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In this study, the frequency response of rectangular sandwich plates with multi-layer face 

sheets and electrorheological (ER) fluid cores is investigated. The assumed electro-rheo-

logical fluid as a core is capable of changing the stiffness and damping of structures. In 

modelling the sandwich panel implemented for the first time, first-order shear defor-

mation theory and the second Frostig's model are applied for the face sheets and thick 

cores, respectively. The sandwich panel under study is supposed to simply support bound-

ary in all edges, and the Galerkin approach is implemented for discretizing the problem. In 

the result section, impacts of various parameters such as electric field, aspect ratio, the 

thickness of the ER layer, and thickness ratio on vibrational characteristics of the structure 

are discussed in detail.  The obtained results highlight the notable effects of the electric 

field on natural frequencies, which can make the structure flexible within the desired 

range. It is also pointed out that the dynamic behavior and stability of the system can be 

controlled by changing the magnitude of the ER fluid layer. 
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1. Introduction 

A sandwich structure, whether beam or sheet, 
consists of two thin surface sheets of a rigid struc-
ture that bonded to a soft, flexible, and relatively 
thick core. Surfaces are usually made of thin solid 
metal sheets or composite laminate sheets. The 
cores are also often made of light polymers, 
foams, or honeycomb structures. 

The higher order sandwich panel theory was 
developed by Frostig et al. [1], who considered 
two types of computational models to describe 
governing equations of the core layer. The second 
model assumed a polynomial description of the 
displacement fields in the core, which was based 
on the displacement fields of the first model. The 
improved higher-order sandwich plate theory 
(IHSAPT), applying the first-order shear defor-
mation theory for the face sheets, was introduced 
by Malekzadeh et al. [2]. The first-order shear de-
formation theory [3, 4] incorporates the shear de-
formation effects, but it considers a constant 
transverse shear deformation along the thickness 
of the plate. Thus, it violates stress-free condi-
tions at the bottom and top of the plate and needs 
a shear correction factor. To get accurate results 

and to avoid using shear correction factor, the 
higher-order shear deformation theory (HSDT) 
was developed. Reddy [5] employed a parabolic 
shear stress distribution along the thickness of 
the plate. His model didn’t need a shear correc-
tion factor because of satisfying free stress condi-
tions at the bottom and top of the plate. The me-
chanical behavior of sheets is often studied and 
analyzed using plate theories. Most plate and 
shell theories are based on a kinematic assump-
tion of displacement or the deformation of the ob-
ject in three dimensions [6]. Sayyad and Ghugal 
[7, 8] used exponential and trigonometric shear 
deformation theories for bending and free vibra-
tion analysis of thick plates. Ghasemi and Mo-
handes [9] studied the free vibration analysis of 
fiber-metal laminate thin circular cylindrical 
shells with simply supported boundary condi-
tions based on Love’s first approximation shell 
theory. The result demonstrated that with an in-
crease in the axial and circumferential wave-
number, the gap between forward and backward 
frequencies increased. In addition, with an in-
crease in the axial wavenumber, the natural fre-
quency decreased and then increased. Nonlinear 
free vibration of an Euler-Bernoulli composite 
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beam undergoing finite strain subjected to differ-
ent boundary conditions was studied by Ghasemi 
et al. [10]. Free Vibration of Sandwich Panels with 
Smart Magneto-Rheological Layers and Flexible 
Cores has been studied by Payganeh et al. [11]. 
They used the exponential shear deformation 
theory in their analysis. Mozaffari et al. [12] ex-
amined the memory alloys on the free vibration 
behavior of flexible-core sandwich-composite 
panels. Qajar et al. [13] also analyzed the dynamic 
response of double curved composite shells un-

der low- velocity impact. Khorshidi et al. [14] in-
vestigated the electro-mechanical free vibrations 
of composite rectangular piezoelectric nanoplate 
using modified shear deformation theories. One 
of the most important damages of sandwich 
structures is the separation in the middle layer 
between the core and the shell. The reason for 
this separation is the difference in Young's mod-
ulus ratio between the core and the face sheet. 
The use of a material with high shear stress toler-
ance in the core weakens the adhesion of the mid-
dle layer. The core use of FGM or ER smart fluids 
eliminates all of these problems. Under the influ-
ence of electric fields, intelligent fluids exhibit 
rapid changes in hardness and damping proper-
ties. These fluids are also very suitable for vibra-
tion control over very large ranges. The concept 
of material-based ER adaptive structures was 
first put forward by Carlson et al. [15] in a patent 
filed with the US Patent Center. Most of the work 
published in the last few years has focused 
mainly on the experimental and theoretical as-
pects of ER adaptive structures [16-17]. How-
ever, research on adaptive MR sandwich struc-
tures is in its infancy. Some research has investi-
gated the vibrational and damping properties of 
ER and MR materials with adaptive structures 
[18-19]. Yeh et al. [20] examined the vibrational 
properties and modal damping coefficient of cir-
cular sandwich sheets with orthotropic face 
sheets and ER core. Ramkumar and Gensan [21] 
used ER fluids as the core of a sandwich hollow 
column wall and compared the performance of 
ER fluid application with viscoelastic materials in 
changing the vibrational properties of the col-
umn. The most recent work on MR fluids is a 
study by Rajamohan et al. [22]. They modeled a 
sandwich beam with an MR core, considering the 
shear effects of the MR binding layer on the core 
and applying the equivalent shear modulus. They 
applied the finite element method to solve the 
problem and investigated the effects of magnetic 
field intensity on vibrational properties for differ-
ent boundary conditions and forced loading. Free 
vibration analysis of porous laminated rotating 
circular cylindrical shells has been done by 
Ghasemi and Meskini [23]. Also, for the first time, 
Rajamohan et al. [24] investigated the vibrational 
properties of a partially filled MR sandwich beam 

both experimentally and via the finite element 
method. Rajamohan et al. [25] were the first who 
explored the model presented in [24] to find the 
optimal location of partial MR layers for maxim-
izing the modal damping coefficient of sandwich 
beams. They tested the optimal location of the 
partial MR layers to maximize the first five modal 
damping coefficients of the beam separately and 
simultaneously.  

In this study, based on the displacement field 
of each layer, the kinetic energy and strain energy 
are separately obtained for each layer. Using total 
kinetic energy and total strain energy, in the 
Hamiltonian principle, the structural motion 
equation is obtained. Primary attention is fo-
cused on the effects of electric field magnitude, 
geometric aspect ratio, and ER core layer thick-
ness on dynamic characteristics of the sandwich 
plate. Natural frequencies and loss factor for the 
electric fields, as well as the ratio of different 
thicknesses are calculated by Galerkin analytical 
method. As the applied electric field increases, 
the natural frequency of the sandwich plate in-
creases, and the modal loss factor decreases. 
With increasing the thickness of the ER layer, the 
natural frequencies of the sandwich plate are de-
creased. 

2. Obtaining the equations that gov-
ern the problem   

The assumptions for modeling the problem 
are as follows: 
• Face sheets are elastic and can be an iso-

tropic, orthotropic, or composite material. 
• It is assumed that there is no slipping be-

tween the elastic layers of the ER layer. 
• Transverse displacement is assumed to be 

identical for all points on a hypothetical 
cross-sectional area. 

• It is assumed that there is no normal stress 
in the ER layer. 

• The ER is modeled as a linear viscoelastic 
material in pre-submission conditions.  

• The ER used in the Core completely covers 
the core with the displacements considered 
linear and small, and the face sheet is as-
sumed to be thin. 

The improved high-order theory of sandwich 
plates has been used to derive the governing 
equations. According to this theory, for compo-
site sheets, the first-order shear deformation the-
ory is used while the displacement sentence term, 
which is based on Frostig's second-order dis-
placements, is used for the core. In this case, the 
unknowns are fixed polynomial coefficients. Fur-
ther, in this study, the displacements of the face 
sheets for the core and the surfaces are assumed 
to be very dynamic. Figure 1 shows a flat sand-
wich sheet with two laminated composite sheets 
on its faces.  
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Fig. 1. Sandwich plate with laminated composite sheets 

on the surfaces 

The thickness of the top sheet, the bottom 
sheet, and the core are as follows: ℎ𝑡 , ℎ𝑏 , ℎ𝑐 . The 
sandwich panel is supposed to have length a, 
width b, and total thickness h. The orthogonal co-
ordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖   𝑖 = 𝑡, 𝑏, 𝑐)are also shown in 
Fig. 1. In this study, the t index corresponds to the 
upper sheet, the b index to the lower sheet, and 
the c index to the core. 

2.1. Displacement fields and strain relations - 
Displacement for face sheets and core 

According to the first-order shear defor-
mation theory, the displacements u, v, and w face 
sheets in the x, y, and z directions assume small 
linear displacements as Eq. (1):  

𝑢𝑖(𝑥, 𝑧, 𝑦, 𝑡) = 𝑢0
𝑖 (𝑥, 𝑦, 𝑡) + 𝑧𝑖𝜙𝑥

𝑖 (𝑥, 𝑦, 𝑡) 
𝑣𝑖(𝑥, 𝑧, 𝑦, 𝑡) = 𝑣0

𝑖 (𝑥, 𝑦, 𝑡) + 𝑧𝑖𝜙𝑦
𝑖 (𝑥, 𝑦, 𝑡) 

𝑤𝑖(𝑥, 𝑧, 𝑦, 𝑡) = 𝑤0
𝑖(𝑥, 𝑦, 𝑡) ; (𝑖 = 𝑡, 𝑏) 

(1) 

where 𝑧𝑖  is the vertical coordinate of each face 
sheet (i = t, b), measured upward from the mid-
plane of each face sheet. Kinematic equations of 
the face sheets are as follows: 

𝜀𝑥𝑥
𝑖 = 𝜀0𝑥𝑥

𝑖 + 𝑧𝑖𝑘𝑥𝑥
𝑖  

𝜀𝑦𝑦
𝑖 = 𝜀0𝑦𝑦

𝑖 + 𝑧𝑖𝑘𝑦𝑦
𝑖 ,      𝜀𝑧𝑧

𝑖 = 0 

𝛾𝑥𝑦
𝑖 = 2𝜀𝑥𝑦

𝑖 = 𝜀0𝑥𝑦
𝑖 + 𝑧𝑖𝐾𝑥𝑦

𝑖  ,                𝑖 = 𝑡, 𝑏 

𝛾𝑥𝑧
𝑖 = 2𝜀𝑥𝑧

𝑖 = 𝜀0𝑥𝑧
𝑖  , 

𝛾𝑦𝑧
𝑖 = 2𝜀𝑦𝑧

𝑖 = 𝜀0𝑦𝑧
𝑖  , 

        (2) 

𝜀0𝑥𝑥
𝑖 =

𝜕𝑢0
𝑖

𝜕𝑥
, 𝜀0𝑦𝑦
𝑖 =

𝜕𝑣0
𝑖

𝜕𝑦
 

𝜀0𝑥𝑦
𝑖 =

𝜕𝑣0
𝑖

𝜕𝑥
+
𝜕𝑢0

𝑖

𝜕𝑦
, 𝜀0𝑥𝑧
𝑖 =

𝜕𝑤0
𝑖

𝜕𝑥
+ 𝜙𝑥

𝑖  

𝜀0𝑦𝑧
𝑖 =

𝜕𝑤0
𝑖

𝜕𝑦
+ 𝜙𝑦

𝑖  , 𝐾𝑥𝑦
𝑖 =

𝜕𝑤𝑥
𝑖

𝜕𝑥
  

𝐾𝑦𝑦
𝑖 =

𝜕𝑤𝑦
𝑖

𝜕𝑦
, 𝐾𝑥𝑦

𝑖 =
𝜕𝑤𝑦

𝑖

𝜕𝑥
+ 
𝜕𝑤𝑥

𝑖

𝜕𝑦
 

(3) 

As can be seen, εzz  for the face sheets are 
equal to zero. This means that the face sheets are 
assumed to be rigid in the Z direction. Displace-
ment relations are based on Frostig's second 
model for the thick core in the form of Eqs. (4) 
[26]: 

𝑢𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0
𝑐(𝑥, 𝑦, 𝑡)
+ 𝑧𝑐𝑢1

𝑐(𝑥, 𝑦, 𝑡)
+ 𝑧𝑐

2𝑢2
𝑐(𝑥, 𝑦, 𝑡)

+ 𝑧𝑐
3𝑢3

𝑐(𝑥, 𝑦, 𝑡) 
𝑣𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0

𝑐(𝑥, 𝑦, 𝑡)
+ 𝑧𝑐𝑣1

𝑐(𝑥, 𝑦, 𝑡)
+ 𝑧𝑐

2𝑣2
𝑐(𝑥, 𝑦, 𝑡)

+ 𝑧𝑐
3𝑣3

𝑐(𝑥, 𝑦, 𝑡) 
𝑤𝑐(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0

𝑐(𝑥, 𝑦, 𝑡)
+ 𝑧𝑐𝑤1

𝑐(𝑥, 𝑦, 𝑡)
+ 𝑧𝑐

2𝑤2
𝑐(𝑥, 𝑦, 𝑡) 

(4) 

The kinematic relationships of the core in a 
sandwich panel are based on the relation of small 
deformations: 

𝜀𝑥𝑥
𝑐 = (

𝜕𝑢𝑐
𝜕𝑥
) 

𝜀𝑦𝑦
𝑐 = (

𝜕𝑣𝑐
𝜕𝑦
)  , 𝜀𝑧𝑧

𝑐 = 𝑤1
𝑐 + 2𝑧𝑤2

𝑐 ,   

𝛾𝑥𝑦
𝑐 = 2𝜀𝑥𝑦

𝑐 =
𝜕𝑣𝑐
𝜕𝑥

+
𝜕𝑢𝑐
𝜕𝑦

 

𝛾𝑥𝑧
𝑐 = 2𝜀𝑥𝑧

𝑐 = (
𝜕𝑤𝑐
𝜕𝑥

) +
𝜕𝑢𝑐
𝜕𝑧

 

𝛾𝑦𝑧
𝑐 = 2𝜀𝑦𝑧

𝑐 = (
𝜕𝑤𝑐
𝜕𝑦

) +
𝜕𝑣𝑐
𝜕𝑧

 

(5) 

2.2. Compatibility Conditions 

Assuming perfect bonding between the top 
and bottom face sheet-core interfaces, the com-
patibility. conditions are as shown below: 

𝑢𝑐(𝑧 = 𝑧𝑐𝑖) = 𝑢0
𝑖 +

1

2
(−1)𝑘ℎ𝑖𝜙𝑥

𝑖   

𝑣𝑐(𝑧 = 𝑧𝑐𝑖) = 𝑣0
𝑖 +

1

2
(−1)𝑘ℎ𝑖𝜙𝑦

𝑖  

𝑤𝑐(𝑧 = 𝑧𝑐𝑖) = 𝑤0
𝑖  

𝑖 = 𝑡 → 𝑘 = 1 ;  𝑧𝑐𝑡 =
ℎ𝑐
2

 

𝑖 = 𝑏 → 𝑘 = 0 ;  𝑧𝑐𝑏 = −
ℎ𝑐
2

 

(6) 

By replacing Eqs. (4) and (6) in Eq. (5) and 
some simplification, the compatibility conditions 
are transformed into (7): 

𝑢2
𝑐

=
[2(𝑢0

𝑡 + 𝑢0
𝑏) − ℎ𝑡𝜙𝑥

𝑡 + ℎ𝑏𝜙𝑥
𝑏 − 4𝑢0

𝑐]

ℎ𝑐
2

    

𝑢3
𝑐 =

[
4(𝑢0

𝑡 + 𝑢0
𝑏) − 2(ℎ𝑡𝜙𝑥

𝑡 + ℎ𝑏𝜙𝑥
𝑏)

−4ℎ𝑐𝑢1
𝑐 − 4ℎ𝑐𝑢0

𝑐 𝑅𝑥𝑐⁄
]

ℎ𝑐
3

 

𝑣2
𝑐 =

[2(𝑣0
𝑡 + 𝑣0

𝑏) − ℎ𝑡𝜙𝑦
𝑡 + ℎ𝑏𝜙𝑦

𝑏 − 4𝑣0
𝑐]

ℎ𝑐
2

 

𝑣3
𝑐 =

[
4(𝑣0

𝑡 + 𝑣0
𝑏) − 2(ℎ𝑡𝜙𝑦

𝑡 + ℎ𝑏𝜙𝑦
𝑏)

−4ℎ𝑐𝑣1
𝑐 − 4ℎ𝑐𝑣0

𝑐 𝑅𝑦𝑐⁄
]

ℎ𝑐
3

 

𝑤1
𝑐 =

[2(𝑤0
𝑡 + 𝑤0

𝑏)]

ℎ𝑐
2

 

𝑤2
𝑐 =

[2(𝑤0
𝑡 + 𝑤0

𝑏) − 4𝑤0
𝑐]

ℎ𝑐
2

 

(7) 
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According to Eq. (7), it is observed that the 
number of unknowns in the core layer is reduced 
to five, which are::  𝑢1

𝑐 , 𝑢0
𝑐 , 𝑣0

𝑐 , 𝑣1
𝑐 , 𝑤0

𝑐 . Thus, in gen-
eral, all the unknowns for a flat composite sand-
wich panel are 15, which are [27]: 

𝑢0
𝑡 , 𝑣0

𝑡 , 𝑤0
𝑡 , 𝜙𝑥

𝑡 , 𝜙𝑦
𝑡 , 𝑢0

𝑏 , 𝑣0
𝑏 , 𝑤0

𝑏 , 𝜙𝑥
𝑏 , 𝜙𝑦

𝑏 , 

𝑢0
𝑐 , 𝑢1

𝑐 , 𝑣0
𝑐 , 𝑣1

𝑐 , 𝑤0
𝑐  

(8) 

2.3. Relationships between stresses, resulting 
stresses, and moments of inertia of the 
core and face sheet 

As mentioned, there is no normal stress in the 
ER layer, and only transverse shear stresses are: 

𝜎𝑥𝑧
𝑐 = 𝐺2𝑏(𝑥𝑧)

𝐶 𝛾𝑥𝑧
𝑐 = 

𝐺2𝑏(𝑥𝑧)
𝐶 [𝑤0,𝑥

𝑐 + 𝑧𝑤1,𝑥
𝑐 + 𝑧2𝑤2,𝑥

𝑐 ]  

+𝐺2𝑏(𝑥𝑧)
𝐶 [𝑢1

𝑐 + 2𝑧𝑢2
𝑐 + 3𝑧2𝑢3

𝑐] 

𝜎𝑦𝑧
𝑐 = 𝐺2𝑏(𝑦𝑧)

𝐶 𝛾𝑦𝑧
𝑐 = 

𝐺2𝑏(𝑦𝑧)
𝐶 [𝑤0,𝑦

𝑐 + 𝑧𝑤1,𝑦
𝑐 + 𝑧2𝑤2,𝑦

𝑐 ] 

+𝐺2𝑏(𝑦𝑧)
𝐶 [𝑣1

𝑐 + 2𝑧𝑣2
𝑐 + 3𝑧2𝑣3

𝑐] 

(9) (9) 

In this article, the modified Yalcinatas model 
[28] will be used as follows: 

𝐺2𝑏(𝑥𝑧)
𝐶 = 𝐺𝑏(𝑥𝑧)

 ́𝐶 + 𝐺𝑏(𝑥𝑧)
 ́ ́𝐶  

𝐺2𝑏(𝑦𝑧)
𝐶 = 𝐺𝑏(𝑦𝑧)

 ́𝐶 + 𝐺𝑏(𝑦𝑧)
 ́ ́𝐶  

𝐺𝑏(𝑥𝑧)
 ́𝐶 = 𝐺𝑏(𝑦𝑧)

 ́𝐶 = 50.000𝐸2   

(10) 

 𝐺𝑏(𝑥𝑧)
 ́ ́𝐶 = 𝐺𝑏(𝑦𝑧)

 ́ ́𝐶 = 2600 𝐸 + 1700 

where  𝐺𝑏(𝑥𝑧)
 ́𝐶  is the coefficient of shear reserve, 

and 𝐺𝑏(𝑥𝑧)
 ́ ́𝐶  is Wasting factor. 

The effect of the electric field on the vibration 
response of the ER sandwich plate can be seen for 
electric field levels of 0, 1, 2, and 3.5 kV/mm, re-
spectively. Following [29], the results of the 
stress for the core can be written as follows: 

 {

Nxx
c

Nyy
c

Nxy
c
} = ∫ {

σxx
c

σyy
c

σxy
c
}

hc 2⁄

−hc 2⁄

dzc 

{

Mnxx
c

Mnyy
c

Mnxy
c
} = ∫ zc

n {

σxx
c

σyy
c

σxy
c
}

hc 2⁄

−hc 2⁄

𝑑𝑧𝑐  

{
 

 
𝑁𝑥𝑧
𝑐

𝑁𝑦𝑧
𝑐

𝑀𝑛𝑥𝑧
𝑐

𝑀𝑛𝑦𝑧
𝑐 }
 

 

= ∫ 𝑧𝑐
𝑛

{
 

 
𝜎𝑥𝑧
𝑐

𝜎𝑦𝑧
𝑐

𝑧𝑐
𝑛𝜎𝑥𝑧

𝑐

𝑧𝑐
𝑛𝜎𝑦𝑧

𝑐 }
 

 ℎ𝑐 2⁄

−ℎ𝑐 2⁄

𝑑𝑧𝑐  

{𝑅𝑧
𝑐 , 𝑀𝑧

𝑐}

= ∫ (1, 𝑧𝑐)𝜎𝑧𝑧
𝑐 𝑑𝑧𝑐

ℎ𝑐 2⁄

−ℎ𝑐 2⁄

 ,                    𝑛

= 1,2,3 

(11) 

If the face sheet is made of several orthotropic 
layers with different angles of rotation relative to 
the original coordinates, Relation (11) expresses 
the stress of the kth layer [30]. 

[

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

] = [

�̅�11    �̅�12    �̅�16 
�̅�12    �̅�22    �̅�26 
�̅�16    �̅�26    �̅�66

]

(𝑘)

[

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦

] 

[
𝜎𝑦𝑧
𝜎𝑥𝑧

] = [
�̅�44    �̅�45 
�̅�45    �̅�55 

]

(𝑘)

[
𝜀𝑦𝑧
𝜀𝑥𝑧
]  

(12) 

where �̅�𝑖𝑗  denotes the transmitted stiffness. The 

relationship between axial stiffness and the 
transferred stiffness is given by Relation (13): 

{�̅�𝑖𝑗 }𝑘 =
[𝑇𝑀]𝑘{𝑄𝑖𝑗}𝑘   (13) 

where [𝑇𝑀]𝑘  is the stiffness matrix of the axial-
to-axial unidirectional composite. 

𝑄11 =
𝐸1

1 − 𝑣12𝑣21
, 𝑄12 =

𝑣12𝐸1
1 − 𝑣12𝑣21

 
  (14) 

  𝑄22 =
𝐸2

1 − 𝑣12𝑣21
 

  𝑄66 = 𝐺12,   𝑄44 = 𝐺23,   𝑄55 = 𝐺13.        

𝑄𝑖𝑗
(𝑘)

 is the multilayer rigidity in the main axis of 

the material, and �̅�𝑖𝑗  denotes the rigidity trans-

mitted in the geometric axis of the sandwich 
panel. 

Q̅11 = Q11cos
4θ + 2(Q12

+ 2Q66)sin
2θcos2θ 

+Q̅22sin
4θ 

Q̅12 = (Q11 + Q22 − 4Q66)sin
2θcos2θ 

+Q12(sin
4θ + cos4θ) 

Q̅22 = Q11sin
4θ + 2(Q12

+ 2Q66)sin
2θcos2θ 

+Q̅22cos
4θ 

Q̅16 = (Q11 − Q12 − 2Q66)sinθcos
3θ 

+(Q12 − Q22 + 2Q66)sin
3θcosθ 

Q̅26 = (Q11 − Q12 − 2Q66)sin
3θcosθ 

+(Q12 − Q22 + 2Q66)sinθcos
3θ 

Q̅66 = (Q11 + Q22 − 2Q12
− 2Q66)sin

2θcos2θ 
+Q66(sin

4θ + cos4θ) 

 Q̅44 = Q44cos
4θ + Q55sin

4 
Q̅45 = (Q55 − Q44) cosθsin θ 
Q̅55 = Q55cos

4θ + Q44sin
4θ  

(15) 

The basic multi-layer relationships of the face 
sheet are derived from the following relationship: 

Nxx
i = A11

i u,x
i + A12

i v,y
i + A16

i (u,y
i + v,x

i ) 

+B12
i ϕy,y

i + B16
i (ϕx,y+

i ϕy,x
i ) 

Nyy
i = A12

i u,x
i + A22

i v,y
i + A26

i (u,y
i + v,x

i ) 

+B12
i ϕx,x

i + B22
i ϕy,y

i + B26
i (ϕx,y+

i ϕy,x
i ) 

Nxy
i = A16

i u,x
i + A26

i v,y
i + A66

i (u,y
i + v,x

i ) 

+B16
i ϕx,x

i + B26
i ϕy,y

i + B66
i (ϕx,y+

i ϕy,x
i ) 

Mxx
i = B11

i u,x
i + B12

i v,y
i + B16

i (u,y
i + v,x

i ) 

+D11
i ϕx,x

i + D12
i ϕy,y

i + D16
i (ϕx,y+

i ϕy,x
i )   

Myy
i = B12

i u,x
i + B22

i v,y
i + B26

i (u,y
i + v,x

i ) 

+D12
i ϕx,x

i + D22
i ϕy,y

i + D26
i (ϕx,y+

i ϕy,x
i ) 

Mxy
i = B16

i u,x
i + B26

i v,y
i + B66

i (u,y
i + v,x

i ) 

+D16
i ϕx,x

i + D26
i ϕy,y

i + D66
i (ϕx,y+

i ϕy,x
i ) 

(16) 
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Qyz
i = k[A44

i (ϕy
i +w,y

i )

+ A45
i (ϕx

i +w,x
i )] 

Qxz
i = k[A45

i (ϕy
i + w,y

i )

+ A55
i (ϕx

i +w,x
i )] 

The stiffness coefficients are defined as fol-
lows: 

(Aij, Bij, Dij)
m
= 

∫ Qij
hm 2⁄

−hm 2⁄
(1, z, z2)dzm                                             (17) 

 

= (∑Qij
(k)

N

k=1

∫ (1, z, z2)dz
z(k+1)

z(k)

)

m

 

Aij
m = (∑Qij

(k)
N

k=1

(z(k+1) − z(k)))

m

 

Bij
m = (

1

2
∑Qij

(k)
N

k=1

(z(k+1)
2 − z(k)

2 ))

m

 

Dij
m = (

1

3
∑Qij

(k)
N

k=1

(z(k+1)
3 − z(k)

3 ))

m

 i, j = 1,2,6 ;m

= t, b 

Aij
m = (∑Qij

(k)
N

k=1

(z(k+1)
 − z(k)

  ))

m

i, j = 4,5 ;m = t, b 

The following integrals are defined to express 
the equations of motion in terms of displacement 
and to facilitate the process of solving equations: 

en
c(xx)

= ∫ ZcExx
C (Z)

hc
2

−
hc
2

dz     n = 0.1.2.3                (18) 

en
c(yy)

= ∫ ZcEyy
C (Z)

hc
2

−
hc
2

dz           n = 0.1.2.3 

gn
c(xy)

= ∫ Zc
nGxy

C (Z)

hc
2

−
hc
2

dz         n = 0.1.2.3 

gn
c(xz) = ∫ Zc

nG(xz)
C (Z)

hc
2

−
hc
2

dz       n = 0.1.2.3 

The moment of inertia of the core is as follows: 

 

In
c = ∫ ρczc

n

hc
2

−
hc
2

dzc        n = 0,1, … ,6                        (19)         

 

Also, the moment of inertia of the face sheets in 
the relation is: 

  In
i = ∫ zi

n

hi
2

−
hi
2

ρidzi, i = t, b (20) 

 

 

Stress resultants per unit length for top and 
bottom face sheets can be defined as follows: 

{

Nxx
i

Nyy
i

Nxy
i

} = ∫ {

σxx
i

σyy
i

σxy
i

}
hi 2⁄

−hi 2⁄
dzi                                           (21) 

 

{

Mxx
i

Myy
i

Mxy
i

} = ∫ {

σxx
i

σyy
i

σxy
i

}

hi 2⁄

−hi 2⁄

dzi 

{
Qxz
i

Qyz
i } = ks ∫ {

σxz
i

σyz
i }

hi 2⁄

−hi 2⁄

dzi ,                i = t, b     

where   𝑘𝑠 is shear correction factor. 

2.4. Applying the Hamiltonian principle 

To obtain the equations governing motion, we 
use the Hamiltonian [20] principle, which states:  

∫δLdt = ∫(δK − δU + δWext)dt = 0.             (22)

t

0

t

0

 

 

where 𝛿𝐾  represents the kinetic energy varia-
tions, 𝛿𝑈 denotes the potential energy variations, 
and 𝛿𝑊𝑒𝑥𝑡  shows the energy variations caused by 
the forces on the problem. Here, for studying free 
vibrations, the dynamically distributed vertical 
loads on the upper surface of  𝑞𝑡  and 𝑞𝑏  are de-
fined as zero.   

δWext = ∫(−qtδw0
t + qbδw0

b)dx dy

A

                 (23) 

 

Assuming homogeneous conditions for dis-
placement and velocity for the time coordinate 
for a sandwich plate, the kinetic and potential en-
ergies variations can be generalized as: 
δK =

−∑ [∬ ∫ ρi (

üiδui
+v̈iδvi +
ẅiδwi

)dzi dAi
hi 2⁄

−hi 2⁄Ai
]                i=t,b,c (24) 

dAc = dxcdyc 

 

dAi = dxidyi,    (i = t, b) 

δU = ∑

(

 
 
 

∫

(

 
 
 

σxx
i δεxx

i +

σyy
i δεyy

i +

τxz
i δγxz

i +

τxy
t δγxy

i

+τyz
i δγyz

i
)

 
 
 

dVi
 

Vi

)

 
 
 

i=t,b                      (25) 

+ ∫

(

 
 

σxx
c δεxx

c + σyy
c δεyy

c

+σzz
c δεzz

c

+τxy
c δγxy

c

+τxz
c δγxz

c + τyz
c δγyz

c

)

 
 
dVc 

 

Vc

 

dVc = dAcdZc = dxcdycdzc   
dVi = dAidzi = dxidyidzi  ;   (i = t, b) 

 

Finally, the 15 equations of motion for the flat 
sandwich plate with the ER core are obtained us-
ing the Hamiltonian principle. Given the long 
equations, only one equation is given as an exam-
ple: 

δW0
C: 

4M2xx
c

Rxchc
2
+
∂Nxz

c

∂x
−
4

hc
2

∂M2xz
c

∂x
−
4

hc
2

∂M2yz
c

∂y
 

(26) 
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+
∂Nyz

C

∂y
+
8

hc
2
Mz
c = (

16I4
c

hc
4
−
8I2
c

hc
2
+ I0

c) Ẅ0
c + 

(
2I2
c

hc
2
−
8I4
c

hc
4
+
I1
c

hc
−
4I3
c

hc
3
) Ẅ0

t + 

(
2I2
c

hc
2
−
8I4
c

hc
4
−
I1
c

hc
+
4I3
c

hc
3
) Ẅ0

b 

Displacement fields based on the double Fou-
rier series for a flat composite sandwich panel 
with a simply supported boundary condition at 
the top and bottom face sheets are assumed to be 

in the following form (i = t,b) [32]: 

[
 
 
 
 
 
 
 
 
 u0

j (x, y, t)

v0
j (x, y, t)

w0
j (x, y, t)

ϕx
j (x, y, t)

ϕy
j (x, y, t)

uk
c(x, y, t)

vk
c(x, y, t)

wl
c(x, y, t)]

 
 
 
 
 
 
 
 
 

=∑∑

[
 
 
 
 
 
 
 
 
 
 U0mn

j
cos (αmx)sin(βny)

V0mn
j

sin (αmx)cos(βny)

W0mn
j

sin (αmx)sin(βny)

ϕxmn
j

cos (αmx)sin(βny)

ϕymn
j

sin (αmx)coc(βny)

Ukmn
c cos (αmx)sin(βny)

Vkmn
c sin (αmx)cos(βny)

Wlmn
j
sin (αmx)sin(βny)]

 
 
 
 
 
 
 
 
 
 

∞

m=1

∞

n=1

eiωt 

(27) 

(k = 0,1,2,3), (l = 0,1,2) 

Where 𝛼𝑚 =
𝑚𝜋

𝑎
  and  𝛽𝑛 =

𝑛𝜋

𝑏
. 

When all edges are clamped, functions 
cos(𝛼𝑚𝑥) and cos(𝛽𝑛𝑦)  in the above series ex-
pansions must be replaced with sin (𝛼𝑚𝑥)  and 
sin(𝛽𝑛𝑦), respectively. 

In Eq.(27),  𝑈0𝑚𝑛
𝑗

, 𝑉0𝑚𝑛
𝑗

,  𝑊0𝑚𝑛
𝑗

,  𝜙𝑥𝑚𝑛
𝑗

,  𝜙𝑦𝑚𝑛
𝑗

, 

 𝑈𝑘𝑚𝑛
𝑐 ,  𝑉𝑘𝑚𝑛

𝑐  and 𝑊𝑙𝑚𝑛
𝑗

are the Fourier coeffi-

cients, and m and n are half wavenumbers along 
x and y directions, respectively. By substituting 
stress resultants (Eq. (27)), compatibility condi-
tions (Eq. (7)), and displacement field (Eq. (30)) 
in the governing equations (Eqs. (11)-(25)), ap-
plying the Galerkin method, and collecting coeffi-
cients, the eigenvalue equation is obtained as fol-
lows: 

[𝑀]{�̈�} + [𝐾]{𝑐} = {0} 
{𝑐} = {𝑈0𝑚𝑛

𝑡  , 𝑈0𝑚𝑛
𝑏 ,𝑉0𝑚𝑛

𝑡 ,𝑉0𝑚𝑛
𝑏 ,𝑊0𝑚𝑛

𝑡 ,… 
(28) 

𝑊0𝑚𝑛
𝑏 , 𝜙𝑥𝑚𝑛

𝑡 , 𝜓𝑥𝑚𝑛
𝑏 , 𝜙𝑦𝑚𝑛

𝑡 𝜓𝑦𝑚𝑛
𝑏 ,… 

𝑈0𝑚𝑛
𝑐 ,𝑉0𝑚𝑛

𝑐 , 𝑢1𝑚𝑛
𝑐 , 𝑉0𝑚𝑛

𝑐 , 𝑊0𝑚𝑛
𝑐 }𝑡  

Hence, the problem of free vibration of the 
sandwich plate with simple support becomes the 

standard equation of structural response; [K] 
represents stiffness matrices, and [M] represents 
matrices of mass. Finally, by assuming free vibra-
tions, one can calculate the natural frequencies, 
ω, and modal damping coefficients 𝜂𝑣  for differ-
ent vibrational modes from Eq (29): [22-24]: 

𝜔 = √𝑅𝑒(�̃�2), 

𝜂𝑣 =
𝐼𝑚(�̃�2)

𝑅𝑒(�̃�2) 
                        

(29) 

3. Results and Discussion 

3.1. Validation of Equations 

Here are two examples (Example 1: Flat sand-
wich plate with an aluminum case and MR intelli-
gent oil core and Example 2: Flat sandwich plate 
with an aluminum face sheet and ER smart liquid 
core) of the structure and the results are dis-
cussed. To verify the equations obtained, the re-
sults obtained in the present work are compared 
with a recent study and definitely with the MR 
core. Then, the results obtained with the ER core 
are reviewed. 

The mechanical and geometrical properties of 
the structure considered in example 1 are pre-
sented in Table 1. The upper and lower portions 
of the pure aluminum are [0,0,0], and the sheet is 
symmetrical to the middle plate. 

Table 2 presents the results of the current 
study for a flat sandwich panel with MR core us-
ing the improved high-order theory of sandwich 
panel, it further compared the results with those 
obtained from the classical theory of multilayer 
sheets [33]. Kirchhoff's theory is used for the face 
sheets [33]. Table 4 presents the results of this 
study for a flat sandwich panel with ER core. In 
Table 2 using the improved high-order theory of 
sandwich panel, compared with the findings of 

the classical theory of multilayer sheets [34]. 

3.2. Free vibration analysis 

In this section, the free vibrations of a compo-
site sandwich panel and ER core are investigated. 
The effects of changing the thickness of the ER 
layer and the electric field intensity are also ex-
amined on the natural frequencies of the sheet. 
The lay-up sequences for face sheets were 
[0/0/0/core/0/0/0], and the sandwich panel 
was symmetric around the mid-plane. Mechani-
cal and geometrical properties of the flat sand-
wich panel with an aluminum face sheet and ER 
core are presented in Table 3. 

Table 1. Mechanical and geometrical properties of the flat sandwich panel with aluminum face sheet and MR core [33] 

Geometry Face sheet Core 
a=0.4m E1=E2=E3=70GPa ρ =3500Kg/m3 
b=0.4m G12=G13=  G23=26.9 GPa G13 =  G23= 𝐺 = 𝐺′ + i𝐺" 
ℎ𝑐=0.5mm 𝑣 = 0.3 𝐺′= -3.3691B2+4.9975×103B +0.873×106 
ht=hb=0.5 mm ρ =2700 Kg/m3 𝐺"=-0.9B2+0.8124×103B +0.1855×106 
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Table 2. Natural frequency values, first to fourth, for the flat sandwich panel with an aluminum face sheet and MR core. The lay-up 
sequences for face sheets were [0 / core / 0] and B = 0, a / b = 1, ℎ𝑐 / ℎ𝑡 = 4. 

Mode 
Natural frequency 
(Hz) 
Present model 

modal factor 
Present 
model 

Natural frequency 
(Hz) 
Reference [30] 

modal factor Ref-
erence [33]  

Error difference for Natural 
frequency (%) 
Present model and refer-
ence [33] 

1 28.5629 0.1642 28.0081 0.1062 2.007 
2 49.671 0.1652 48.6992 0.1243 1.996 
3 49.671 0.1652 48.6992 0.1243 1.996 
4 66.4289 0.1556 65.2157 0.1204 1.860 

Table 3. Mechanical and geometrical properties of flat sandwich sheets with an aluminum face sheet and ER core [34] 

Geometry Face sheet Core 
a=0.4m E1=E2=E3=70 GPa ρ =1700 Kg/m3 

b=0.4m G12=G13=  G23=26.9 GPa 
𝐺2𝑏(𝑥𝑧)
𝐶 = 𝐺𝑏(𝑥𝑧)

 ́ 𝐶 + 𝐺𝑏(𝑥𝑧)
 ́́ 𝐶  

𝐺2𝑏(𝑦𝑧)
𝐶 = 𝐺𝑏(𝑦𝑧)

 ́𝐶 + 𝐺𝑏(𝑦𝑧)
 ́ ́𝐶  

ℎ𝑐=0.5mm 𝑣 = 0.3 𝐺𝑏(𝑥𝑧)
 ́𝐶 = 𝐺𝑏(𝑦𝑧)

 ́𝐶 = 50000𝐸2 

ht=hb=0.5 mm ρ =2700 Kg/m3 𝐺𝑏(𝑥𝑧)
 ́ ́𝐶 = 𝐺𝑏(𝑦𝑧)

 ́ ́𝐶 = 2600 𝐸 + 1700 

Table 4: Normal frequency values, first to fourth, for the flat sandwich panel with an aluminum face sheet and ER core. The lay-up 
sequences for  E=0, a/b=1, /ℎ𝑐 / ℎ𝑡  =1 sheets were [0/core/0] 

 
Kirchhoff's theory was used in the face sheet 

for reference [34]. Table 5 displays the the first 
natural frequency and the corresponding modal 
loss factor for the first few mode numbers (m,n = 
1,2), selected ER core layer thickness parameters 
(ℎ𝑐  / ℎ𝑡  = 1,4), geometric aspect ratios (a/b = 
1,2,4), and electric field strengths (E =0,1,2,3.5 
kVmm−1). 

The most important observations are as fol-
lows. The natural frequencies increase with in-
creasing the electric field strength and/or the ge-
ometric aspect ratio. In particular, the effect of in-
creasing electric field strength is more evident on 
the natural frequencies associated with lower 
mode numbers in comparison with those of the 
higher modes.  

The natural frequencies decrease with in-
creasing ER core layer thickness. On the other 
hand, increasing the electric field strength ap-
pears to have different effects on the modal loss 
factors, depending on the geometric aspect ratio. 

3.2.1 Natural frequency of flat sandwich plate 
with ER core 

Fig. 2 illustrates the comparison of the fre-
quencies obtained with different electric fields. 

The natural frequencies of the sandwich plate 
with different electric fields are shown in Fig. 2. 
The effect of the electric field on the vibration re-
sponse of the ER sandwich plate can be seen for 
electric field levels of 0, 1, 2, and 3.5 kV/mm. It 

can be seen that higher electric field strength in-
creases the natural frequencies of the sandwich 
plate. 

Fig. 3 compares the damping coefficient in 
terms of vibrational modes and different electric 
fields. Fig. 3 shows the variations in the modal 
loss factor as a function of electric field. It can be 
seen that the modal loss factor decreases as the 
electric field increases. Also, a relative decrease in 
the modal loss factor can be observed with in-
creasing mode number. 

3.2.2 Influence of the ratio of core thickness to 
total sheet thickness on the first natural fre-
quency 

The thickness of the core has an important ef-
fect on the vibration of the sheet. Fig. 4 reveals the 
diagram of the first frequency changes of the flat 
sandwich plate with an ER core in terms of differ-
ent core thickness to plate thickness (ℎ𝑐  / h) ra-
tios for different electric field intensities (KV / 
mm) at a = b. 

It is observed from Fig. 4 that by increasing 
the ratio of core thickness up to total sheet thick-
ness, the natural frequency of the sheet dimin-
ishes. Since the core is made of oil and composite 
surfaces, the core modulus is smaller than the 
surface. Also, as the core thickness-to-whole ratio 
increases, the overall sheet modulus drops. As a 
result, the natural frequency of the sheet is also 
reduced.  

 

Mode 
Natural fre-
quency (Hz) 

Present model 

modal factor 
Present model 

Natural fre-
quency (Hz) 

Reference [31] 

modal factor Ref-
erence [34]  

Error difference for Natu-
ral frequency (%) 

Present model and refer-
ence [34] 

1 31.193 0.01719 31.1952 0.0172 0.007 
2 32.9808 0.0068 32.9808 0.0069 0 
3 32.9808 0.0068 32.9808 0.0069 0 
4 52.7685 0.0042 52.7693 0.0043 0.002 
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Table 5: First-fourth frequency values and modal damping coefficients for the first four vibration modes for core thickness, field 
intensity, and different aspect ratio of the flat sandwich panel with aluminum face sheets and an ER core 

 
The oil density is also high, and as the amount 

of oil increases, the sheet becomes significantly 
heavier hence the stiffness-to-mass ratio falls, re-
sulting in a decline in the natural frequency of the 
sheet. 

3.2.3 Influence of fiber angle on the natural 
frequency 

Fig. 5 displays the diagram of the natural fre-
quency changes of the first flat sandwich plate 
with an ER core in terms of the lay-up sequences 
for face sheets. From Fig. 5, it is observed that the 
maximum level of the natural frequency occurs in 
a state θ equal to 45 degrees, as in this case the 
flexural stiffness has its maximum value. Also, 
with increasing electric field strength in higher 
modes, natural frequencies increase as well. 

 

Fig. 2. Diagram of changes in the natural frequency of 
the sheet for different electric field intensities 

3.2.4. Influence of electric field intensity on the 
natural frequency 

Fig. 6 reveals the diagram of the first natural 
frequency variations of the flat sandwich plate 
with an ER core in terms of electric field intensity 
for different aspect ratios. 

 
Fig. 3. Diagram of changes in the damping coefficients in the 
first four vibrational modes for different electric field inten-

sities 

Mode 𝒉𝒄 / 
𝒉𝒕 

 E=0 KV/mm E=1 KV/mm E=2 KV/mm E=3.5 KV/mm 

  a/b 𝜔(𝐻𝑧) 𝜂𝑣          ω(𝐻𝑧) 𝜂𝑣          ω(𝐻𝑧) 𝜂𝑣    ω(𝐻𝑧)    𝜂𝑣 
(1,1) 1 

 
 

4 
 
 

1 13.191 0.0172 16.0786 0.0269 21.8029 0.0187 29.7509 0.0093 
2 32.9776 0.0068 36.111 0.0140 43.7297 0.0139 57.636 0.0098 
4 112.126 0.0020 115.399 0.0047 124.527 0.0064 145.646 0.0067 
1 10.0634 0.0268 13.4363 0.0373 20.2129 0.0248 31.1408 0.0139 
2 25.1577 0.0107 28.8489 0.0205 37.6856 0.0188 54.443 0.0131 
4 85.5375 0.0031 89.4219 0.0072 100.124 0.0092 124.606 0.0091 

 

(1,2) 1 
 
 

4 
 
 

1 32.9776 0.0068 36.1111 0.0140 43.7297 0.0139 57.636 0.0098 
2 52.7606 0.0043 5596.59 0.0094 64.3059 0.0108 81.2639 0.0090 
4 131.904 0.0017 135.186 0.0041 144.434 0.0056 166.288 0.0062 
1 25.1577 0.0107 28.8489 0.0205 37.6856 0.0188 54.443 0.0131 
2 40.2495 0.0067 44.0391 0.0141 53.7357 0.0149 73.6189 0.0119 
4 100.625 0.0026 104.523 0.0062 115.386 0.0082  0.0085 

 

(2,1) 1 
 
 

4 
 
 

1 32.9776 0.0068 36.1111 0.0140 43.7297 0.0139 57.636 0.0098 
2 112.126 0.0020 115.399 0.0047 124.527 0.0064 145.646 0.0067 
4 428.669 0.0005 431.988 0.0013 441.744 0.0020 467.165 0.0027 
1 428.669 0.0005 431.988 0.0013 441.744 0.0020 467.165 0.0027 
2 85.5375 0.0031 89.4219 0.0072 100.124 0.0092 124.606 0.0091 
4 327.018 0.0008 330.97 0.0020 342.537 0.0030 372.394 0.0040 

 

(2,2) 1 
 
 

4 
 

1 52.7606 0.0043 55.9659 0.0094 64.3059 0.0108 81.2639 0.0090 
2 131.904 0.0017 135.186 0.0041 144.434 0.0056 166.288 0.0062 
4 448.44 0.0005 451.759 0.0012 461.526 0.0019 487.031 0.0026 
1 40.2495 0.0067 44.0391 0.0144 53.7355 0.0149 73.6189 0.0119 
2 100.625 0.0026 104.523 0.0062 115.386 0.0082 140.733 0.0085 
4 342.1 0.0007 346.053 0.0019 357.636 0.0029 387.607 0.0038 
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Fig. 4. Diagram of the first frequency changes of the 

sheet in different ratios of the core to sheet thickness for dif-
ferent electric field intensities 

 
(a) 

 
(b) 

Fig. 5. (a) Diagram of the first frequency changes of the 
sheet in terms of the different fiber orientations layer of the 

composite face sheet and (b) diagram of the fourth frequency 
changes of the sheet in terms of the different fiber orienta-

tions layer of the composite face sheet 

Fig. 6 shows that the natural frequency of the 
sheet increases with increasing the intensity of 
the electric field. It is because, according to (9) 
and (10), as the electric field increases, so does 
the structural stiffness, and thus the natural fre-
quency is also enhanced.  

 
Fig. 6. Diagram of the first frequency change of the sheet in 

terms of electric field intensity for different aspect ratios 

However, this rise in frequency only proceeds 
partly from the increase in the electric field inten-
sity and does not grow from one value to the next. 
Also, it is almost proved to be saturated as the in-
tensity of the electric field, which is approxi-
mately 3.5 kV /mm in this study. 

3.2.5. The effect of aspect ratio on the natural 
frequency 

Figure 7 reveals the diagram of the first natu-
ral frequency variations of the flat sandwich plate 
with an ER core in terms of the aspect ratio for 
the intensity of different electric fields. According 
to Fig. 7, it is observed that with increasing the 
aspect ratio, the natural frequency of the sheet in-
creases. With the rise of the aspect ratio, the sheet 
gradually becomes a beam with enhanced trans-
verse stiffness and hence augmented natural fre-
quency. By raising the intensity of the electric 
field from one point to the next, its effect on the 
natural frequency decreases. This is due to the 
saturation point; by increasing the intensity of 
the electric field, it saturates the oil at a given 
electric field intensity, after which increasing the 
field will not have much effect on increasing the 
rigidity and natural frequency of the sheet. 

 
Fig. 7. Diagram of the first frequency changes of the sheet in 

terms of aspect ratio for different electric field intensities 
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3.2.6. Influence of length-to-thickness ratio on 
the natural frequency 

Fig. 8 reveals the diagram of the natural fre-
quency variations of the first flat sandwich plate 
with an ER core in terms of length to thickness ra-
tio. According to Fig. 8 with increasing the length-
to-thickness ratio, the natural frequency of the 
sheet decreases. As the ratio grows, the sheet be-
comes thinner and, as a result, its stiffness drops. 

4. Conclusions 

In this research, an extensive study was done 
on the modeling of a flat sandwich plate with an 
ER core. For the first time, the governing equa-
tions associated with the vibration behavior of a 
flat sandwich plate with a thick ER core were ex-
tracted. The obtained equations for the simply-
supported boundary conditions discretized by 
the Galerkin method. Finally, the effects of differ-
ent parameters on the vibrational characteristics 
of the sandwich plate with an ER layer were illus-
trated. Numerical results can be summarized as 
follows: 

The generality of the problem indicates an in-
crease in the natural frequencies of the sandwich 
plate owing to the existence of the ER. Thus, by 
creating an electric field whose intensity can be 
controlled, the natural frequencies and thus the 
vibrations of the structure can be controlled. Ac-
cording to the analytical results, the electric field 
will change the stiffness of the sandwich plate. As 
the applied electric field increases, the natural 
frequency of the sandwich plate increases too. 

On the other hand, the modal loss factor of the 
sandwich plate plays an important role in the sta-
bility of the damped structures. It can be seen that 
the modal loss factor decreases as the electric 
field increases. Also, a relative decrease in the 
modal loss factor can be observed with increasing 
the mode number. 

 
Fig. 8. Influence of length-to-thickness ratio on the natu-

ral frequency 

 
 
 

The effect of the ER layer thickness on the core 
is such that by increasing the core thickness to 
sheet ratio for a constant electric field intensity, 
the frequency drops. Since the core is made of 
fluid and composite surfaces, the rigidity of the 
core is lower than that of the layer, and as a con-
sequence, the overall rigidity decreases. Also, as 
the fluid content rises, the sheet becomes signifi-
cantly heavier, and the stiffness-to-mass ratio di-
minishes. 

The natural frequencies increase with in-
creasing geometric aspect ratio, whereas they 
tend to decrease with increasing the ER core 
layer thickness. As the aspect ratio increases, the 
sheet gradually becomes a beam whose trans-
verse stiffness grows, and thus the natural fre-
quency increases.  
By increasing the length-to-thickness ratio, the 
natural frequency of the sheet decreases. As this 
ratio grows, the sheet becomes thinner and, as a 
result, its stiffness declines. Thus, by changing 
this parameter, the natural frequency of the 
structure can also be obtained within the desired 
range. Finally, it is observed that applying an in-
appropriate electric field may significantly de-
grade the vibration control performance of the 
ERF-based plate, or even lead to maximum struc-
tural vibration levels. The effects of the sandwich 
structure with an ER core on the dynamic stabil-
ity of plates and shells are also interesting topics 
to be studied. 

Nomenclature 

𝐼𝑛
𝑖 (𝑖 = 𝑡, 𝑏, 𝑐) 

 

The moments of inertia of the top 
and bottom face sheets and the 
core 

𝑀𝑧
𝑐 

Normal bending moments per 
unit length of the edge of the core 

𝑀𝑥𝑦
𝑖 , 𝑀𝑥𝑥

𝑖 , 𝑀𝑦𝑦
𝑖  

Bending and shear moments per 
unit length of the edge (i=t,b) 

𝑀𝑛𝑥𝑥
𝑐 , 𝑀𝑛𝑥𝑦

𝑐 , 𝑀𝑛𝑦𝑦
𝑐  

𝑀𝑛𝑥𝑧
𝑐 ,𝑀𝑛𝑦𝑧

𝑐  

 

Shear and bending moments per 
unit length of the edge of the core, 

𝑁𝑥𝑦
𝑖 , 𝑁𝑥𝑥

𝑖 , 𝑁𝑦𝑦
𝑖  

In-plane and shear forces per unit 
length of the edge (i=t,b) 

𝑁𝑥𝑧
𝑐 , 𝑁𝑦𝑧

𝑐  
The reduced stiffness associated 
with the principal material coor-
dinates 

𝑄𝑖𝑗 
The reduced stiffnesses associ-
ated with the principal material 
coordinates 

�̅�𝑖𝑗 Transformed reduced stiffnesses 

𝑢𝑘 , 𝑣𝑘 , 𝑤𝑘 
Unknowns of the in-plane dis-
placements of the core (k=0,1,2,3) 

𝑢𝑐 , 𝑣𝑐 , 𝑤𝑐  
Displacement components of the 
core 

𝑢0
𝑖 , 𝑣0

𝑖 , 𝑤0
𝑖  

Displacement components of the 
face sheets (i = t, b) 

�̈�𝑐 , �̈�𝑐 , �̈�𝑐 
Acceleration components of the 
core 
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�̈�0𝑖 , �̈�0𝑖 , �̈�0𝑖  
Acceleration components of the 
face sheets, (i= t, b) 

𝑍𝑡 , 𝑍𝑏 , 𝑍𝑐 

Normal coordinates in the mid-
plane of the top and the bottom 
face sheets and the core 
 

dVt , dVc , dVb 

Volume elements of the top 
face sheet, the core, and the 
bottom face sheet, respec-
tively 

Greek Letters 
𝜌𝑡, 𝜌𝑏 , 𝜌𝑐  

 
Material densities of the face 
sheets and the core          

𝜎𝑖𝑖
𝑗

 
Normal stress in the face 
sheets, (i=x,y), j=(t,b) 

𝜎𝑖𝑖
𝑐  

Normal stress in the core, 
(i=x,y,z) 

𝜏𝑥𝑦
𝑖 , 𝜏𝑥𝑧

𝑗
, 𝜏𝑦𝑧
𝑖  Shear stress in the face sheets, 

j=(t,b) 

𝜏𝑥𝑦
𝑐 , 𝜏𝑥𝑧

𝑐 , 𝜏𝑦𝑧
𝑐  Shear stresses in the core 

𝜀0𝑥𝑥
𝑗
, 𝜀0𝑥𝑦
𝑗
, 𝜀0𝑦𝑦
𝑗
, 

𝜀0𝑥𝑧
𝑗
, 𝜀0𝑥𝑧
𝑗

 

The mid-plane strain compo-
nents, (i=t,b) 

𝜀𝑧𝑧
𝑐 , 𝜀𝑥𝑥

𝑐 , 𝜀𝑦𝑦
𝑐  

Normal strains components of 
the core layer 

𝛾𝑥𝑧
𝑐 , 𝛾𝑦𝑧

𝑐 , 𝛾𝑥𝑦
𝑐  

Shear strains components of 
the core layer 

𝜙𝑥
𝑖 , 𝜙𝑦

𝑖  

Rotation of the normal section 
of mid-surface of the top face                                                                                                                                                                                                                                                                      
sheet and the core bottom face 
sheet along x and y, respec-
tively(i=t,b) 
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