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Recently soft computing methods have been employed in most 

fields, especially in civil engineering, due to its high accuracy to 

predict the results and process information. Soft computing is the 

result of new scientific endeavors that make modeling, analysis, and, 

ultimately, the control of complex systems possible with greater ease 

and success. The essential methods of soft computing are fuzzy 

logic, artificial neural networks, and genetic algorithm. In this paper, 

using 74 valid experimental data, estimation of punching shear 

capacity of FRP-strengthened RC slabs using two powerful methods 

(artificial neural network and Group method of data handling) has 

been investigated. The maximum and minimum dimension of 

column cross-section, the effective height of slab, the compressive 

strength of concrete, modulus of elasticity of FRP bar, and the 

percentage of FRP bars were selected as input variables, and the 

punching shear capacity of the slab was selected as the output 

variable. Also, in order to investigate the effect of the variables 

mentioned above on the results, sensitivity analysis is conducted in 

both methods. Absolute Fraction of Variance for the two methods 

showed that the GMDH method had higher precision (1.73%) than 

the ANN method in the prediction of results. 
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1. Introduction 

Concrete slabs are used to construct various 

structures with different applications, as well 

as decks of different bridges and flooring. 

Suspended slabs transfer loads by their 

flexural performance and separate the upper 

and lower spaces. These slabs include one-

way, two-way, waffle, and flat ones along 

with flat-slab floors. A wealth of 

experimental and numerical studies are 

conducted so far on reinforced concrete slabs 

and strengthening of them using FRPs, with 

some requirements and equations provided. 

Metwally [1] used an artificial neural 

network to estimate the shear capacity of 

concrete slabs reinforced with FRP bars. He 

concluded that the artificial neural network 

had better performance in predicting shear 

capacity compared to formula-based 

methods, and it could be used as a practical 

http://civiljournal.semnan.ac.ir/
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tool to estimate the shear capacity. Hassan et 

al. [2] tested ten slab-column specimens 

made with longitudinal and transverse FRP 

bars on a real scale and evaluated their 

punching shear behavior. Durucan and Anil 

[3] investigated the punching shear of two-

way slabs with opening, reinforced with 

CRFP. They tested various opening sizes and 

locations. Azimi determined the punching 

shear capacity of FRP-reinforced concrete 

slabs using GMDH and indicated that it was 

a very useful modeling method for the 

prediction of the punching shear capacity of 

slabs [4]. Specifically, group method of data 

handling (GMDH) can be considered as a 

powerful modeling method for civil and 

structural engineering pheromones [5–8]. 

Akbarpour et al. [9] employed an artificial 

neural network and ANFIS system to 

estimate the shear capacity of two-way slabs. 

For this purpose, they collected 189 

specimens, developed the two models, and 

found that both models were able to predict 

the shear capacity of two-way slabs with high 

accuracy. Hassan et al. [10] conducted an 

experimental study to enhance the punching 

shear strength of reinforced concrete slabs by 

strengthening them by shear metal strips. 

They made seven full-scale specimens and 

subjected them to gravitational loading. 

Akhundzada et al. [11] examined different 

methods of strengthening slab-column 

connections with CFRP sheets to avoid 

punching shear. They concluded that 

strengthening improved the ultimate load by 

25% and reduced the maximum deflection by 

up to 50%. Marí et al. [12] introduced a 

mechanical model for reinforced concrete 

slabs based on previous experimental results. 

Hamdy et al. [13] studied the effectiveness of 

using shear bolts to reduce the punching 

shear of concrete slabs. Gokkus et al. 

implemented Artificial Neural Network 

(ANN) for predicting the required concrete 

volume and amount of the steel 

reinforcement within the inversed-T-shaped 

and stem-stepped reinforced concrete (RC) 

walls [14]. They have shown that pattern 

recognition using ANN can provide precise 

and robust models [14]. Wu et al. [15] 

conducted a numerical study on the 

strengthening of flat RC slabs with FRP 

laminates and proposed a model to which 

could meet the analysis results. Using 

artificial intelligence, including artificial 

neural network (ANN) and gene expression 

programming (GEP), Naderpour et al. [16] 

could present a model to predict the 

compressive strength of columns 

strengthened with FRP. Azizi and Talaeitaba 

[17] assessed a new numerical method for 

CFRP reinforced concrete slabs. This method 

included grooving in two orthogonal 

directions under the slab, mounting external 

bars, and attaching FRPs to the surface of the 

groove in another direction. The obtained 

results demonstrated the high efficiency of 

this method. The failure mode of 

strengthened specimens also changed from 

shear to flexure–shear. 

Generally, soft computing and machine 

learning approaches has been successfully 

employed by other researchers in order to 

model and present the governing patterns in 

civil engineering problems [7,18–22]. 

In this study, the empirical relationships are 

provided to predict punching shear of 

reinforced concrete (RC) slabs at first. Then, 

using valid experimental data on RC slabs 

strengthened with FRP, their punching shear 

is predicted using an artificial neural network 

(ANN) and the group method of data 

handling (GMDH). Ultimately, using 

sensitivity analyses of both models, the effect 

of each variable on the results is determined. 
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2. Existing Empirical Relationships 

The ACI318-11 code [23] suggests Eq. (1) to 

estimate the punching shear capacity of 

reinforced concrete slabs: 

(1)  

In which, Vc is punching shear capacity, b0 is 

the perimeter of the critical section at a 

distance of d/2 from the load location, and d 

is the effective depth of the concrete slab. 

The recommended equation of the BS8110-

97 code [24] is as follows: 

 (2) 

Where fck is the compressive strength of 

cubic specimen, ρs is the ratio of steel rebars, 

and b0 is the perimeter of the critical section. 

ACI440.1R-06 [25] suggests the Eq. (3) to 

estimate punching shear capacity of FRP-

strengthened two-way concrete slabs, in 

which the effect of stiffness of the bars is 

accounted for in computing the shear transfer 

in such slabs. 

 

 

 

 

 

 

(3) 

In this equation, b0 and C are the critical 

perimeters at a distance of d/2 from the load 

and neutral axis depth in the cracked section, 

respectively. 

Adding  to the equation of the 

ACI318 code, El-Ghandour et al. [26] 

achieved the following equation: 

 (4) 

In which fE  and 
sE are the elastic moduli of 

the FRP and steel, and the other parameters 

are defined as those of Eq. 1. 

The equation introduced by Matthys and 

Taerwe [27], which is the modified form of 

the BS8110 equation, is 

 
(5) 

In this equation, ρf, Ef, and Es are the ratio of 

FRP bars and elastic moduli of the FRP and 

steel, respectively. The other variables are the 

same as those of Eq. 2. 

Ospina et al. [28] modified the relationship 

of Matthys and Taerwe as the following. 

 (6) 

El-Gamal et al. [29] improved the ACI318 

equation by taking into account the effect of 

flexural stiffness  of the bottom 

primary reinforcement and suggested the 

following equation. 

 (7) 

In this equation, N denotes the effect of slab 

continuity. ⍺ show the effect of flexural 
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stiffness of the reinforcement, loading area, 

and effective depth of the slab 

 (8) 

Where ρf and Ef are the steel ratio and elastic 

modulus of the rebars, respectively, other 

parameters are the same as those of Eq. 1. 

Kurtoglu et al., considering the slab 

directions, achieved the equation below using 

the gene expression programming algorithm. 

 (9) 

In which, C and d denote the square column 

dimension, and effective depth of the 

concrete slab, respectively. Also, fc, Ef, ρ, and 

L are the compressive strength of concrete, 

the elastic modulus of FRP, reinforcement 

percentage, and concrete slab depth, 

respectively. 

3. Methods 

3.1. Artificial Neural Networks 

An artificial neural network (ANN) is a 

system inspired by humans’ brains. The 

biological network is made of neurons that 

interact with each other to process 

information. Each neuron makes decisions by 

receiving the input and producing output. 

Dendrite gets input signal and transfers it to 

the cell body. If the input signals reach a 

predefined value, the cell body fires and 

transfers the input to the neighbor dendrites 

through the axon. Neurons are connected in 

series and parallel. Therefore they can make 

complex decisions. Accordingly, the artificial 

neuron works with three basic terms: weight, 

bias and activation function. All the inputs 

are multiplied by their corresponding weights 

and then sum up.  Weights adjust the strength 

of the signal, and biases add an additional 

input to the neuron.  

Table 1. References of data used for analysis 

Presentation of the model. 

No. Reference Number of 

used data 

1 Banthia et al. [30] 2 

2 Matthys and Taerwe [27] 13 

3 El-Ghandour et al. [26] 5 
4 Ospina et al. [28] 3 

5 Lee et al. [31] 3 

6 Ahmed et al. [32] 4 

7 El-Gamal et al. [33] 5 

8 Rahman et al. [34] 1 

9 Hassan et al. [35] 1 

10 Hussein and Rashid [36] 4 

11 Zaghloul and Razaqpur [37] 1 

12 Bouguerra et al. [38] 6 

13 Ramzy et al. [39] 4 

14 Dulude et al. [40] 11 

15 Hassan et al. [41] 8 

16 Nguyen-Minh and Rovňák [42] 3 

 

Table 2. Effective parameters in the behavior of 

FRP reinforced slabs. 

parameter description 

 size of the large side of the column 

 size of the small side of the column 

 the effective depth of the slab 

 strength of the cylindrical specimen 

 Elastic modulus of FRP rebar 

 FRP rebar percentage 

 test punching shear capacity 
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backpropagation is the most popular 

algorithm. It can learn faster and is more 

effective than other algorithms [43]. 

3.2. Modeling with GDMH Method 

The GMDH includes a bin of neurons formed 

by a quadratic polynomial. By combining the 

polynomials, the network describes the 

approximate function  with the output  

for a given input, , in 

comparison to the real output y. M 

observations which contain n inputs and the 

output of real values are as the following: 

 (10) 

We are searching for a network by which the 

error between the real output and the 

predicted one is minimized 

 (11) 

The polynomial function between input and 

output is usually stated by Volterra function 

as 

 
(12) 

Which is also called the Kolmogorov-Gabor 

polynomial. In most practical cases, a 

second-class form with two variables of this 

function is employed 

 (13) 

The coefficients of ai are determined by 

least-square methods. The coefficients of Gi 

can be calculated by fitting the output in the 

input-output pair so that the error of squares 

is minimized. 

Table 3. Statistical properties of input and output data. 

 
 

 
  

  
 

max 450 600 284 118 3.78 147.6 1600 

min 75 75 55 26 0.18 28.4 61 

mean 236.22 294.32 132.83 40.77 0.99 64.93 436.90 
Standard dev. 89.26 161.02 50.39 13.10 0.71 31.66 349.05 

range 375 525 229 92 3.6 119.2 1539 

 

 
Fig. 1. Schematic view of the artificial neural 

network. 

 (14) 

Usually, GMDH algorithms use double 

combinations of n input variables and using 

regression, and polynomial regression 

equations are obtained 

 (15) 
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 (16) 

where A is the vector of unknown weight 

coefficients and Y is the vector of output 

variables 

 
(17) 

 

  

Regression equations obtain a vector of 

weights coefficients in matrix form 

 (18) 

These steps are repeated for every neuron in 

the hidden layers [44] 

4. Modeling 

In this paper, a model is proposed using 74 

valid experimental specimens with an 

artificial neural network and the group 

method of data handling. Table 2 introduces 

the input parameters of the network. The 

network inputs and goals were normalized to 

achieve efficient results in training the neural 

network. For instance, Eq. 19 was used to 

scale the effective depth of the concrete slab 

(d): 

 (19) 

Where dmin and dmax are the minimum and 

maximum effective depths of concrete slab, 

obtained from Table 3. Table 2 lists the 

references used for the modeling, as well as 

the number of specimens chosen from each 

of them. 

 
Fig. 2. Regression values in different hidden 

layers. 

 
Fig. 3 Mean of squared error in different hidden 

layers 

4.1. Artificial Neural Network (ANN) 

The backpropagation network consists of one 

input layer. The number of network inputs 

indicates the number of parameters existing 

in the input section. It also has one or more 

hidden layers with several neurons. The 

logarithmic sigmoid equation was employed 

in the hidden layer, while a simple linear 

function was employed in the output layer. 

TRAINLM and LEARNGDM were used as 

the training function and adaption learning 

function, respectively. Networks with 4 to 20 

hidden neurons were formed to find a proper 

one. Fig. 1 shows a schematic of different 

layers, including input, hidden, and output 

ones in the neural network. 

The values of mean square error (MSE) and 

regression for different hidden neurons are 

shown in Figs. 2 and 3, respectively. As the 
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MSE and regression values of a network are 

lower and closer to one, respectively, it acts 

better in predicting the results. Therefore, by 

examining the MSE and regression values for 

different numbers of hidden neurons shown 

in Figs. 2 and 3, the network with 12 hidden 

neurons was found to have the least MSE 

values while its regression values were close 

to one, so it was chosen as the optimum one. 

Fig. 4 illustrates the MSE values in various 

learning epochs. According to the considered 

convergence criterion, it can be seen that 

learning in epoch 7 was well done. The trend 

of network changes during different epochs is 

shown in Fig. 5. Fig. 6 demonstrates the 

values of R obtained for four modes of 

training, verification, testing, and entire data. 

The higher concentration of these points on 

the bisector of the first quarter indicates its 

higher accuracy. 

 
Fig. 4. MSE for the training process. 

 
Fig. 5. Error estimation in the validation process. 

 
Fig. 6. Regression curve of the network after training. 
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4.2. Group Method of Data Handling 

The GMDH was used for modeling in 

addition to the artificial neural network in 

this study. By using this method, the 

nonlinear links and relationships between the 

data can be found, and a model with high 

prediction capacity can be created. Moreover, 

GMDH Shell does not need the 

normalization scale of data and considerably 

reduces the calculation time.  The goal of 

modeling with GMDH neural networks was 

to find a function, which can calculate the 

output for the input . The 

values predicted by GMDH, along with those 

obtained from the tests, are plotted in Fig. 7 

to give a better understanding of the 

performance of the chosen optimum network. 

The error rate for each prediction is also 

shown in Fig. 8. As can be seen, the values 

predicted by this method were very close to 

the real ones. 

 
Fig. 7. Comparison of estimated values of 

GMDH and test results. 

In order to evaluate the performance of the 

two presented models and their accuracy in 

predicting the experimental results, different 

performance criteria, such as mean absolute 

percentage error (MAPE) and the absolute 

fraction of variance (R
2
), were used whose 

values for both models are presented in Table 

4. According to this table, the maximum and 

minimum error rates in the GMDH model 

were respectively lower and higher than 

those in the ANN model. As R
2
 is closer to 

one and MAPE has a lower value, the model 

has higher accuracy in predicting the results. 

Hence, the GMDH model was more accurate 

than the ANN model. 

 

Fig. 8. Error percentage in the estimation of 

results. 
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5. Sensitivity Analysis of the Input 

Parameters 

The sensitivity analysis expresses how and to 

what extent each input affects the provided 

equation. The analysis is based on weights to 

estimate the impact of each input data on the 

output data in the network. Various equations 

have been suggested according to the values 

of weights. The Milne equation [45] is one of 

the most practical ones. By calculating the 

weights wji (weight of the link between input 

neuron i and hidden neuron j) multiplied by 

woj (weight of the link) for each hidden 

neuron of the network, this equation is 

obtained as the sum of the calculated 

products. 

 

(21) 

In Eq. 21,  is the sum of the link’s 

weights, and Qik is the percent of the effect of 

the input variable xi on the output variable yk. 

Correct ratios for both positive and negative 

weights are obtained using this method. 

and  are the weight of the input 

and output parameters, respectively. As can 

be seen in Fig. 9, the effects of parameters on 

the output were almost equal. However, the 

small dimension of the column, the large 

dimension of the column, and the effective 

depth of the concrete slab had the highest 

effects on the lateral confinement coefficient, 

being 18.64%, 17.82%, and 16.95%, 

respectively. Meanwhile, the elastic modulus 

of the FRP bar had the lowest effect on the 

output parameter, being 14.97%. 

 
Fig. 9 The effect of input variables on output 

values in the model 

 
Fig. 10. The effect of input variables on output 

values in GMDH model. 
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specimens had the lowest effects. 

6. Conclusions 

In this study, the punching shear capacity of 

FRP-strengthened concrete slabs was 

predicted using the artificial neural network 

and group method of data handling. Six 

parameters, including the large dimension of 

the column, the small dimension of the 

column, the effective depth of the slab, the 
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strength of the cylindrical concrete specimen, 

the elastic modulus of the FRP bar, and FRP 

rebar ratio, were selected as input 

parameters. At the same time, the punching 

shear capacity was the output parameter. The 

most important point in the modeling process 

of artificial neural networks is to choose a 

network with fewer neurons and higher 

regression. Thus, by evaluating the values of 

mean square error and regression for 

different hidden neurons, the network with 

12 hidden neurons was chosen as the 

optimum one. The ANN and GMDH models 

with absolute fractions of variance (R
2
) of 

0.88 and 0.997 and mean absolute percentage 

error (MAPE)s of 8.05 and 4.32, 

respectively, showed acceptable predictions 

with high accuracy. However, the GMDH 

model was more precise in predicting the 

results, due to its lower MAPE values with 

its R
2
 values being closer to one. 

Furthermore, the sensitivity analyses were 

performed on both suggested models. In the 

ANN and GMDH models, the parameters of 

the small dimension of the column and slab 

effective depth, with 18.64% and 53.58%, 

had the highest effects on the punching shear 

capacity of the RC slabs, respectively. In 

addition, the least contributing parameters on 

the slab punching shear were related to the 

concrete strength and the elastic modulus in 

GMDH and ANN, respectively. In fact, the 

results showed that the model is significantly 

affected by the geometrical properties of 

slabs rather than mechanical characteristics. 
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