
Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 37–44 
ISSN: 2008-6822 (electronic)
http://www.ijnaa.semnan.ac.ir
http://dx.doi.org/10.22075/i10.22075/IJNAA.2021.4653

A New Technique of Reduce Differential Transform
Method to Solve Local Fractional PDEs in
Mathematical Physics
Hassan Kamil Jassima,∗, Javad Vahidib,c

aDepartment of Mathematics, Faculty of Education for Pure Sciences, University of Thi-Qar, Nasiriyah, Iraq. 
bDepartment of Mathematics, Iran University of Science and Technology, Tehran 1684613114, Iran.
cDepartment of Mathematical Sciences, University of South Africa, Pretoria 0002, South Africa.

Abstract
In this manuscript, we investigate solutions of the partial differential equations (PDEs) arising in
mathematical physics with local fractional derivative operators (LFDOs). To get approximate solu-
tions of these equations, we utilize the reduce differential transform method (RDTM) which is based
upon the LFDOs. Illustrative examples are given to show the accuracy and reliable results. The
obtained solutions show that the present method is an efficient and simple tool for solving the linear
and nonlinear PDEs within the LFDOs.
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1. Introduction

There are many fractional differential equations, which are very helpful and applicable in engineer-
ing and mathematical physics such as diffusion equation, Klein-Gordon equation, Laplace equation,
Schrodinger equation and nonlinear gas dynamic equation. Some various techniques have recently
been developed to solve linear and nonlinear PDEs with LFDOs such as, LFFDM [1, 2, 3], LFADM
[3, 4], LFSEM [5, 6], LFLTM [7, 8], LFFSM [9, 10], LFVIM [11, 12, 13], LFDTM [14, 15], LFLDM
[16], LFHPM [17], and LFLVIM [18]

The local fractional RDTM is powerful approximate method for various kinds of linear and
nonlinear PDEs with LFDOs. The solution procedure of the LFRDTM is much less and simpler
than that in other numerical methods. The solution obtained by the LFRDTM is an infinite power
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series for initial value problems, which can be, in turn, expressed in a closed form, the exact solution.
Our aim is to extend the applications of the proposed method to obtain the analytical approximate
solutions to PDEs with LFDOs.

2. LFRDTM

As in [19, 20], the basic definition of reduced differential transform with local fractional operator
is proposrd as follows:

2.1. Definition
If φ(η, κ) is a Lf function, then the LF spectrum function

Φξ(η) =
1

Γ(1 + ξϑ)

[
∂ξϑφ(η, κ)

∂κξϑ

]
κ=κ0

, (2.1)

is RDT of the function φ(η, κ) via LFDO, where ξ = 0, 1, . . . , n.

2.2. Definition
The inverse of RDT of Φξ(η) via LFDO is defined as follows:

φ(η, κ) =
∞∑
ξ=0

Φξ(η)(κ− κ0)
ξϑ. (2.2)

From (2.1) and (2.2) we get

φ(η, κ) =
∞∑
ξ=0

(κ− κ0)
ξϑ

Γ(1 + ξϑ)

[
∂ξϑφ(η, κ)

∂κξϑ

]
κ=κ0

, (2.3)

From (2.3), it is obvious that the LFRDT is derived from the LF Taylor theorems.
If κ0 = 0, then (2.1) and (2.2) become

Φξ(η) =
1

Γ(1 + ξϑ)

[
∂ξϑφ(η, κ)

∂κξϑ

]
κ=0

, (2.4)

φ(η, κ) =
∞∑
ξ=0

Φξ(η)κ
ξϑ. (2.5)

The following theorems that can be deduced from (2.1) and (2.2) are presented below:

2.3. Theorem
Suppose that Φξ(η),Ψξ(η) and Θ(η) are RDT with LFDOs of the functions φ, ψ and θ respectively,

then
1. 2. If φ = ψ + θ then

Φξ(η) = Ψξ(η) + Θξ(η).

3. If φ = ψθ then

Φξ(η) =

ξ∑
l=0

Ψl(η)Θξ−l(η).
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4. If φ = aψ , where a is a constant, then

Φξ(η) = aΨξ(η).

5. If φ =
∂nϑψ

∂κnϑ
then

Φξ(η) =
Γ(1 + (ξ + n)ϑ)

Γ(1 + ξϑ)
Ψξ+n(η).

6. If φ =
ηnϑ

Γ(1 + nϑ)

κmϑ

Γ(1 +mϑ)
then

Φξ(η) =
ηnϑ

Γ(1 + nϑ)

δϑ(ξ −m)

Γ(1 +mϑ)
,

where

δϑ(ξ −m) =

{
1, ξ = m,
0, ξ ̸= m.

7. If φ =
∂nϑψ

∂ηnϑ
then

Φξ(η) =
∂nϑΨξ(η)

∂ηnϑ
.

For illustration of the methodology of the presented method, we write the PDE within LFDO as:

Lϑ [φ] +Rϑ [φ] +Nϑ [φ] = ω, (2.6)
φ(η, 0) = ϕ(η).

where Lϑ = ∂ϑ

∂κϑ and Rϑ are linear LFDO, Nϑ is nonlinear LFDO and ω(η, κ) is an inhomogenuous
term.

By taking the LFRDT on both sides of (2.6), we have

Γ(1 + (ξ + 1)ϑ)

Γ(1 + ξϑ)
Φξ+1(η) = Ωξ(η)−Rϑ [Φξ(η)] +Nϑ [Φξ(η)] , (2.7)

Φ0(η) = ϕ(η).

where Φξ(η) and Ωξ(η) are RDT with LFDOs of the functions φ(η, κ) and ω(η, κ) respectively.

3. Applications of Local Fractional RDTM to Solve PDEs Arising in Mathematical
Physics

3.1. Example
Let us start with local fractional diffusion equation given in the following form:

∂ϑφ(η, κ)

∂κϑ
− η2ϑ

Γ(1 + 2ϑ)

∂2ϑφ(η, κ)

∂η2ϑ
= 0, (3.1)

with initial value

φ(η, 0) =
η2ϑ

Γ(1 + 2ϑ)
, (3.2)
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Applying the local fractional RDTM for (3.1), we have

Φξ+1(η) =
Γ(1 + ξϑ)

Γ(1 + (ξ + 1)ϑ)

[
η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦξ(η)

∂η2ϑ

]
, (3.3)

where

Φ0(η) =
η2ϑ

Γ(1 + 2ϑ)
. (3.4)

Hence, from (3.3) and (3.4), we give the components as follows:

Φ1(η) =
1

Γ(1 + ϑ)

[
η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦ0(η)

∂η2ϑ

]
=

1

Γ(1 + ϑ)

η2ϑ

Γ(1 + 2ϑ)
,

Φ2(η) =
Γ(1 + ϑ)

Γ(1 + 2ϑ)

[
η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦ1(η)

∂η2ϑ

]
=

1

Γ(1 + 2ϑ)

η2ϑ

Γ(1 + 2ϑ)
,

Φ3(η) =
Γ(1 + 2ϑ)

Γ(1 + 3ϑ)

[
η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦ2(η)

∂η2ϑ

]
=

1

Γ(1 + 3ϑ)

η2ϑ

Γ(1 + 2ϑ)
,

...

Therefore, φ(η, κ) is evaluted as follows

φ(η, κ) =
∞∑
ξ=0

Φξ(η)κ
ξϑ

=
η2ϑ

Γ(1 + 2ϑ)
Eϑ(κ

ϑ), (3.5)

which is exactly the same as that obtained by LFLVIM [18].

3.2. Example
Let us consider Klein–Gordon equation within local fractional operators:

∂2ϑψ

∂κ2ϑ
− ∂2ϑψ

∂η2ϑ
− ψ = 0, 0 < ϑ ⩽ 1 (3.6)

is presented and its initial valuses are defined as follows:

ψ(η, 0) =
ηϑ

Γ(1 + ϑ)
,
∂ϑψ(η, 0)

∂κϑ
= 0. (3.7)

Implementing the RDTM via local fractional derivative to (3.6), we have

Γ(1 + (ξ + 2)ϑ)

Γ(1 + ξϑ)
Ψξ+2(η)−

∂2ϑΨξ(η)

∂η2ϑ
−Ψξ(η) = 0, (3.8)
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which equivalent to the following formula

Ψξ+2(η) =
Γ(1 + ξϑ)

Γ(1 + (ξ + 2)ϑ)

[
∂2ϑUξ(η)

∂η2ϑ
+Ψξ(η)

]
, (3.9)

where
Ψ0(η) =

ηϑ

Γ(1 + ϑ)
,Ψ1(η) = 0. (3.10)

Following (3.9) and (3.10):

Ψ2(η) =
1

Γ(1 + 2ϑ)

[
∂2ϑΨ0(η)

∂η2ϑ
+Ψ0(η)

]
=

1

Γ(1 + 2ϑ)

ηϑ

Γ(1 + ϑ)
,

Ψ3(η) =
Γ(1 + ϑ)

Γ(1 + 3ϑ)

[
∂2ϑΨ1(η)

∂η2ϑ
+Ψ1(η)

]
= 0,

Ψ4(η) =
Γ(1 + 2ϑ)

Γ(1 + 4ϑ)

[
∂2ϑΨ2(η)

∂η2ϑ
+Ψ2(η)

]
=

1

Γ(1 + 4ϑ)

ηϑ

Γ(1 + ϑ)
,

Ψ5(η) =
Γ(1 + 3ϑ)

Γ(1 + 5ϑ)

[
∂2ϑΨ3(η)

∂η2ϑ
+Ψ3(η)

]
= 0,

Ψ6(η) =
Γ(1 + 4ϑ)

Γ(1 + 6ϑ)

[
∂2ϑΨ4(η)

∂η2ϑ
+Ψ4(η)

]
=

1

Γ(1 + 6ϑ)

ηϑ

Γ(1 + ϑ)
,

...

Therefore:

ψ(η, κ) =
∞∑
ξ=0

Ψξ(η)κ
ξϑ

=
ηϑ

Γ(1 + ϑ)
coshϑ(κ

ϑ), (3.11)

which is exactly the same as that obtained by LFSEM [6].

3.3. Example
Consider the local fractional Schrodinger equation given in the following form:

∂ϑφ(η, κ)

∂κϑ
= − hϑ

2miϑ
∂2ϑφ(η, κ)

∂η2ϑ
, (3.12)
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with initial value

φ(η, 0) =
η2ϑ

Γ(1 + 2ϑ)
, (3.13)

Applying the local fractional RDTM for (3.12) and (3.13), we have

Γ(1 + (ξ + 1)ϑ)

Γ(1 + ξϑ)
Φξ+1(η) = − hϑ

2miϑ
∂2ϑΦξ(η)

∂η2ϑ
, (3.14)

which reduces to

Φξ+1(η) =
Γ(1 + ξϑ)

Γ(1 + (ξ + 1)ϑ)

[
− hϑ
2miϑ

∂2ϑΦξ(η)

∂η2ϑ

]
, (3.15)

where

Φ0(η) =
η2ϑ

Γ(1 + 2ϑ)
. (3.16)

Hence, from (3.15) and (3.16), we give the components as follows:

Φ1(η) =
1

Γ(1 + ϑ)

[
− hϑ
2miϑ

∂2ϑΦ0(η)

∂η2ϑ

]
= − hϑ

2miϑ
1

Γ(1 + ϑ)
,

Φ2(η) =
Γ(1 + ϑ)

Γ(1 + 2ϑ)

[
− hϑ
2miϑ

∂2ϑΦ1(η)

∂η2ϑ

]
= 0,

Φ3(η) = 0,
...

and so on. Therefore, φ(η, κ) is evaluted as follows

φ(η, κ) =
∞∑
ξ=0

Φξ(η)κ
ξϑ

=
η2ϑ

Γ(1 + 2ϑ)
+ iϑ

hϑ
2m

κϑ

Γ(1 + ϑ)
(3.17)

which is exactly the same as that obtained by LFSEM [5].

3.4. Example
Let us consider the following nonlinear gas dynamics equation involving LFDOs:

∂ϑφ

∂κϑ
+ φ

∂ϑφ

∂ηϑ
+ φ [φ− 1] = 0, 0 < ϑ ⩽ 1 (3.18)

with the initial value conditions as follows:

φ(η, 0) = Eϑ(−ηϑ). (3.19)

Applying the LFRDT to both sides of equation (3.18), we have

Γ(1 + (ξ + 1)ϑ)

Γ(1 + ξϑ)
Φξ+1(η) +

ξ∑
l=0

Φl(η)
∂ϑ

∂ηϑ
Φξ−l(η) +

ξ∑
l=0

Φl(η)Φξ−l(η)− Φξ(η) = 0, (3.20)



A New Technique of RDTM to Solve LFPDEs x (xxxx) No. x,xx–xx 7

which equivalent to the following formula

Φξ+1(η) = − Γ(1 + ξϑ)

Γ(1 + (1 + ξ)ϑ)

[
ξ∑

l=0

Φl(η)
∂ϑ

∂ηϑ
Φξ−l(η) +

ξ∑
l=0

Φl(η)Φξ−l(η)− Φξ(η)

]
. (3.21)

From equation (3.19), we obtain
Φ0(η) = Eϑ(−ηϑ). (3.22)

Therefore, from equations (3.21) and (3.22), we give the components as follows

Φ1(η) = − 1

Γ(1 + ϑ)

[
Φ0(η)

∂ϑ

∂ηϑ
Φ0(η) + Φ0(η)Φ0(η)− Φ0(η)

]
= − 1

Γ(1 + ϑ)

[
−Eϑ(−2ηϑ) + Eϑ(−2ηϑ)− Eϑ(−ηϑ)

]
,

=
1

Γ(1 + ϑ)
Eϑ(−ηϑ),

Φ2(η) = − Γ(1 + ϑ)

Γ(1 + 2ϑ)

[
Φ0(η)

∂ϑ

∂ηϑ
Φ1(η) + Φ1(η)

∂ϑ

∂ηϑ
Φ0(η) + 2Φ0(η)Φ1(η)− Φ1(η)

]
=

1

Γ(1 + 2ϑ)
Eϑ(−ηϑ),

Φ3(η) =
Γ(1 + 2ϑ)

Γ(1 + 3ϑ)

[
Φ0

∂ϑ

∂ηϑ
Φ2 + Φ1

∂ϑ

∂ηϑ
Φ1 + Φ2

∂ϑ

∂ηϑ
Φ0 + 2Φ0Φ2 + Φ1Φ1 − Φ2

]
=

1

Γ(1 + 3ϑ)
Eϑ(−ηϑ),

and so on. Hence, the solution of equation (3.18) is

u(η, κ) =
∞∑
ξ=0

Uξ(η)κ
ξϑ

= Eϑ(κ
ϑ − ηϑ), (3.23)

4. Conclusion

In this work, the local fractional RDTM was utilized for the PDEs arising in mathematical physics
within LFDOs such as diffusion, wave, Schrodinger and nonlinear gas dynamic equations. The local
fractional RDTM introduces a significant improvement in the fields over existing techniques because
it takes less calculations and the number of iteration is less compared by other methods.The present
method is shown that is an effective method to obtain the analytical approximate solutions for the
PDEs within LFDOs.
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