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The potential of buckling in compressive members has been 

considered as a disadvantage when using steel members in the 

construction industry. In spite of the progress made in this 

regard, buckling is still considered as a challenge in the analysis 

and design of compressive steel structural members. Such a 

challenging phenomenon can be controlled by strengthening of 

compressive members. Stiffened compressive members can 

control the weakness of steel members in the global buckling. In 

this paper, elastic buckling behavior of three-segment 

symmetric steel members with pinned ends is investigated. The 

differential stability equation for non-prismatic three-segment 

members is solved numerically. Critical load parameter for 

stiffened members is calculated considering different stiffened 

length and moment of inertia ratios. Based on a wide range of 

the calculated data, the buckling load could be accounted as a 

safe measure to be used in the design formulas. Evaluation of 

the effects of various parameters on the buckling load shows 

that the desired buckling load value can be achieved by a 

partially stiffened member. By constant increase of a member’s 

weight, the shorter the length of the variation in the cross-

section, the higher moment of inertia is essential in the stiffened 

segment; and the maximum critical load parameter is achieved 

by a stiffened length ratio between 0.4 and 0.6. 

Keywords: 

Stiffener length, 

Critical load, 

Moment of inertia, 

Variable cross section, 

Buckling. 

 

1. Introduction 

The stability analysis of the structural 

members with variable cross-section is not a 

straightforward process due to the difficulty 

of the complex governing differential 

equations of such members. Furthermore, the 

design formulas cited in the building design 

http://civiljournal.semnan.ac.ir/
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codes are determined for the members with 

constant cross-section. As a result, evaluating 

non-prismatic compressive steel members for 

analysis and design purposes is essential. 

Many engineers prefer to use variable cross-

sections or stiffened members in order to 

decrease the cost and weight of the building. 

One of the strategies applied for stiffening a 

compressive steel member is known as 

welding steel plates to some specific parts 

over its length, thereby having a member 

with variable cross-section. Strengthening a 

member by this strategy leads to a 

considerable increase in the buckling load of 

such members. Also this process can be used 

for rehabilitation purposes. 

Numerous studies have been conducted on 

the assessment of global buckling behavior in 

non-prismatic steel members. In 1961, 

Timoshenko and Gere used the column 

design curves based on the tangent modulus 

to calculate the approximate non-elastic 

buckling load of non-uniform bars [1]. 

Arbabi and Li proposed a semi-analytical 

procedure for members with variable cross-

sections which turned the governing equation 

of such members into an integral equation; 

they calculated the critical load of a member 

with two-segment section, utilizing this 

approach [2]. The accuracy and flexibility of 

this procedure for all types of variation in the 

cross-section and boundary conditions were 

approved through comparison between the 

available approaches. Elishakoff and Rollot 

assessed a column with variable stiffness 

distribution and came up with close-form 

solutions for global buckling of the assumed 

member with the aid of MATHEMATICA 

computational program [3]. Li presented an 

exact solution for global buckling of a non-

prismatic column with spring supports under 

both concentrated and distributed loads. This 

approach was verified by FEM method and 

was proved to be accurate and efficient [4]. 

Al-Sadder derived the exact stability 

functions for beam-column members with 

variable cross-sections by which one can 

determine the tangent stiffness matrix of such 

sections and therefore conduct an accurate 

geometric nonlinear analysis (P-∆) of frames 

containing members with variable-cross 

sections [5]. Rahai and Kazemi introduced a 

procedure for conducting global buckling 

analysis of tapered columns in which the 

buckling loads were derived using the 

modified vibration mode shape and energy 

methods [6]. Coskun and Atay implemented 

the variational iteration method (VIM) which 

is efficient for solving nonlinear differential 

and integral equations, in order to calculate 

the critical buckling loads of columns with 

different types of supports and different 

variations in cross-sections [7]. Darbandi et 

al. investigated the static stability of non-

uniform columns by implementing a solution 

based on the singular perturbation method 

and determination of critical buckling loads 

and corresponding mode shapes [8]. In 2011, 

Huang and Li presented a solution for 

solving the global buckling instability of 

axially graded Euler-Bernoulli columns with 

variable cross-sections, considering different 

boundary conditions. This solution was based 

on reducing the governing differential 

equation of buckling to a Fredholm integral 

equation [9]. Marques et al. proposed a 

design development for in-plane flexural 

buckling of linear tapered columns under 

constant axial forces [10]. 

Konstantakopoulos et al. numerically solved 

the governing equation of the global buckling 

issue considering three types of cross-

sections consisting of parabolic, tapered, and 

stepped sections and applying concentric and 

eccentric axial forces and concentrated 

moments at the ends or intermediate points of 
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the member [11]. Avraam and Fasoulakis 

evaluated the effects of variation in the cross-

sections of columns coupled with the 

geometric (ratios of length and moment of 

inertia) and load parameters (the eccentricity) 

on the pushover analysis results of a frame 

[12]. Cristutiu et al. conducted an experiment 

on the tapered members with various web 

thicknesses, slenderness values, and types of 

restraints and the results were compared to 

the results derived from the FEM analysis of 

such members. It was demonstrated that the 

analytical solutions provide conservative 

results in comparison with the actual results 

derived from the tests [13]. Saljooghi et al. 

performed the vibration and buckling 

analysis of functionally graded beams 

considering various boundary conditions 

[14]. Hadinafard et al. evaluated the buckling 

capacity and inelastic behavior of bracing 

gusset plates with emphasis on the effects of 

using stiffeners [15]. There are numerous 

other assessments and studies recently done 

on the buckling and stability analysis of 

different types of steel members [16-29]. 

This study has been performed so that its 

results could be used for design purposes. 

Also due to the complexity involved in 

solving the differential equation, it has been 

solved numerically to be used by engineers 

for design of structural members. 

In this paper, the methodology applied for 

calculation of the buckling load of members 

with variable cross-section is discussed 

which is similar to that used by Timoshenko. 

The reason for incorporating this method was 

its relatively easier solution for a wide range 

of data with respect to other methods for 

software. 

The stability differential equation for the 

three-segment non-uniform symmetric 

members is numerically solved with the aid 

of MATHEMATICA computational program 

and verified by ABAQUS software. 

The elastic buckling load of a member is 

determined considering various stiffened 

length ratios and different ratios for the 

increase in the moment of inertia. Such data 

can be used for design purposes due to the 

wide range of calculated buckling loads. The 

calculated data can be safely used for 

determining the elastic buckling load for 

design purposes due to the verifications done 

in this paper. 

However, the relationship between the elastic 

buckling load and the critical load is essential 

for a designer to determine the critical load. 

Thus design of a compressive member 

requires application of accurate experimental 

tests. In other words, accurate experimental 

tests are required in order to determine the 

column curves associated with non-uniform 

members. 

Furthermore, the elastic buckling behavior of 

the three-segment symmetric compressive 

members with pinned-ends is evaluated and 

the corresponding curves and tables are 

drawn in order to determine the required 

parameters for modeling, analysis, and 

design of the stiffened members. 

2. Differential Equation 

Although the two end displacements of an 

element with hinged supports are not 

effective on the stability equations, they are 

considered and applied in the equations, as 

shown in Fig.1. It is assumed that ẟ is 

equivalent to the relative end displacement of 

an element perpendicular to its axis and its 

deformation is relative to the connecting line 

of the two ends. 
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Fig.1. Deformed shape of the member. 

Flexural stiffness of the stiffened segment, 

stiffener length, total length, and flexural 

stiffness of the unstiffened segment are 

denoted by EIst, Lst, L and EI, respectively. 

The equilibrium equation is written for the 

deformed shape of the member and the 

boundary conditions are satisfied for each 

segment. The solution of this equation for the 

first segment is as [1]: 

   1 1 1 2 1 y a sin k x a cos k x   x / L               (1) 

   1 1 1 1 2 1 1y a k cos k x a  k sin k x  / L  ˊ
              (2) 

By applying the initial boundary condition, 

which is y1=0 at x=0, equation (3) can be 

written as: 

2 0a                                                                       (3) 

Then the boundary condition at the end of the 

segment is applied, which is y1=y1,end at 

x=(L-Lst)/2. Equations (4) and (5) can be 

written as follows: 

1 1 1  
2 2

st st

,end

L L L L
y a sin k  

L


  
  

 
                   (4) 

1 1 1 1  
2

st

,end

L L
y a k cos k  

L

 
  

 

ˊ
                          (5) 

For the middle segment, the initial boundary 

condition which is y=y2,0 at x=(L-Lst)/2, is 

applied, then equations (6) and (7) can be 

written as: 

2 0 1 2 2 2 
2 2 2

st st st

,

L L L L L L
y b sin k b cos k  

L


     
     

   
    (6) 

2 0 1 2 2 2 2 2 
2 2

st st

,

L L L L
y b k cos k b k sin k  

L

    
     

   

ˊ        (7) 

The boundary condition at the end of the 

stiffened segment, which is y=y2,end at 

x=(L+Lst)/2, is applied, then equations (8) 

and (9) can be written as: 

2 1 2 2 2 
2 2 2

st st st

,end

L L L L L L
y b sin k b cos k  

L


     
     

   
   (8)

2 1 2 2 2 2 2 
2 2

st st

,end

L L L L
y b k cos k b k sin k  

L

    
     

   

ˊ      (9) 

For the third segment, the initial boundary 

condition (which is y=y3,0 at x=(L+Lst)/2), is 

applied, then equations (10) and (11) are 

derived: 

3 0 1 1 2 1 
2 2 2

st st st

,

L L L L L L
y c sin k c cos k  

L


     
     

   
   (10) 

3 0 1 1 1 2 1 1 
2 2

st st

,

L L L L
y c k cos k c k sin k  

L

    
     

   

ˊ        (11) 

The boundary condition at the end of the 

member, (or the third segment), is y=y3,end at 

x=L, then equation (12) can be written as: 

   3 1 1 2 1  ,endy c sin k L c cos k L                      (12) 
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By equalizing the boundary conditions 

(y1,end = y2,0 , y2,end = y3,0 , y3,end =

δ ,y1,end
ˊ = y2,0

ˊ  , y2,end
ˊ = y3,0

ˊ ), equations 

(13) to (17) can be written as follows: 

1 1 1 2

2 2

2 2

0
2

st st

st

L L L L
a sin k b sin k

L L
b cos k

    
   

   

 
  

 

                   (13)

1 1 1 1 2 2

2 2 2

2 2

0
2

st st

st

L L L L
a k cos k b k cos k

L L
b k sin k

    
   

   

 
  

 

             (14) 

1 2 2 2

1 1 2 1

2 2

0
2 2

st st

st st

L L L L
b sin k b cos k

L L L L
c sin k c cos k

    
   

   

    
     

   

       (15) 

1

1 2 2

1

2 2

1

2

1 21

2 2

0
2 2

st st

st st

L L L L
b cos k b sin k

L L L L
c

k

cos k c n

k

k k si k

    
   

   

    
     

   

         (16) 

   1 1 2 1 0c sin k L c cos k L             (17) 

By setting equal to zero the matrix of 

coefficient associated with the 

abovementioned equations, equation (18) is 

derived using the “MATHEMATICA” 

computational program: 

1 2 2 1

2 2 2 2

1 1 1 1 1

2

2

0

st st

st

st

k k cos( k L )sin( k ( L L ))

( k k ( k k )cos( k ( L L )))

sin( k L )



    



          (18) 

Where k1
2 = P EI⁄  and k2

2 = P EIst⁄  (where P 

is the axial load); moreover, the parameters 

such as n = EIst EI⁄ , namely the moment of 

inertia ratio, s = Lst L⁄ , which is called the 

stiffened length ratio, and λ = PL2 EI⁄ , 

which is the critical load parameter, are 

defined. Using these parameters and the 

“MATHEMATICA” computational program, 

equation (18) is turned into a dimensionless 

one: 

  

    

0 5

0 5 0 5

0 5

0 5

1

0 5 0 5 0 5 0 5 1

0

.

. .

.

.

n cos s sin s
n

( . . n . . n cos s )

sin s
n








  
     

     

  
     

         (19) 

Equation (19) is numerically solved and the 

results are shown in Table 1. In this table, the 

critical load parameter is presented with 

respect to different values of the moment of 

inertia and the stiffened length ratios. 

According to the definition of the critical 

load parameter, this parameter is directly 

related to the buckling load and the length of 

the member and is inversely related to the 

flexural stiffness. 

As is seen in Table 1, with increase in the 

stiffened length ratio or the moment of inertia 

ratio, the critical load parameter, and thereby 

the buckling load would increase. 

3. Evaluation of the Effects of "n" 

and "s" Separately on the Critical 

Load Parameter 

Taking the moment of inertia ratio as 

constant, the stiffened length variation curves 

corresponding to the critical load parameter 

are drawn. This is done to determine increase 

in the critical load parameter values with 

respect to the stiffener length ratio. This 

variation is depicted in Fig. 2. 
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Table 1. The critical load parameter values for different stiffener length and moment of inertia ratios. 

"n" 

values 

"s" values 

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 

1 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 

1.25 9.8696 10.689 11.0955 11.4709 11.7918 12.0393 12.2057 12.2971 12.337 

1.5 9.8696 11.3029 12.0765 12.8388 13.5322 14.096 14.4888 14.7082 14.8044 

1.75 9.8696 11.7785 12.8757 14.0144 15.1087 16.0436 16.7188 17.1027 17.2718 

2 9.8696 12.1571 13.537 15.0315 16.5379 17.8862 18.8955 19.4806 19.7392 

2.25 9.8696 12.4654 14.0921 15.9172 17.8353 19.6283 21.0192 21.8416 22.2066 

2.5 9.8696 12.7211 14.5639 16.6935 19.0149 21.2745 23.09 24.1855 24.674 

2.75 9.8696 12.9364 14.9692 17.378 20.0896 22.8295 25.1082 26.5122 27.1414 

3 9.8696 13.1202 15.321 17.9851 21.0707 24.298 27.074 28.8215 29.6088 

3.5 9.8696 13.4172 15.9006 19.0121 22.7912 26.9942 30.8505 33.3873 34.5436 

4 9.8696 13.6465 16.3576 19.8452 24.2442 29.3996 34.424 37.8815 39.4784 

5 9.8696 13.9775 17.0311 21.109 26.5469 33.4709 40.9851 46.6507 49.348 

7.5 9.8696 14.4372 17.9925 22.9838 30.1728 40.561 54.321 64.2473 74.022 

10 9.8696 14.675 18.5013 24.0063 32.2453 44.9778 64.1223 85.8799 98.696 

 

 
Fig.2. Variation of the critical load parameter 

with respect to the different stiffened length 

ratios. 

It is evident in Fig.2 that assuming the 

moment of inertia ratio to be constant, the 

increase in the stiffened length ratio leads to 

increase in the critical load parameter and 

consequently, the buckling load. 

In other words, the ratio of the stiffener 

length to the member’s length is considered 

to be constant. The curves depicting the 

critical load parameter corresponding to the 

ratio of increase in the moment of inertia (n), 

are drawn in Fig.3 in order to demonstrate 

the increase in the critical load parameter as a 

result of increase in the moment of inertia 

ratio. 

 
Fig.3. Variation of the critical load parameter 

with respect to the moment of inertia ratio. 

4. Verification of Equation (19) 

Where no Stiffeners are Used 

In order to evaluate equation (19), it is 

rewritten for the state in which there is no 

stiffener. In other words, it can be said that 

s=0 and n=1. 

0 5 2

2
0

.
P EI

sin L P
EI L

  
       

                        (20) 
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It is seen that assuming n=1 and s=0 in 

equation (19), equation (27) is derived which 

represents the axial buckling load in 

members with no stiffeners as proved 

previously [1]. Therefore, it is safe to say that 

equation (19) is accurate for this case. 

5. Verification of Equation (19) 

Where Stiffeners are Used 

According to Timoshenko and Gere’s 

research, the critical load is represented by 

equation 21 [1] where "m" denotes the 

critical load parameter derived and shown in 

Table 1. 

2cr

mEI
P

L
                                                      (21) 

Different values for the "m" parameter, 

(referring to Timoshenko and Gere, for a 

three-segment member with two end hinges) 

are given in Table 2 in which I2/I1 ratio 

corresponds to the "n" values. 

Table 2. Critical load parameter values according 

to Timoshenko and Gere's research [1]. 

I2/I1 
"s" values 

0.2 0.4 0.6 0.8 

0.01 15.344 27.052 59.843 225.706 

0.1 14.675 24.006 44.978 85.88 

0.2 13.978 21.109 33.471 46.651 

0.4 12.721 16.694 12.275 24.186 

0.6 11.632 13.642 15.406 16.306 

0.8 10.689 11.471 12.039 12.297 

 

Comparing and matching Table 2 with the 

definitions and discussions represented in 

this paper, Table 3 could be derived which 

demonstrates the critical load parameter 

values with respect to the aforementioned "n" 

and "s" values. 

Table 3. Critical load parameter "λ" with respect 

to "s" and "n" values. 

"n" 

values 

"s" values 

0.2 0.4 0.6 0.8 

100 15.344 27.052 59.843 225.706 

10 14.675 24.006 44.978 85.88 

5 13.978 21.109 33.471 46.651 

2.5 12.721 16.694 12.275 24.186 

1.67 11.632 13.642 15.406 16.306 

1.25 10.689 11.471 12.039 12.297 

 

Comparing the critical load parameters 

obtained and shown in Table 1 with the 

values represented in Table 3, it can be seen 

that the critical load parameters derived by 

numerical solution of equation (19), 

introduced in this paper, are equal to the 

factor m, represented in Timoshenko's 

research. Therefore, it can be said application 

of equation (19) leads to accurate results. 

6. Verification of equation (19) using 

ABAQUS software 

For verification of the calculated buckling 

load for global buckling, a structural member 

with 500 cm length and assuming S=0.5 and 

n=1.5 has been modeled. The buckling load 

using the solved equation and the proposed 

method is 55925 kg, and the buckling load 

using the FEM method in ABAQUS software 

is 55404 kg. Comparing the results, one 

could see the good accuracy of the solved 

equation. Fig.4 shows the model used in the 

software. 

 
Fig.4. Model of a member in ABAQUS software. 



 M. Karimian Sichani et al./ Journal of Rehabilitation in Civil Engineering 8-4 (2020) 156-172 163 

7. Evaluation of the Effects of Cross-

Section Parameters on the Buckling 

Capacity 

In this section, the effects of changing the 

length, width, and thickness of the section on 

the buckling capacity of the member is 

assessed through considering change in the 

weight of the cross-section as the parameter 

which is effective on the economic 

evaluation. 

If the equivalent critical load for the member 

with variable cross-section is written with 

respect to the equivalent moment of inertia, 

equation (20) can be written as follows: 

2

2cr eqP EI
L


                                                      (22) 

Table 4. The ratio of equivalent to the initial moment of inertia corresponding to various stiffened length 

ratios and moments of inertia ratios. 

"n" 

values 

"s" values 

0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1 

1 1 1 1 1 1 1 1 1 1 

1.25 1 1.083023 1.12421 1.162246 1.19476 1.219837 1.236697 1.245957 1.25 

1.5 1 1.145224 1.223606 1.300843 1.371099 1.428224 1.468023 1.490253 1.5 

1.75 1 1.193412 1.304582 1.419956 1.530832 1.625557 1.693969 1.732867 1.75 

2 1 1.231772 1.371585 1.52301 1.67564 1.812252 1.914515 1.973798 2 

2.25 1 1.26301 1.427829 1.61275 1.807095 1.988763 2.129691 2.213018 2.25 

2.5 1 1.288917 1.475632 1.691406 1.926613 2.155558 2.339507 2.450505 2.5 

2.75 1 1.310732 1.516698 1.76076 2.035503 2.313113 2.543994 2.686249 2.75 

3 1 1.329355 1.552343 1.822272 2.134909 2.461903 2.743171 2.92023 3 

3.5 1 1.359447 1.611068 1.926329 2.309232 2.735086 3.125811 3.382842 3.5 

4 1 1.38268 1.657372 2.01074 2.456452 2.978804 3.487882 3.8382 4 

5 1 1.416217 1.725612 2.13879 2.689765 3.391313 4.152661 4.726706 5 

7.5 1 1.462795 1.823022 2.328747 3.057145 4.10969 5.50387 6.509615 7.5 

10 1 1.486889 1.874574 2.432348 3.267133 4.557206 6.49695 8.701457 10 

 

In equation (20), Pcr is equal to the buckling 

load of the stiffened member, and EIeq is the 

equivalent moment of inertia of the member 

with variable cross-section. 

2

crP L

EI
                                                       (23) 

Combining equations (22) and (23) results in 

equation (24) which is written as follows: 

2

eqEI
 

EI


                                                       (24) 

Equation (24) shows that the critical load 

parameter for the members with a constant 

cross-section, where EIeq=EI, is equal to π2.  

Table 4 demonstrates the ratio of EIeq EI⁄ =

λ π2⁄  which can be used to determine the 
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critical load required for the design of a 

compressive member. 

In order to determine the equivalent section 

area of the member, the compatibility 

equations of axial deformation, available in 

the references [30], are used. 

If the initial section area, the total section 

area in the stiffened area, and the stiffener 

length ratio are denoted by A, Ast, and s, 

respectively, the axial deformation of a 

member with constant section area, 

represented by Aeq, and the total length 

represented by L, can be determined by 

equation (25): 

st st

eq st

L - L LL

EA EA EA
                                         (25) 

Therefore, the equivalent section area is 

determined by equation (26): 

 1

st

eq

st

AA
A

A - s As



                                       (26) 

The equivalent radius of gyration is given by 

equation (27): 

eq

eq

eq

I
r

A
                                                      (27) 

The equivalent slenderness ratio for buckling 

of the member with the variable cross-section 

is expressed by equation (28): 

eq

eq

KL

r
 

                                                           (28) 

The overweight resulting from adding plates 

is equal to: 

2 pW sL A                                            (29) 

In this equation 𝐴𝑝is the cross section of each 

stiffener and ρ is density of the material of 

the cross-section, which is equal to 7850 

kg/m
3
 for steel. Assuming different values 

for Δw, Ap can be calculated using equation 

(29) for different stiffener lengths. In 

addition, denoting the width of the stiffener 

by "d", the thickness of the stiffener, "t", can 

be calculated. Consequently, with the aid of 

equation (30), the stiffened cross-sectional 

moment of inertia is calculated. In this 

equation, "e" represents equivalent to the free 

distance between two parts of the section and 

"b" is equal to the width of the section. 

23 
2  

12 2
yy

d t b e t
I d t

 
 
 





  
  

 




                        (30) 

Assuming a percentage increase in the ratio 

of the moment of inertia of the stiffened 

segment to the moment of inertia of the basic 

section, λ can be calculated using Table 1. 

Then, λ π2⁄  can be calculated using Table 4 

for different values of "s" and "n". 

As an example Table 5, is drawn for a double 

channel 8, assuming a constant increase in 

weight, and all the above-mentioned steps are 

applied for this section. 

In Fig.5, variation of the length of the 

stiffener with respect to the increased 

moment of inertia in stiffened segment is 

plotted, considering a constant increase in 

weight. According to this figure, it can be 

seen that with a constant increase in the 

weight of the section, the smaller the length 

of modification in the cross-section, the 

higher moment of inertia is required for the 

stiffened segment. 
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Table 5. Sample calculations for different lengths of stiffener for a constant increase in weight equal to 

5%. 

ΔW  
Section 

h A Iyy 
s 

Ap d t ΔIyy 
ΔIyy% 

Iyy new 
n λ EIeq/EI Δλ % 

(%) (cm) (cm2) (cm4) (cm2) (cm) (cm) (cm4) (cm4) 

0.05 2U8 8 22 212 0.2 2.75 8 0.34 88.6 41.8 300.6 1.42 11.12 1.13 12.66 

0.05 2U8 8 22 212 0.3 1.83 8 0.23 58.8 27.7 270.8 1.28 11.21 1.14 13.62 

0.05 2U8 8 22 212 0.4 1.38 8 0.17 44.1 20.8 256.1 1.21 11.22 1.14 13.67 

0.05 2U8 8 22 212 0.5 1.10 8 0.14 35.2 16.6 247.2 1.17 11.17 1.13 13.16 

0.05 2U8 8 22 212 0.6 0.92 8 0.11 29.4 13.8 241.4 1.14 11.09 1.12 12.32 

0.05 2U8 8 22 212 0.7 0.79 8 0.10 25.2 11.9 237.2 1.12 10.98 1.11 11.30 

0.05 2U8 8 22 212 0.8 0.69 8 0.09 22.0 10.4 234.0 1.10 10.88 1.10 10.23 

 

 
Fig.5. Change in the length of the stiffener 

corresponding to increased moment of inertia, 

considering a constant increase in weight. 

In Fig.6, the change in the length of the 

stiffener with respect to the critical load 

parameter is plotted, considering a constant 

increase in weight (∆W). According to this 

figure, it is evident that with a constant 

increase of weight, the maximum value of 

increase (in percentage) in the critical load 

parameter for a member is derived when the 

stiffened length ratio has a value between 0.4 

and 0.6. In other words, for "∆W"s equal to 5 

and 10, the aforementioned value (peak value 

of ∆λ) is derived equal to 0.4 of the length of 

the member. For "∆W"s equal to 15, 20, and 

25 the same quantity is reached at half of the 

member’s length; and for "∆W"s equal to 30, 

35, 40, 45, and 50, the peak value of ∆λ is 

derived at 0.6 of the total length of the 

member. 

 
Fig.6. Change in the length of the stiffener with 

respect to the critical load parameter considering 

a constant increase in weight. 

As an example, by assuming a constant 

increase in the critical load parameter value, 

different stiffened length ratios are derived 

which are shown in Table 6. 

Fig.7 shows variation of the length of the 

stiffener with respect to the moment of 

inertia for the constant critical load 

parameter. 

Table 6. Stiffened length ratios with respect to 

the critical load parameter with a constant 

increase of 10% 

s n ΔIyy λ 

0.2 1.31 31.18 1.10 

0.3 1.20 19.66 1.10 

0.4 1.15 14.93 1.10 

0.5 1.13 12.53 1.10 

0.6 1.11 11.21 1.10 

0.7 1.10 10.49 1.10 

0.8 1.10 10.14 1.10 
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Fig.7. Change in the length of stiffener with 

respect to the moment of inertia for a constant 

increase in the critical load parameter. 

As is shown in Fig.7, considering a constant 

value for the critical load parameter (λ), the 

smaller the value of the stiffened length ratio, 

(i.e. the length of the member which is 

strengthened by welding plates), the higher 

moment of inertia is required to achieve the 

desired value of the critical load parameter. 

Moreover, it is observed that by increasing 

the constant value of λ, considering a 

constant value for the stiffened length ratio 

(s), the required value of the moment of 

inertia increases. This point could be 

observed in Fig.2 as well. 

Considering the desired moment of inertia 

and the length of stiffener, Euler's force is 

obtained for the member and as a result, the 

Euler's stress is derived. According to the 

range of slenderness ratio, the critical stress 

and finally the capacity of the member could 

be calculated, referring to the design codes 

such as AISC360 provided that the 

relationships governing 𝐹𝑒 and 𝐹𝑐𝑟 are 

assumed to be the same as given in AISC 360 

code. In other words, according to the 

calculated relations: 

e 2 2

λEI λE
F = =

AL L

r

 
 
 

                                                  (31) 

For unstiffened sections 𝜆 is equal to 𝜋2. 

According to the calculated table 1, it is 

found that this value (𝜆) is greater for all 

non-prismatic sections than uniform 

members (𝜋2) and it is expected that 𝐹𝑐𝑟 

related to this type of sections is greater than 

this value for the prismatic sections. 

However, 𝐹𝑐𝑟 should be obtained by 

experimental tests. 

As a result, tests should be conducted to 

achieve the curves required for compressive 

design of non-prismatic members. These 

design curves depend on the amount and type 

of imperfection, distribution and amount of 

residual stresses, support conditions and 

length of stiffener [7]. 

8. A design Example for a Particular 

Compressive Member 

It is decided to implement a member with 

variable cross-section with the base section 

of 2U26 instead of a constant section 

comprised of 2U28, such that the alternative 

section has the same compressive capacity as 

the initial one. Table 7 represents the 

geometric properties of a section comprised 

of 2U28. 

For a member with two hinges at two ends K 

is equal to 1. Therefore, the following 

equations can be written: 

1 408 66
50 8

8 04min

KL .
.

r .


   and 4 71 139 3y. E F .  

2 2 6

2 2

2 1 10
8030 4 2

50 8
e

E .
F . kg / cm

( KL r ) ( . )

   
     

and 855998 e e gP F A kg    

0 658 2117 8 2

y

e

F

F

cr yF F . . kg / cm     
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and 225756 3 cr cr gP F A . kg    

The weight of the section is equal to: 

341 6  totalW . kg  

The geometric properties of the alternative 

section are represented in Table 8. 

Table 7. Geometric properties of a section with 2U28. 
Name Area (cm

2
) I33 (2I) (cm

4
) I22 (cm

4
) r33 (cm) r22 (cm) L (cm) w/L (kg/m) 

2U28 106.6 12560 6910.2 10.86 8.04 408.66 83.6 

 

Table 8. Geometric properties of the alternative section. 
Name Area (cm

2
) I33 (2I) (cm

4
) I22 (cm

4
) r33 (cm) r22 (cm) L (cm) w/L (kg/m) 

2U26 96.6 9640 5697 9.99 7.68 408.66 75.8 

 

Half of the member length is considered to 

be stiffened by two stiffener plates, with 10 

cm width and of 1 cm thickness. Table 9 

shows the geometric properties of each 

stiffener. 

Table 9. Geometric properties of stiffeners. 
dp (cm) tp (cm) Ap (cm) s (cm) 

10 1 10 0.5 

 

 
Fig.8. The cross-section of the stiffened 

alternative member. 

For the new stiffened section, the moments of 

inertia are calculated as follows: 

4

33 9640 2 1 12 1 10 3 9806 7  ,newI ( / ^ ) . cm      

22

4

5703 32 2 1 12 1 3 10

2 1 10 9 1 2 0 6 2 7744 9 

,newI . ( / ^ )

( ) ( / . )^ . cm

    

      
 

33 33 33 1 017,new ,newn I I .   and 

22 22 22 1 359,new ,newn I I .   

According to Table 2, considering s=0.5, the 

ratios of Ieq,33/I33 and Ieq,22/I22 which 

correspond to n33,new and n22,new, respectively, 

are derived. Then, multiplying the derived 

values by the moment of inertia associated 

with the section with no stiffener, the 

moment of inertia of the equivalent section is 

obtained. 

33 33 1 013eq ,I I . , 22 22 1 27324eq ,I I . , 

4

33 9933 5 eq ,I . cm and 
4

22 7261 7 eq ,I . cm  

Based on equation (26), the equivalent 

section area for the stiffened member is 

calculated as follows: 

22 10 96.8 116.8  stA cm     

2116 8 96 8  116 8 1  0 5  96 8 0 5 105 86 eqA . . / ( . ( - . ) . . ) . cm     

The radius of gyration of the equivalent 

section is equal to: 
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33 33 9 57 eq , eq , eqr I A . cm   and 

22 22 8 18 eq , eq , eqr I A . cm   

1 408 66
50

8 18eq,min

KL .

r .


  

4.71 139.32yE F  

2 2 6
2

2 2

2 1 10
8290 5 

50
e

eq

E .
F . kg / cm

( KL r ) ( )

   
    

As it is allowed in the commentary of AISC 

360 codes, concerning equations 

corresponding to a member with constant 

cross-section and for a non-uniform member, 

in order to determine the critical load of the 

member, the relationship between Fcr and Fe 

could be demonstrated as follows where Fcr 

is equal to [31]: 

20 658 2126 1 

y

e

F

F

cr yF F . . kg / cm   ⇒ 

225072 c cr eqP F A kg    

The weight of this section is equal to: 

341 84  totalW . kg  

As it is evident in the aforementioned 

calculations, the derived weights for both the 

constant and variable cross-section members 

there is no perceptible difference in spite of 

approximately having identical compressive 

capacity values. 

If the Euler load of the member with variable 

cross-section is calculated with reference to 

Table 1, the Euler loads corresponding to two 

axes of the section (which are named 2-2 and 

3-3) are derived as follows: 

6

33 2 2

2 1 10 9640 10 00
1212193 8 

408 66

EI . .
P . kg

L .

   
    and 

6

22 2 2

2 1 10 5703 3 12 55
900046 6 

408 66

EI . . .
P . kg

L .

   
    

900046 e.minP kg 

As a result, the Euler load for the member 

with variable cross-section is equal to 

approximately 900 tons which is greater than 

the same value for a member with constant 

cross-section (roughly 856 tons). 

Nevertheless, the critical load (Fcr) should be 

determined through experimental tests. In 

this example, it is assumed that the 

relationship between the critical load and the 

Euler load of a non-uniform member is 

similar to that of a uniform one. In other 

words, considering the calculated tables 

(Table 1 and Table 2), the Euler load is 

determined as follows: 

2 2 2 2( )
e e e

EI EI EI E
P F F

L AL AL L r

   
       

In the above equation, for uniform members, 

the value of λ is equal to 𝜋2. Referring to 

Table 1, it is evident that the critical load 

parameter (λ) for the members with variable 

cross-section is higher than members with 

constant cross-section. It is expected that the 

compressive capacity of non-uniform 

members has a higher value than the uniform 

ones; nonetheless, the exact value of the 

critical load (Fcr) must be determined by 

experimental tests. 

9. Effect of Imperfection on 

Compressive Capacity of Members 

In this part, using ABAQUS software the 

effect of imperfection has been studied. 

Though these relations are prepared for 

straight and perfect members, but 

implementing the FEM method, the buckling 

load for imperfect members with global 
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buckling mode has been investigated for 12 

models. So members, with and without 

imperfection, have been modeled and the 

imperfection was equal to maximum 

allowable imperfection. The buckling load 

using the FEM method in ABAQUS software 

has been compared and the error percentage 

for modeling imperfection has been 

calculated. 

 The difference and percentage of error 

between the analytical solution and buckling 

load of members with imperfection using 

FEM method was up to 1.5%. 

10. Conclusion 

In this paper, the elastic buckling behavior of 

three-segment symmetric members is 

investigated. The governing differential 

stability equation is solved numerically using 

the MATHEMATICA computational program 

and the critical load parameter is determined 

assuming different values for moment of 

inertia and the stiffened length ratio of the 

member.  

The differential equation is verified 

considering both states of using no stiffener 

and where the section is strengthened by 

stiffeners, referring to the previous research 

and FEM method. The effects of the change 

in each parameter including the moment of 

inertia and the stiffened length ratio on the 

critical load parameter are assessed, 

separately. Moreover, considering a constant 

increase in the weight of the whole member, 

changes in the moment of inertia and the 

critical load parameter are depicted by 

drawing separate curves.  

As a result, in a table, the critical load 

parameter (λ) is presented with respect to 

different values of the moment of inertia and 

the stiffened length ratios. 

Also in a table, the ratio EIeq EI⁄ =λ π2⁄  is 

demonstrated which can be used to determine 

the critical load required for design of a 

compressive member. 

According to this research, strengthening 

some parts of a compressive member is 

sufficient to achieve the desired value for the 

critical load parameter. Thereby it is accurate 

to use the critical load for design purposes, 

rather than using a uniform section with 

higher dimensions. 

 As it is evident, with increase in the stiffened 

length ratio or the moment of inertia ratio, 

the critical load parameter and the buckling 

load would increase. As a result, by 

increasing the constant value of λ, assuming 

a constant value for the stiffened length ratio 

(s), the moment of inertia value increases. 

Moreover, taking the moment of inertia ratio 

as constant, the increase in the stiffened 

length ratio leads to increase in the critical 

load parameter and consequently, the 

buckling load. 

Furthermore, considering a constant value for 

increase in the weight of the whole member, 

the maximum value of the critical load 

parameter is observed, where the stiffened 

length ratio is between 0.4 and 0.6. 

Moreover, it is shown that assuming a 

constant value for the critical load parameter, 

the higher the stiffened length ratio, the less 

moment of inertia is required.  

In order to examine the calculated data for 

design purposes, a design example is given in 

this paper, in which members with uniform 

section and variable cross-section are 

compared to each other. In this example, the 

column design curves associated with 

uniform members are applied for the 

considered non-uniform member as the AISC 

code allows to be used by designers. 
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Therefore, the weights of both uniform and 

non-uniform members showed no noticeable 

difference despite having roughly the same 

compressive capacity. In this example, it is 

shown that the Euler load for a non-uniform 

member has a greater value than that of a 

uniform member based on the calculated 

tables of this study. However, the accurate 

value of the compressive capacity has to be 

determined by experimental tests; therefore, 

the exact relationship between the Euler and 

critical loads of a non-uniform section could 

be determined. 

Although the global buckling load of 

members is investigated here, engineers 

should pay attention to local buckling of 

members, especially for attaining higher 

loads. 

Symbols 

a1, a2, b1, b2, c1, c2, k1, k2     Constant 

parameters 

A Initial section area 

Aeq Equivalent section area 

Ag Gross section area 

Ap Cross-section of the stiffener 

Ast Total section area in the stiffened area 

b Width of the section 

d Width of the stiffener 

dp Stiffener depth 

e Free distance between two parts of the 

section 

EI Flexural stiffness 

EIst Flexural stiffness of the stiffened segment 

Fcr Critical stress 

Fe Euler stress 

Fy Yield stress 

I Area moment of inertia 

Ieq Equivalent area moment of inertia 

K Effective length factor 

L Total length of the unstiffened segment 

Lst Stiffener length 

m Parameter corresponds to the critical load 

n Moment of inertia ratio 

P Axial load 

Pcr Critical load 

Pe Euler load 

r radius of gyration 

s Stiffened length ratio 

t Thickness of the stiffener 

W Weight 

y Relative displacement 

 

Greek symbols 

∆ Displacement 

  Relative end displacement 

  Slenderness ratio 

eq  Equivalent slenderness ratio 

ρ Density of the material of the cross-section 
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