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Abstract

In this paper, we establish the existence and uniqueness of common coupled fixed point results for
three covariant mappings in bipolar metric spaces. Moreover, we give an illustration which presents
the applicability of the achieved results also we provided applications to homotopy theory as well as
integral equations.
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1. Introduction and Preliminaries

This work is motivated by the recent work on extension of Banach contraction principle [5] on bipolar
metric spaces, which has been done by Mutlu and Gürdal [20]. Also, they investigated some fixed
point and coupled fixed point results on this spaces (see [21, 22]). Subsequently, many authors
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established coupled fixed point theorems in different spaces (see [1, 2, 3, 6, 7, 8, 11, 12, 13, 14, 15,
16, 18, 19, 23, 25, 26]).

The aim of this paper is to initiate the study of a common coupled fixed point results for three
mappings under various contractive conditions in bipolar metric spaces. Finally, we give an example
which presents the applicability of our achieved results also we provided applications to homotopy
theory as well as integral equations.

First we recall some definitions and examples as follows.

Definition 1.1 ([20]). Let A and B be a two nonempty sets. Suppose that d : A× B → [0,∞) is
a mapping satisfying the following properties:

(B0) If d(a, b) = 0 then a = b for all (a, b) ∈ A×B,

(B1) If a = b then d(a, b) = 0, for all (a, b) ∈ A×B,

(B3) If d(a, b) = d(b, a), for all a, b ∈ A ∩B,

(B4) If d(a1, b2) ≤ d(a1, b1) + d(a2, b1) + d(a2, b2) for all a1, a2 ∈ A, b1, b2 ∈ B.

Then the mapping d is called a bipolar-metric on the pair (A,B) and the triple (A,B, d) is called a
bipolar-metric space.

Definition 1.2 ([20]). Assume (A1, B1) and (A2, B2) as two pairs of sets.
The function F : A1∪B1 → A2∪B2 is said to be a covariant map, if F (A1) ⊆ A2 and F (B1) ⊆ B2

and denote this as F : (A1, B1) ⇒ (A2, B2).
The mapping F : A1 ∪ B1 → A2 ∪ B2 is said to be a contravariant map, if F (A1) ⊆ B2 and

F (B1) ⊆ A2 and this as F : (A1, B1) ⇋ (A2, B2).
In particular, if d1 and d2 are bipolar metrics in (A1, B1) and (A2, B2) respectively. Then in some

times we use the notations F : (A1, B1, d1) ⇒ (A2, B2, d2) and F : (A1, B1, d1) ⇋ (A2, B2, d2).

Definition 1.3 ([20]). Let (A,B, d) be a bipolar metric space. A point v ∈ A∪B is said to be left
point if v ∈ A, a right point if v ∈ B and a central point if both.

Similarly, a sequence {an} on the set A and a sequence {bn} on the set B are called a left and
right sequence respectively.

In a bipolar metric space, sequence is the simple term for a left or right sequence.
A sequence {vn} is convergent to a point v if and only if {vn} is a left sequence, v is a right point

and lim
n→∞

d(vn, v) = 0; or {vn} is a right sequence, v is a left point and lim
n→∞

d(v, vn) = 0.

A bisequence ({an}, {bn}) on (A,B, d) is sequence on the set A × B. If the sequence {an} and
{bn} are convergent, then the bisequence ({an}, {bn}) is said to be convergent. ({an}, {bn}) is Cauchy
sequence , if lim

n,m→∞
d(an, bm) = 0.

A bipolar metric space is called complete, if every Cauchy bisequence is convergent, hence bicon-
vergent.

Definition 1.4 ([21]). Let (A,B, d) be a bipolar metric space,
F : (A2, B2) ⇒ (A,B) be a covariant mapping. If F (a, b) = a and F (b, a) = b for (a, b) ∈ A2 ∪ B2

then (a, b) is called a coupled fixed point of F .
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2. Main Results

In this section, we give some common coupled fixed point theorems for three covariant mappings
in bipolar metric spaces.

Definition 2.1. Let (A,B, d) be a bipolar metric space, F : (A2, B2) ⇒ (A,B) and f : (A,B) ⇒
(A,B) be two covariant mappings. An element (a, b) is said to be a coupled coincident point of F
and f . If F (a, b) = fa and F (b, a) = fb.

Definition 2.2. Let (A,B, d) be a bipolar metric space, F : (A2, B2) ⇒ (A,B) and f : (A,B) ⇒
(A,B) be two covariant mappings. An element (a, b) is said to be a common coupled fixed point of
F and f . If F (a, b) = fa = a and F (b, a) = fb = b.

Definition 2.3. Let (A,B, d) be a bipolar metric space, F : (A2, B2) ⇒ (A,B) and f : (A,B) ⇒
(A,B) be two covariant mappings are called ω-compatible if f (F (a, b)) = F (fa, fb) and f (F (b, a)) =
F (fb, fa) whenever F (a, b) = fa and F (b, a) = fb.

Theorem 2.4. Let (A,B, d) be a bipolar metric space and F,G : (A2, B2) ⇒ (A,B), f : (A,B) ⇒
(A,B) be covariant mappings satisfying:

(i) for all a, b ∈ A and p, q ∈ B with θ ∈ (0, 1),

d (F (a, b), G(p, q)) ≤ θmax {d(fa, fp), d(fb, fq)} ,

(ii) F (A2 ∪B2) ∪G (A2 ∪B2) ⊆ f(A ∪B),

(iii) either (F, f) or (G, f) are ω-compatible,

(iv) f(A ∪B) is complete.

Then the mappings F,G and f have a unique common fixed point of the form (u, u).

Proof . Let a0, b0 ∈ A and p0, q0 ∈ B and from (ii), we construct the bisequence ({a2n} , {p2n}),
({b2n} , {q2n}), ({ω2n} , {χ2n}) and ({ξ2n} , {κ2n}) in (A,B) as

F (a2n, b2n) = fa2n+1 = ω2n, G (p2n, q2n) = fp2n+1 = χ2n,
F (b2n, a2n) = fb2n+1 = ξ2n, G (q2n, p2n) = fq2n+1 = κ2n,
G (a2n+1, b2n+1) = fa2n+2 = ω2n+1, F (p2n+1, q2n+1) = fp2n+2 = χ2n+1,
G (b2n+1, a2n+1) = fb2n+2 = ξ2n+1, F (q2n+1, p2n+1) = fq2n+2 = κ2n+1,

for n = 0, 1, 2, . . . .
Now from (i), we have

d (ω2n, χ2n+1) = d (F (a2n, b2n) , G (p2n+1, q2n+1))

≤ θmax
{
d(fa2n, fp2n+1), d(fb2n, fq2n+1)

}
≤ θmax

{
d(ω2n−1, χ2n), d(ξ2n−1, κ2n)

}
≤ θmax

{
d(ω2n−1, χ2n), d(ξ2n−1, κ2n)

}
,

(2.1)
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and
d (ξ2n, κ2n+1) = d (F (b2n, a2n) , G (q2n+1, p2n+1))

≤ θmax
{
d(fb2n, fq2n+1), d(fa2n, fp2n+1)

}
≤ θmax

{
d(ξ2n−1, κ2n), d(ω2n−1, χ2n)

}
≤ θmax

{
d(ω2n−1, χ2n), d(ξ2n−1, κ2n)

}
.

(2.2)

Combining (2.1) and (2.2), we get that

max {d (ω2n, χ2n+1) , d (ξ2n, κ2n+1)} ≤ θmax {d (ω2n−1, χ2n) , d (ξ2n−1, κ2n)}
≤ θ2max {d (ω2n−2, χ2n−1) , d (ξ2n−2, κ2n−1)}
...
≤ θ2nmax {d (ω0, χ1) , d (ξ0, κ1)} .

Thus,
d (ω2n, χ2n+1) ≤ θ2nmax {d (ω0, χ1) , d (ξ0, κ1)} ,
d (ξ2n, κ2n+1) ≤ θ2nmax {d (ω0, χ1) , d (ξ0, κ1)} .

(2.3)

On the other hand, we have

d (ω2n+1, χ2n) = d (F (a2n+1, b2n+1) , G (p2n, q2n))

≤ θmax
{
d(fa2n+1, fp2n), d(fb2n+1, fq2n)

}
≤ θmax

{
d(ω2n, χ2n−1), d(ξ2n, κ2n−1)

}
,

(2.4)

and
d (ξ2n+1, κ2n) = d (F (b2n+1, a2n+1) , G (q2n, p2n))

≤ θmax
{
d(fb2n+1, fq2n), d(fa2n+1, fp2n)

}
≤ θmax

{
d(ξ2n, κ2n−1), d(ω2n, χ2n−1)

}
.

(2.5)

Combining (2.4) and (2.5), we get that

max {d (ω2n+1, χ2n) , d (ξ2n+1, κ2n)} ≤ θmax {d (ω2n, χ2n−1) , d (ξ2n, κ2n−1)}
≤ θ2max {d (ω2n−1, χ2n−2) , d (ξ2n−1, κ2n−2)}
...
≤ θ2nmax {d (ω1, χ0) , d (ξ1, κ0)} .

Thus,
d (ω2n+1, χ2n) ≤ θ2nmax {d (ω1, χ0) , d (ξ1, κ0)} ,
d (ξ2n+1, κ2n) ≤ θ2nmax {d (ω1, χ0) , d (ξ1, κ0)} .

(2.6)

Moreover,
d (ω2n, χ2n) = d (F (a2n, b2n) , G (p2n, q2n))

≤ θmax
{
d(fa2n, fp2n), d(fb2n, fq2n)

}
≤ θmax

{
d(ω2n−1, χ2n−1), d(ξ2n−1, κ2n−1)

}
,

(2.7)
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and
d (ξ2n, κ2n) = d (F (b2n, a2n) , G (q2n, p2n))

≤ θmax
{
d(fb2n, fq2n), d(fa2n, fp2n)

}
≤ θmax

{
d(ξ2n−1, κ2n−1), d(ω2n−1, χ2n−1)

}
.

(2.8)

Combining (2.7) and (2.8), we get

max {d (ω2n, χ2n) , d (ξ2n, κ2n)} ≤ θmax {d (ω2n−1, χ2n−1) , d (ξ2n−1, κ2n−1)}
≤ θ2max {d (ω2n−2, χ2n−2) , d (ξ2n−2, κ2n−2)}
...
≤ θ2nmax {d (ω0, χ0) , d (ξ0, κ0)} .

Thus,
d (ω2n, χ2n) ≤ θ2nmax {d (ω0, χ0) , d (ξ0, κ0)} ,
d (ξ2n, κ2n) ≤ θ2nmax {d (ω0, χ0) , d (ξ0, κ0)} .

(2.9)

Using the property (B4), we obtain

d (ω2n, χ2m) ≤ d (ω2n, χ2n+1) + d (ω2n+1, χ2n+1) + · · ·+ d (ω2m−1, χ2m) ,
d (ξ2n, κ2m) ≤ d (ξ2n, κ2n+1) + d (ξ2n+1, κ2n+1) + · · ·+ d (ξ2m−1, κ2m) ,

(2.10)

and
d (ω2m, χ2n) ≤ d (ω2m, χ2m−1) + d (ω2m−1, χ2m−1) + · · ·+ d (ω2n+1, χ2n) ,
d (ξ2m, κ2n) ≤ d (ξ2m, κ2m−1) + d (ξ2m−1, κ2m−1) + · · ·+ d (ξ2n+1, κ2n) ,

(2.11)

for each n,m ∈ N with n < m. Then, from (2.3), (2.6), (2.9), (2.10) and (2.11), we have

d (ω2n, χ2m) + d (ξ2n, κ2m)

≤ (d (ω2n, χ2n+1) + d (ξ2n, κ2n+1)) + (d (ω2n+1, χ2n+1) + d (ξ2n+1, κ2n+1))

+ · · ·+ (d (ω2m−1, χ2m−1) + d (ξ2m−1, κ2m−1)) + (d (ω2m−1, χ2m) + d (ξ2m−1, κ2m))

≤ 2(θ2n + θ2n+1 + · · ·+ θ2m−1)max
{
d(ω0, χ1), d(ξ0, κ1)

}
+ 2(θ2n+1 + θ2n+2 + · · ·+ θ2m−1)max

{
d(ω0, χ0), d(ξ0, κ0)

}
≤ 2

θ2n

1− θ
max

{
d(ω0, χ1), d(ξ0, κ1)

}
+ 2

θ2n+1

1− θ
max

{
d(ω0, χ0), d(ξ0, κ0)

}
→ 0 as n→ ∞.

Similarly, we can prove (d (ω2m, χ2n) + d (ξ2m, κ2n)) → 0 as n,m → ∞. This shows (ω2n, χ2m) and
(ξ2n, κ2m) are Cauchy bisequences in (A,B). Therefore,

lim
n→∞

(ω2n, χ2m) = lim
n→∞

(ξ2n, κ2m) = 0.

Since f(A∪B) is a complete subspace of (A,B, d), so {ω2n+1}, {χ2m+1}, {ξ2n+1}, {κ2m+1} ⊆ f(A∪B)
are converges in the complete bipolar metric space (f(A), f(B), d). Therefore, there exist u, v ∈ f(A)
and w, z ∈ f(B) with

lim
n→∞

ω2n+1 = w, lim
n→∞

ξ2n+1 = z, lim
n→∞

χ2n+1 = u, lim
n→∞

κ2n+1 = v. (2.12)
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Since f : A ∪ B → A ∪ B and u, v ∈ f(A), w, z ∈ f(B), there exist l,m ∈ A, r, s ∈ B such that
fl = u, fm = v and fr = w, fs = z. From (i) and (B4), we have

d (F (l,m), w) ≤ d (F (l,m), χ2n+1) + d (ω2n+1, χ2n+1) + d (ω2n+1, w)

≤ d (F (l,m), G(p2n+1, q2n+1)) + d (ω2n+1, χ2n+1) + d (ω2n+1, w)

≤ θmax
{
d(fl, fp2n+1), d(fm, fq2n+1)

}
+ d (ω2n+1, χ2n+1) + d (ω2n+1, w)

≤ θmax
{
d(fl, χ2n), d(fm, κ2n)

}
+ d (ω2n+1, χ2n+1) + d (ω2n+1, w) → 0 as n→ ∞.

Therefore, d (F (l,m), w) = 0 implies F (l,m) = w = fr. Similarly, we can prove that F (m, l) =
z = fs, F (r, s) = u = fl and F (s, r) = v = fm. Since (F, f) are ω-compatible mappings, we have
F (u, v) = fu, F (v, u) = fv and F (w, z) = fw, F (z, w) = fz. We prove that fu = u, fv = v and
fw = w, fz = z. Now,

d (fu, χ2n) = d (F (u, v), G(p2n, q2n))
≤ θmax {d(fu, fp2n), d(fv, fq2n)}
≤ θmax {d(fu, χ2n−1), d(fv, κ2n−1)} .

Letting n→ ∞, we get
d (fu, u) ≤ θmax {d(fu, u), d(fv, v)} . (2.13)

Also,
d (fv, κ2n) = d (F (v, u), G(q2n, p2n))

≤ θmax {d(fv, fq2n), d(fu, fp2n)}
≤ θmax {d(fv, κ2n−1), d(fu, χ2n−1)} .

Letting n→ ∞, we get
d (fv, v) ≤ θmax {d(fv, v), d(fu, u)} . (2.14)

Combining (2.13) and (2.14), we have

max {d(fu, u), d(fv, v)} ≤ θmax {d(fu, u), d(fv, v)}
< max {d(fu, u), d(fv, v)} ,

which implies that d(fu, u) = 0, d(fv, v) = 0 and so fu = u, fv = v. Similarly, we can show fw = w
and fz = z. Therefore,

F (w, z) = fw = w = fr = F (l,m), F (z, w) = fz = z = fs = F (m, l),
F (u, v) = fu = u = fl = F (r, s), F (v, u) = fv = v = fm = F (s, r).

On the other hand, from (2.12), we get

d (fl, fr) = d (u,w) = d
(
lim
n→∞

χ2n, lim
n→∞

ω2n

)
= lim

n→∞
d(ω2n, χ2n) = 0,

and
d (fm, fs) = d (v, z) = d

(
lim
n→∞

κ2n, lim
n→∞

ξ2n

)
= lim

n→∞
d(ξ2n, κ2n) = 0.
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Since G(A2 ∪ B2) ⊆ f(A ∪ B), so there exist a, b ∈ A and x, y ∈ B such that fa = u, fb = v
and fx = w, fy = z. Therefore, G(u, v) = fx = w, G(v, u) = fy = z and G(w, z) = fa = u,
G(z, w) = fb = v. Now, from (B4) and (i), we have

d (u,G(x, y))
≤ d (u, χ2n+1) + d (ω2n+1, χ2n+1) + d (ω2n+1, G(x, y))
≤ d (u, χ2n+1) + d (ω2n+1, χ2n+1) + d (F (a2n+1, b2n+1), G(x, y))
≤ d (u, χ2n+1) + d (ω2n+1, χ2n+1) + θmax {d(fa2n+1, fx), d(fb2n+1, fy)}
≤ d (u, χ2n+1) + d (ω2n+1, χ2n+1) + θmax {d(ω2n, fx), d(χ2n, fy)}
→ 0 as n→ ∞.

That is, d (u,G(x, y)) = 0 implies G(x, y) = u, and hence u = G(x, y) = fa. Similarly, we prove
v = G(y, x) = fb and w = G(a, b) = fx, z = G(b, a) = fy. Since (G, f) are ω-compatible, so
G(u, v) = fu, G(v, u) = fv and G(w, z) = fw, G(z, w) = fz. But, we have fu = u, fv = v and
fw = w, fz = z. Therefore,

G(w, z) = fw = w = fx = G(a, b), G(z, w) = fz = z = fy = G(b, a),
G(u, v) = fu = u = fa = G(x, y), G(v, u) = fv = v = fb = G(y, x).

On the other hand, from (2.12), we get

d (fa, fx) = d (u,w) = d
(
lim
n→∞

χ2n, lim
n→∞

ω2n

)
= lim

n→∞
d(ω2n, χ2n) = 0,

and
d (fb, fy) = d (v, z) = d

(
lim
n→∞

κ2n, lim
n→∞

ξ2n

)
= lim

n→∞
d(ξ2n, κ2n) = 0.

So u = w and v = z. Therefore, (u, v) ∈ A2 ∩ B2 is coupled fixed point of covariant mappings F,G
and f .
Now we prove the uniqueness, we begin by taking (u∗, v∗) ∈ A2 ∪ B2 be another fixed point of F,G
and f . If (u∗, v∗) ∈ A2, then we have

d (u, u∗) = d(F (u, v), G(u∗, v∗))
≤ θmax {d(fu, fu∗), d(fv, fv∗)}
≤ θmax {d(u, u∗), d(v, v∗)} ,

(2.15)

and
d (v, v∗) = d(F (v, u), G(v∗, u∗))

≤ θmax {d(fv, fv∗), d(fu, fu∗)}
≤ θmax {d(v, v∗), d(u, u∗)} .

(2.16)

Combining (2.15) and (2.16), we have

max {d(u, u∗), d(v, v∗)} ≤ θmax {d(u, u∗), d(v, v∗)}
< max {d(u, u∗), d(v, v∗)} .

Therefore, d (u, u∗) = 0, d (v, v∗) = 0 implies u = u∗, v = v∗. Similarly, if (u∗, v∗) ∈ B2, then we have
u = u∗ and v = v∗. Then (u, v) ∈ A2 ∩ B2 is unique coupled fixed point of covariant mappings F,G
and f . Finally we will show that u = v.

d (u, v) = d (F (u, v), G(v, u))
≤ θmax {d(fu, fv), d(fv, fu)}
≤ θmax {d(u, v), d(v, u)} ,

(2.17)
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and
d (v, u) = d (F (v, u), G(u, v))

≤ θmax {d(fv, fu), d(fu, fv)}
≤ θmax {d(v, u), d(u, v)} .

(2.18)

Combining (2.17) and (2.18), we get

max {d(u, v), d(v, u)} ≤ θmax {d(u, v), d(v, u)}
< max {d(u, v), d(v, u)} .

Therefore, d (u, v) = 0, d (v, u) = 0 ⇒ u = v. Hence u is the common fixed point of F,G and f . □

Corollary 2.5. Let (A,B, d) be a bipolar metric space and F : (A2, B2) ⇒ (A,B), f : (A,B) ⇒
(A,B) be covariant mappings satisfying:

(i) for all a, b ∈ A and p, q ∈ B with θ ∈ (0, 1),

d (F (a, b), F (p, q)) ≤ θmax {d(fa, fp), d(fb, fq)} ,

(ii) F (A2 ∪B2) ⊆ f(A ∪B),
(iii) (F, f) are ω-compatible,
(iv) f(A ∪B) is complete.

Then the mappings F and f have a unique common fixed point of the form (u, u).

Corollary 2.6. Let (A,B, d) be a complete bipolar metric space and F : (A2, B2) ⇒ (A,B) be a
covariant mapping such that

d (F (a, b), F (p, q)) ≤ θmax {d(a, p), d(b, q)} ,

for all a, b ∈ A and p, q ∈ B with θ ∈ (0, 1). Then, F has a unique common fixed point of the form
(u, u).

Example 2.7. Let Um(R) and Lm(R) be the set of all m ×m upper and lower triangular matrices
over R. Define d : Um(R)× Lm(R) → [0,∞) as

d(P,Q) =
m∑

i,j=1

|pij − qij|,

for all P = (pij)m×m ∈ Um(R) and Q = (qij)m×m ∈ Lm(R). Then obviously (Um(R), Lm(R), d) is a
Bipolar-metric space. Also, define
F,G : A2 ∪ B2 → A ∪ B as F (P,Q) = (

pij
8
+

qij
4
)m×m and G(P,Q) = (

pij
4
+

qij
2
)m×m where (P =

(pij)m×m, Q = (qij)m×m) ∈ Um(R)
2 ∪ Lm(R)

2.
Also, f : A ∪B → A ∪B as f(P ) = (2pij)m×m where P = (pij)m×m ∈ Um(R) ∪ Lm(R).
Consider,

d(F (P,Q), G(U, V ) = d
(
(
pij
8
+

qij
4
)m×m, (

uij

4
+

vij
2
)m×m

)
=

m∑
i,j=1

|(pij
8
+

qij
4
)− (

uij

4
+

vij
2
)|

≤
m∑

i,j=1

|pij
8
− uij

4
|+ | qij

4
− vij

2
|

≤ 1
8

m∑
i,j=1

|pij − 2uij|+ 1
4

m∑
i,j=1

|qij − 2vij|

≤ 1
8

m∑
i,j=1

|2pij − 2uij|+ 1
4

m∑
i,j=1

|2qij − 2vij|

≤ 3
8
max

{
d(fP, fU), d(fQ, fV )

}
.
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Clearly, F,G and f are satisfies all the conditions of Theorem 2.4 and (Om×m, Om×m) is unique
coupled fixed point.

3. Application to the existence of solutions of integral equations

The coupled fixed point theorem proved here pave the way for application on complete bipolar
metric spaces to prove the existence and uniqueness of a solution for a Fredholm nonlinear integral
equation.

Theorem 3.1. Let us Consider the integral equation

α(ν) =

∫
E1∪E2

(K1(ν, ϑ) +K2(ν, ϑ)) (H) dϑ+ F (ν), (3.1)

where H = f(ϑ, α(ϑ)) + g(ϑ, α(ϑ))), (ν, ϑ) ∈ E2
1 ∪ E2

2 and E1 ∪ E2 is a Lebesgue measurable set.
Suppose that the following assertions hold:

(i) K1 : E2
1 ∪ E2

2 → [0,+∞), K2 : E2
1 ∪ E2

2 → (−∞, 0] and F ∈ L∞(E1) ∪ L∞(E2), f, g :
(E1 ∪ E2)×R → R are integrable;

(ii) there exist i, j ∈ (0, 1
2
) such that

0 ≤ f(ν, α)− f(ν, β) ≤ i(α− β),

−j(α− β) ≤ g(ν, α)− g(ν, β) ≤ 0,

for ν ∈ E1 ∪ E2 and α, β ∈ R;

(iii) ||
∫

E1∪E2

(K1(ν, ϑ)−K2(ν, ϑ)) dϑ|| ≤ 1,

i.e. sup
ν∈E1∪E2

∫
E1∪E2

|K1(ν, ϑ)−K2(ν, ϑ)|dϑ ≤ 1,

for (ν, ϑ) ∈ E2
1 ∪ E2

2 .

Then the equation (3.1) has a unique solution in L∞(E1)
2 ∪ L∞(E2)

2.

Proof . Let U = L∞(E1) and V = L∞(E2) be two normed linear spaces, where E1, E2 are Lebesgue
measurable sets and m(E1 ∪E2) <∞. Let d : U × V → [0,+∞) be defined as d(Ω,Ψ) = ||Ω−Ψ||∞
for all (Ω,Ψ) ∈ U×V . Then (U, V, d) is a complete bipolar metric space. Define S : U2∪V 2 → U ∪V
by

S(α, β)(ν) =
∫

E1∪E2

K1(ν, ϑ) (f(ϑ, α(ν)) + g(ϑ, β(ν))) dϑ

+
∫

E1∪E2

K2(ν, ϑ) (f(ϑ, β(ν)) + g(ϑ, α(ν))) dϑ+ F (ν), ν ∈ E1 ∪ E2.

Now we have, d (S(α, β), S(κ, ξ)) = ||S(α, β)− S(κ, ξ)||∞.
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Let us first evaluate the following expression:

|(S(α, β), S(κ, ξ)) (ν)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
E1∪E2

K1(ν, ϑ) (f(ϑ, α(ν)) + g(ϑ, β(ν))) dϑ

+
∫

E1∪E2

K2(ν, ϑ) (f(ϑ, β(ν)) + g(ϑ, α(ν))) dϑ

−
∫

E1∪E2

K1(ν, ϑ) (f(ϑ, κ(ν)) + g(ϑ, ξ(ν))) dϑ

−
∫

E1∪E2

K2(ν, ϑ) (f(ϑ, ξ(ν)) + g(ϑ, κ(ν))) dϑ

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ ∫
E1∪E2

K1(ν, ϑ)(ψ)dϑ

∣∣∣∣∣+
∣∣∣∣∣ ∫
E1∪E2

K2(ν, ν)(ϕ)dϑ

∣∣∣∣∣
≤

∫
E1∪E2

K1(ν, ϑ) |ψ| dϑ−
∫

E1∪E2

K2(ν, ϑ) |ϕ| dϑ

≤ (i ∥α− κ∥∞ ji ∥β − ξ∥∞)
∫

E1∪E2

(K1(ν, ϑ)−K2(ν, ϑ))dϑ

where
ψ = f(ϑ, α(ν))− f(ϑ, κ(ν)) + g(ϑ, β(ν))− g(ϑ, ξ(ν)),

ϕ = f(ϑ, β(ν))− f(ϑ, ξ(ν)) + g(ϑ, α(ν))− g(ϑ, κ(ν)).

Then,
d (S(α, β), S(κ, ξ))

= ||S(α, β)− S(κ, ξ)||∞

≤ (i||α− κ||∞ + j||β − ξ||∞) ||
∫

E1∪E2

(K1(ν, ϑ)−K2(ν, ϑ)) dϑ||

≤ (i||α− κ||∞ + j||β − ξ||∞) sup
ν∈E1∪E2

∫
E1∪E2

|K1(ν, ϑ)−K2(ν, ϑ)|dϑ

≤ i||α− κ||∞ + j||β − ξ||∞

≤ θmax {||α− κ)||∞, ||β − ξ||∞}

≤ θmax {d(α, κ), d(β, ξ)} .
Hence, applying Corollary 2.6, we get the desired result. □

4. Application to Homotopy

Theorem 4.1. Let (A,B, d) be complete bipolar metric space, (U, V ) be an open subset of (A,B) and

(U, V ) be closed subset of (A,B) such that (U, V ) ⊆ (U, V ). Suppose H : (U
2 ∪ V 2

)× [0, 1] → A∪B
be an operator with following conditions are satisfying:

(i) u ̸= H(u, v, κ) and v ̸= H(v, u, κ) for each u, v ∈ ∂U ∪ ∂V and κ ∈ [0, 1],

(ii) for all u, v ∈ U , x, y ∈ V and κ ∈ [0, 1], θ ∈ (0, 1),

d (H(u, v, κ), H(x, y, κ)) ≤ θmax {d(u, x), d(v, y)} ,
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(iii) there exists M ≥ 0 such that

d(H(u, v, κ), H(x, y, ζ)) ≤M |κ− ζ|,

for every u, v ∈ U and x, y ∈ V and κ, ζ ∈ [0, 1].

Then H(., 0) has a fixed point ⇐⇒ H(., 1) has a fixed point.

Proof . Let the set

X = {κ ∈ [0, 1] : u = H(u, v, κ), v = H(v, u, κ) for some (u, v) ∈ U2 ∪ V 2},

Y = {ζ ∈ [0, 1] : x = H(x, y, ζ), y = H(y, x, ζ) for some (x, y) ∈ U2 ∪ V 2}.
Since H(., 0) has a fixed point in U2 ∪ V 2, so (0, 0) ∈ X2 ∩ Y 2.
Now we show that X2 ∩ Y 2 is both closed and open in [0, 1] and hence by the connectedness X =
Y = [0, 1].
Let ({κn}∞n=1 , {ζn}

∞
n=1) ⊆ (X, Y ) with (κn, ζn) → (κ, ζ) ∈ [0, 1] as n → ∞. We must show that

(κ, ζ) ∈ X2∩Y 2. Since (κn, ζn) ∈ (X, Y ) for n = 0, 1, 2, 3, · · · , there exist bisequences (un, xn), (vn, yn)
with un+1 = H(un, vn, κn), vn+1 = H(vn, un, κn) and xn+1 = H(xn, yn, ζn), yn+1 = H(yn, xn, ζn).
Consider,

d(un, xn+1) = d(H(un−1, vn−1, κn−1), H(xn, yn, ζn))
≤ θmax {d(un−1, xn), d(vn−1, yn)} ,

(4.1)

and
d(vn, yn+1) = d(H(vn−1, un−1, κn−1), H(yn, xn, ζn))

≤ θmax {d(vn−1, yn), d(un−1, xn)} .
(4.2)

Combining (4.1) and (4.2), we get

max {d(un, xn+1), d(vn, yn+1)} ≤ θmax {d(un−1, xn), d(vn−1, yn)}
≤ θ2max {d(un−2, xn−1), d(vn−2, yn−1)}
≤ θnmax {d(u0, x1), d(v0, y1)} .

Thus,
d(un, xn+1) ≤ θnmax {d(u0, x1), d(v0, y1)} ,
d(vn, yn+1) ≤ θnmax {d(u0, x1), d(v0, y1)} .

(4.3)

Similarly, we can prove

d(un+1, xn) ≤ θnmax {d(u1, x0), d(v1, y0)} ,
d(vn+1, yn) ≤ θnmax {d(u1, x0), d(v1, y0)} .

(4.4)

Also,
d(un, xn) ≤ θnmax {d(u0, x0), d(v0, y0)} ,
d(vn, yn) ≤ θnmax {d(u0, x0), d(v0, y0)} ,

(4.5)

for each n,m ∈ N with n < m. Using the property (B4) and (4.3), (4.4), (4.5), we have

d(un, xm) + d(vn, ym)

≤ (d(un, xn+1) + d(vn, yn+1)) + (d(un+1, xn+1) + d(vn+1, yn+1)) + · · ·
+ (d(um−1, xm−1) + d(vm−1, ym−1)) + (d(um−1, xm) + d(vm−1, ym))

≤ 2θn max {d(u0, x1), d(v0, y1)}+M |κn+1 − ζn+1|+ · · ·
+M |κm−1 − ζm−1|+ 2θm max {d(u0, x1), d(v0, y1)} → 0 as n,m→ ∞.
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It follows lim
n→∞

(d(un, xm) + d(vn, ym)) = 0. Similarly, we can show lim
n→∞

(d(um, xn) + d(vm, yn)) = 0.

Therefore, (un, xn) and (vn, yn) are Cauchy bisequence in (U, V ). By completeness, there exist
ξ, ν ∈ U and δ, η ∈ V with

lim
n→∞

un = δ, lim
n→∞

vn = η, lim
n→∞

xn = ξ, lim
n→∞

yn = ν. (4.6)

Now,

d(H(ξ, ν, κ), δ) ≤ d(H(ξ, ν, κ), xn+1) + d(un+1, xn+1) + d(un+1, δ)

≤ d(H(ξ, ν, κ), H(xn, yn, ζn))

+ d(H(un, vn, κn), H(xn, yn, ζn)) + d(un+1, δ)

≤ θmax {d(un, xn), d(vn, yn)}+M |κn − ζn|+ d(un+1, δ)

< max {d(un, xn), d(vn, yn)}
+M |κn − ζn|+ d(un+1, δ) → 0 as n→ ∞.

It follows d(H(ξ, ν, κ), δ) = 0 implies H(ξ, ν, κ) = δ. Similarly we get H(ν, ξ, κ) = η and H(δ, η, ζ) =
ξ, H(η, δ, ζ) = ν.
On the other hand, from (4.6), we get

d(ξ, δ) = d( lim
n→∞

xn, lim
n→∞

un) = lim
n→∞

d(un, xn) = 0,

d(ν, η) = d( lim
n→∞

yn, lim
n→∞

vn) = lim
n→∞

d(vn, yn) = 0.

Therefore, ξ = δ and ν = η and hence κ = ζ. Thus, (κ, ζ) ∈ X2 ∩ Y 2. Clearly X2 ∩ Y 2 is closed in
[0, 1].
Let (κ0, ζ0) ∈ (X, Y ), then there exist bisequences (u0, x0), (v0, y0) with u0 = H(u0, v0, κ0), v0 =
H(v0, u0, κ0) and x0 = H(x0, y0, ζ0), y0 = H(y0, x0, ζ0).
Since U2 ∪V 2 is open, then there exist r > 0 such that Xd(u0, r) ⊆ U2 ∪V 2 and Xd(v0, r) ⊆ U2 ∪V 2

and Xd(x0, r) ⊆ U2 ∪ V 2 and Xd(y0, r) ⊆ U2 ∪ V 2.
Choose κ ∈ (ζ0 − ϵ, ζ0 + ϵ), ζ ∈ (κ0 − ϵ, κ0 + ϵ) such that |κ− ζ0| ≤ 1

Mn <
ϵ
2
, |ζ − κ0| ≤ 1

Mn <
ϵ
2
and

|κ0 − ζ0| ≤ 1
Mn <

ϵ
2
.

Then for x ∈ BX∪Y (u0, r) = {x, x0 ∈ V : d(u0, x) ≤ r + d(u0, x0)},
y ∈ BX∪Y (v0, r) = {y, y0 ∈ V : d(v0, y) ≤ r + d(v0, y0)} and
u ∈ BX∪Y (r, x0) = {u, u0 ∈ U : d(u, x0) ≤ r + d(u0, x0)},
v ∈ BX∪Y (r, y0) = {v, v0 ∈ U : d(v, y0) ≤ r + d(v0, y0)} . Also

d(H(u, v, κ), x0) = d(H(u, v, κ), H(x0, y0, ζ0))
≤ d(H(u, v, κ), H(x, y, ζ0)) + d(H(u0, v0, κ), H(x, y, ζ0))
+d(H(u0, v0, κ), H(x0, y0, ζ0))

< 2
Mn−1 + θmax {d(u0, x), d(v0, y)} .

Letting n→ ∞, we get

d(H(u, v, κ), x0) ≤ θmax {d(u0, x), d(v0, y)} . (4.7)

Similarly, we can prove

d(H(v, u, κ), y0) ≤ θmax {d(v0, y), d(u0, x)} . (4.8)
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Combining (4.7) and (4.8), we get

max {d(H(u, v, κ), x0), d(H(u, v, κ), x0)} ≤ θmax {d(u0, x), d(v0, y)}
< max {d(u0, x), d(v0, y)}
≤ max {d(u0, x0) + r, d(v0, y0) + r} .

Thus, d(H(u, v, κ), x0) ≤ d(u0, x0) + r, d(H(u, v, κ), x0) ≤ d(v0, y0) + r. Similarly,
d(u0, H(x, y, ζ)) ≤ d(u, x0) ≤ r + d(u0, x0) and d(v0, H(y, x, ζ)) ≤ d(v, y0) ≤ r + d(v0, y0). On
the other hand,

d(u0, x0) = d(H(u0, v0, κ0), H(x0, y0, ζ0)) ≤M |κ0 − ζ0|
≤M 1

Mn ≤ 1
Mn−1 → 0 as n→ ∞,

and
d(v0, y0) = d(H(v0, u0, κ0), H(y0, x0, ζ0)) ≤M |κ0 − ζ0|

≤M 1
Mn ≤ 1

Mn−1 → 0 as n→ ∞.

So u0 = x0 and v0 = y0 and hence κ = ζ. Thus for each fixed κ ∈ (κ0 − ϵ, κ0 + ϵ), H(., κ) :
BX∪Y (u0, r) → BX∪Y (u0, r) and H(., κ) : BX∪Y (v0, r) → BX∪Y (v0, r). Thus, we conclude that

H(., κ) has a coupled fixed point in U
2∩V 2

. But this must be in U2∩V 2. Therefore, (κ, κ) ∈ X2∩Y 2

for κ ∈ (κ0 − ϵ, κ0 + ϵ). Hence (κ0 − ϵ, κ0 + ϵ) ⊆ X2 ∩ Y 2. Clearly X2 ∩ Y 2 is open in [0, 1]. To prove
the reverse, we can use the similar process. □

Theorem 4.2. Let (A,B, d) be complete bipolar metric space, (U, V ) be an open subset of (A,B) and
(U, V ) be closed subset of (A,B) such that (U, V ) ⊆ (U, V ). Suppose H : (U×V )∪(V ×U)× [0, 1] →
A ∪B be an operator with following conditions are satisfying:

(i) u ̸= H(u, v, κ) and v ̸= H(v, u, κ) for each u, v ∈ ∂U ∪ ∂V and κ ∈ [0, 1],

(ii) for all u, v ∈ U , x, y ∈ V and κ ∈ [0, 1], θ ∈ (0, 1),

d (H(u, x, κ), H(y, v, κ)) ≤ θmax {d(u, y), d(v, x)} ,

(iii) there exists M ≥ 0 such that

d(H(u, x, κ), H(y, v, ζ)) ≤M |κ− ζ|,

for every u, v ∈ U and x, y ∈ V and κ, ζ ∈ [0, 1].

Then H(., 0) has a fixed point ⇐⇒ H(., 1) has a fixed point.

Open Problems:

1) Prove analogue of the results obtained herein on “Bipolar Orthogonal Metric Spaces”. For more
details, see [4, 9, 10, 17].

2) Prove analogue of the results obtained herein on “Bipolar R-Metric Spaces”. For more details,
see [24].



14 Kishore, Rao, Işık, Rao, Sombabu

5. Conclusions

In this paper, we obtain the existence and uniqueness solution for two covariant mappings in
a complete bipolar metric spaces with an example. Also, we have provided some applications to
nonlinear integral equations as well as homotopy theory by using fixed point theorems in bipolar
metric spaces.
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[16] H. Işık and D. Turkoglu, Coupled fixed point theorems for new contractive mixed monotone mappings and appli-
cations to integral equations, Filomat 28 (2014) 1253-–1264.

[17] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, Fixed point theorems in R-metric spaces with applications,
AIMS Math. 5(4) (2020) 3125–3137.
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