collision with the use of the Eq. (6) for moving 
objects and velocity zero for fixed objects. 

Step 6. To assign velocity of objects after the 
collision using the Eq. (7) for moving objects and 
the Eq. 8 for fixed ones. 

Step 7. To find new positions of the objects 
after the collision using the Eqs. (10) and (11) for 
fixed and moving objects, respectively. 

Step 8. To update the position of each object 
based on a set of discrete variables. 

Step 9. To check the non-violation of the 
constraints: At this stage, the status of the 
problem constraints is investigated. In the case of 
the constraint’s violation, it is tried to move the 
object's position to the boundary of the possible 
space. For this purpose, the value of the second 
term on the right of the Eqs. (10) and (11) will be 
multiplied by a reducer coefficient. 
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Step 10. To apply the mutation operator used 
in the genetic algorithm: At this step, if the best 
solution obtained is not changed in several 
successive repetitions, in order to escape from 
the local minimum solutions, one of the design 
variables of the best solution is selected 
randomly and its amount changes. 

Step 11. To apply the stop condition, the above 
steps will continue until the stop criterion is 
satisfied. In this article, reaching a predetermined 
number of repetitions is considered as the 
condition for stopping. 

Figure 1 presents the flowchart of the hybrid 
genetic modified colliding bodies optimization 
algorithm. 

4. Optimal Design of Composite 
Laminate 

So far, researchers have considered various 
parameters such as weight, stiffness matrix [32, 
33], natural frequency [34-37], etc. to the design 
of the optimal composite laminated materials. 
one of the most important aims of engineers in 
designing composite laminates is achieving 
mechanical properties that fulfill a particular 
purpose, which is a combination of the elements 
of the stiffness matrices A, B, and D [38]. In most 
problems, required values of these properties are 
set as goals for the designer. One can achieve the 
optimal design by suitably varying the number of 
layers and the thickness of them, arrangement, 
and orientation of the fibers within the layers. 

Every layer of most composite materials 
available to designers has a specific thickness. 
Therefore, in case the layer thickness is 
considered as a design variable, the multilayer 
composite design becomes one of the 
optimization problems with discrete variables. 
On the other hand, if the orientation of each layer 
is considered as a design variable, the number of 
design variables becomes too large and it will 
become difficult to find a design that fulfills every 
constraint. Given the above circumstances, the 
present research has used the hybrid GMCBO 
optimization algorithm. In this section, the 
objective is to achieve the required effective 
mechanical properties and total weight for the 
laminated composite plate shown in Fig. 2.  

The eight effective mechanical properties 
considered are two extensional stiffness elastic 
coefficients along two perpendicular directions    
(

xE  and yE ), a shear modulus ( xyG ), an effective 

major Poisson’s ratio ( xy ), two effective bending 

stiffness moduli ( f

xE  and f

yE ), an effective 

bending shear modulus ( f

xyG ), and an effective 

bending Poisson’s ratio ( f

xy ). The studied 

objective function is a combination of the 
mentioned mechanical properties and the weight 
of the laminated composite plate, as shown in Eq. 
(12). 

(12) 

1 1 2 2
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   −    
    

 −
+  
  

    

The design variables are the thicknesses of the 
various layers (t) and the orientation of the fibers 
in each layer ( ), which must be within the 

ranges presented in Eq. (13). 

(13) 

, 1,2, ,

, 1,2, ,

L U

k k k

L U

k k k

L U

t

t t t k N

k N

t t t

  

  =

  =

 

   

The coefficients 
1

w  to 
8

w  are the weighting 

factors of the eight effective mechanical 
properties of the composite material, and 

9
w  is 

the weighting factor of the weight of the laminate. 
The superscripts L and U represent the lower and 
upper bounds of the layer thickness and fiber 
orientation, respectively. Moreover, N and tt are 
the number of layers and the total thickness of 
the laminate, respectively.  

The parameters rP are the objective values of 
the required eight effective mechanical 

properties, and cP are the corresponding value 
obtained during the design process.  

 

 

Fig. 2. Geometry and coordinate system of laminated 
composite plate [32] 
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Fig. 1. the flowchart of GMCBO for discrete variables 

 

Similarly, rW and cW are the objective and 

obtained weights of the laminated composite 
plate, respectively. The calculation of the 
mechanical properties

i
P of composite laminates 

are defined in Eqs. (14) to (21). 
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The number of design variables here is twice 
the number of layers. The design objective of this 
problem is to minimize the difference between 
the required objective values and the calculated 
values. Therefore, zero is the best objective 
function value. The required objective values are 
presented in Table 1. 

 
Table 1. The required objective values for 

stiffness properties of the composite laminate. 
92.136xE = GPa 15.268yE =  GPa 

11.619xyG = GPa 0.447xy =  

106.951f

xE = GPa 15.198f

yE = GPa 

11.111f

xyG =  GPa 0.445f

xy =  

 

Yes  No 

No  

Yes  

Start  

Specify the set of discrete variables 

Random formation of the initial population 

Determine the mass of each object based on fitness 

Save the best solution for elitism 

Classification of objects into two fixed and moving groups 

Determine the velocity of fixed and moving objects after the collision 

Find objects’ new position  

Update objects discrete location  

satisfied stop 
criteria 

Finish  

Unchanged best solution in a few iterations 

Check constraints violation Apply the mutation operator GA 

Determine the velocity of the objects before the collision 

GA 
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The present research attempts to determine 
the thickness and fiber orientation for an eight-
layer plate. The density of each base layer of the 
composite material used in the design is equal to 

0.056 = kg/mm3, and its engineering constants 

along the principal directions are
1

170E = Gpa, 

2
12E =  Gpa, 

12
4.5G = Gpa and 

12 0.3 = . 

The weighting factors used in Eq. 12 for the 
mechanical properties and the weight of the 
composite laminate are considered to be 0.1 and 
0.2, respectively. Each base layer of the 
composite material is 0.13 mm thick; hence, the 
thickness of each designed layer can be a multiple 
of this value. The orientation angle of the fibers 
can vary between 0 and 180 degrees in 5-degree 
steps (the range of orientation angle of the fibers 
can be taken as -90 to 90). The use of discrete 
values for the design variables has led to a 
practical design and indicates the effectiveness of 
the proposed algorithm.  

Figure 3a displays the convergence curve to 
the optimal design using the proposed algorithm. 
The variations in both the best optimal solution 
(bold blue curve) and the average of all solutions 
(red line curve) in each iteration have been 
plotted in this graph. The number of objects used 
in the algorithm is 20. 

Figure 3b shows the variation of best optimal 
design at each iteration by SA. The optimal design 
is achieved after about 8500 iterations and has a 
lower convergence rate than GMCBO.  
 

 

 
Fig. 3. (a) The best and average designs convergence 

curve for composite laminate using GMCBO (b) Variation 
of the best function using SA [33]  

As seen in the convergence curve, the 
proposed algorithm has succeeded in achieving 
the optimal design using fewer than 60 iterations. 
The value of the objective function has become 
zero in the optimal point, indicating no difference 
between the required objective values and the 
corresponding calculated values. The total 
number of evaluations of the objective function is 
less than 1200 here. This shows the strength of 
the proposed algorithm in finding the optimal 
design for the laminated composite material. 

The optimal layer thickness and fiber 
orientation are shown in Table 2. Given that the 
objective of the problem is minimizing the 
weight, the thickness of each layer has converged 

to its minimum value and the values of rW and 
cW have become equal. Furthermore, the 

required objective and calculated effective 
mechanical properties have become equal. 

Figure 4 displays the changes in the 
movement of all objects during the convergence 
of the design toward the optimal point. The 
points are more dispersed during the initial 
iterations, but this dispersion becomes smaller 
with time and almost disappears after iteration 
number 90. 

The number of evaluations of the objective 
function in the proposed method and SA are 1200 
and 6879 respectively. GMCBO is about 83 
percent fewer than that of simulated annealing 
(SA). 

Figure 5 shows the plots of variations of 
relative error between the required objective and 
calculated values of mechanical properties 
during the design process using MGCBO. In all 
these plots, the difference in the values has 
reached zero after a number of iterations 
(maximum of 60 iterations).  

In another case, the weighting factors for the 
mechanical properties and the weight of the 
composite laminate are considered equal to be 
0.05 and 0.6, respectively. The GMCBO reached 
the previous results that proposed in Table 2. The 
reason for this is the feasibility of reaching a 
minimum weight, so the change in weight factor 
did not make a difference in the optimal point. 

 

 

Fig. 4. The changes in the movement of all objects during 
the convergence of the design toward the optimal point 
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Fig. 5. The variations of relative error between the 

required objective and calculated values of mechanical 
properties during the design process using MGCBO 

 
Continued Fig. 5. 

 
Table 2. Optimal thickness and fiber orientation at layers 

MGCBO SA [32] 

No. Layer   
(deg) 

t 

(mm) 

  
(deg) 

t 

 (mm) 

0.0 0.13 0.0 0.13 1 

45 0.13 45 0.13 2 

45 0.13 45 0.13 3 

0.0 0.13 0.0 0.13 4 

0.0 0.13 0.0 0.13 5 

45 0.13 45 0.13 6 

45 0.13 45 0.13 7 

0.0 0.13 0.0 0.13 8 
 

 
Since there are multi objective optimization 

problem, the differences in the values of 
mechanical properties and weight have increased 
in some cases during the optimization as 
expected; however, the overall reduction in 
difference is evident. 

Figure 6 shows the variation in the relative 
error between the required objective and the 
calculated weight. Here, the objective weight is 
the minimum weight possible. This is achieved 
when all the plate layers have minimum 
thickness. 

 

 

Fig. 6. The variation in the relative error between the 
required objective weight and the calculated weight 

during the design process using MGCBO 
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Table 3. Optimal thickness and fiber orientation for six 
layers  

MGCBO 

No. Layer   
(deg) 

t  

(mm) 

0 0.13 1 

45 0.26 2 

180 0.13 3 

180 0.13 4 

45 0.26 5 

0 0.13 6 

 
Table 4. Statistical results for the optimization process in 

composite laminated by MGCBO 

Best Average Worst 
Standard 

Deviation 

0.0 0.0403 0.1719 0.0414 

 
In another case, the optimal design of 

composite laminate with six layers was done with 
the same objective functions as the previous 
target, and the result was proposed in Table 3. In 
this state, the values calculated and requested 
were converged to one value and so the 
performance of the proposed method has also 
been validated again. 

The statistical results for the optimization 
process, namely the best, the average, and the 
worst values along with the standard deviation 
after 50 runs of the MGCBO are presented in 
Table 4.  

5. Conclusions 

Studying the behavior of composite materials 
is more challenging than common engineering 
materials. One reason for this is the large number 
of parameters affecting the behavior of the 
former materials. Therefore, effective tools are 
required to analyze and design a laminated 
composite material. For this purpose, the present 
research has proposed a hybrid optimization 
method involving a combination of a modified 
colliding bodies optimization algorithm and 
genetic algorithm. This method attempts to 
compensate for the weaknesses of CBO in 
discrete optimization problems using the 
strengths of GA. Combining these two methods 
has created a balance between the feature 
exploration and exploitation processes during 
optimization, avoided local optimum traps, and 
improved the convergence speed in addition to 
empowering the CBO method. A comparison of 
the results with previous works of research 
confirms the validity of the results. The zero-
value obtained for the objective function 
indicates the absence of any difference between 
the required objective values and the calculated 
values. Hence, the algorithm has succeeded in 
achieving overall optimization. 
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