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Abstract
A primary aspect of human aging is progressive neurological dysfunction. Due to the fundamental
variations in aging in mice and humans, it is difficult to obtain and research effective mouse models.
There are two types of tissue phenotypes that are distinct; one is the tissue for retina and one for the
hippocampus. Each form has three strains. A variational formulation for sparse approximations is in-
troduced in this work, inferring both the kernel hyper-parameters and inducing inputs by maximising
a lower bound of probability of true log marginal. In order to account for more complexity with the
time series, a model is built on this series with a correlated human model performance. The molecular
senescence of the hippocampus and retina, both with accelerated neurological senescence (SAMP10
and SAMP8) models were presented. The purpose of the study is to specify the relationship between
these genes or pathways that would provide insight into the mechanism for this phenotype which will
be superior to the current incomplete state-of-the-art approximations. Furthermore, the combined
study of the essential features of inbred strains and profiling of gene expression can help determine
which genes are essential for complex phenotypes. However, the identification, sequencing and gene
expression of full-genome polymorphism of inbred mouse strains with intermediate.

Keywords: Sparse Gaussian Process (Classification and Regression), Puma Package,
Coregionalisation Model, Senescence-Accelerated Mice strains.

1. Introduction
Aging is outlined by an increase in the probability of death overtime related to characteristic changes
in composition. Aging [1] [2], a time-related deterioration of physiological functions, occurs in the
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organism’s cell, tissue and organs, leading [3][4] to changes such as pigmentation of skin, organ
senescence and skin wrinkling. Aging [5] itself cannot be considered an illness, but poses risk for
the practical decay of many organs. Particularly, aging is at the centre of age-related diseases such
as insanity. The S8 strain is a model of super brain aging of learning and defects of memory. The
hippocampus is a crucial part of the visceral brain, precisely governing feeling and noesis [3].

To obtain insights into the means of improving psychological features for reversal of aging in the
S8 strain, we tend to additionally examine the structure of the vegetative cells in the of hippocampal
region [3]. The gene expression between the senescence-resistant and senescence-prone strains might
well be initial indicators for the aging or might indicate accelerated senescence within SAMP8 and
SAMP10 strains. There are many dropped genes in the metaphysics of the fascinating cistron (GO)
class as concluded by the enrichment analysis of cistron victimisation of the GO[4]. For each of the
experimental procedures, the performance of real-world and analytical methodologies was compared
to determine organic phenomenon changes; 10 genes were selected from the analysis of the hip-
pocampus (from humans not employed in the analysis of microarray). Of the 10 genes examined, the
modifications of zfgh7 expression for genes were fixed with a change bigger than three-fold [4]. The
authors faced challenges in computational biology to build a speed model with the highest accuracy
for predicting the behaviour gene in both retina and hippocampus [4][5].

The structure of this manuscript is as follows: Section 2 assesses the general aspects of aging, com-
putations aspects and pathway analysis; Section 3 illustrates the methodology adopted for the study.
Section 4 presents the results and their discussion. Finally, Section 5 describes some conclusions for
this work.

2. METHODS

A brief description of aging and the techniques of machine learning adopted in this work is
presented in this section. Subsequently, the use of the adapted analysis of the 16S sequence datasets
is presented.

2.1. General aspects of aging
2.1.1. The differences strains in genes expression

The aging of the hippocampus and the retina were analysed; it is noteworthy that specific tran-
scriptional events happened within the retina and hippocampus for each strain in the aging process
[6]. In the retina, groups of genes are involved in the perception of brightness and other elements.
In the hippocampus, this included genes involved in learning, behaviour and heat-shock response.

In SAMP strains, the S10 strain is used as a model for the study of brain aging and age-related
neurodegenerative conditions. Aging brains of SAMP10 mice are characterised by many features:
retraction of the dendritic of impaired learning, frontal atrophy, cortical neurons, etc. [7]. Thus, S8
and S10 contribute to a model of senescence acceleration as well as to a promising clinicopathological
model of therapeutic intervention for Alzheimer’s disease (AD) and other such diseases [8][9][10].

2.2. Computations aspects
2.2.1. Gaussian process (GP)

One of the Bayesian methods for the supervised learning task is a Gaussian Process (GP) which
is used for non-linear regression or classification for the assumption that any finite linear combination
of training samples will be normally distributed. it is a building block for additional sophisticated
machine learning applications[11][12][13]. The GP associates a random variable for a jointly Gaussian



Predicting the Behaviour of the Senescence-Accelerated Mouse (SAM) Strains (SAMPs and
SAMR) Using Machine Learning Algorithm
Volume 11, Special Issue, Winter and Spring 2020, 433-444 435

variable that is a set of inputs for the associated random variables. It includes characterised random
functions using functions of mean with kernel (covariance function) [14].

A GP is a stochastic method for the feature space in which the distribution p(l(m1), l(m2), , l(mn))
of a function l(m), for the set of points m1,m2, ,mn with that space is Gaussian. l(m) = f(m) + ϵ
where ϵ is σ2

nI noise term. Kl has a full rank with an inverse [8]. GP prior is formulated as (f) latent
function as shown in Eq (1)

p(fm) = f |m ∼ GP (f ;mean(m), Kf (mi,mj)), (1)
orp(f |m) = 1/((2π)(n/2)[[|K]f ]

(1/2))exp(−1/2(f −mean)TK
(−1)
l (f −mean))

Where the covariance and the mean functions as Eq(2)

mean(m) = f(m), kf (mimj) (2)
cov =< (f(mi)−mean(mi))(f(mj)−mean(mj)) > .

Recently, a conventional line of research is covariance functions (kernels) because of the extensive
Gaussian processes’ application, first in machine learning for the geostatistics community, regression
and classification [8][15]. The joint amplitude-time of a Gaussian process might be useful in this
regards [27].

2.2.2. Covariance functions
The kernel feeds the covariance function where a covariance Kx;x0 matrix for each pair of random

variables at input points x and x0 has a GP used for training and manipulation of the K_(x[, x]0)
using the training set. Computing the covariance matrix(kernel) inversion leads to the complexity
of GP as O(n3). Therefore, the GP is prevented from being applied to huge training data points
[16] [17] [18]. In this work, the white function and Ornstein-Uhlenbeck (OU) were used with the
coregionalisation model[19].

2.2.2.1 Coregionalisation model
The outputs of independent random functions are expressed as linear combinations using a linear

model of coregionalisation model[11][20][21]. The resulted model is a GP if the independent random
functions are GP or a positive semi-definite kernel [22][23].

Let U outputs fu(x)
U
u=1

as well as x ∈ Rp, is shown fu.

fu(x) = ΣP
p=1(a(u,p)sp(x)) (3)

Where the independent functions s(x) and a(u,p) are scalar coefficients with 0 mean, the covariance
k

p(x;x;′ )
is cov[sp(x), s(p′ )(x′ )], if p = p

′ else 0 [24] [25]. The Eq(4) explains a cross covariance between
fu(x) and f(u′ )(x) functions.

cov[fu(x), f(u′ )(x′ )] = ΣP
p=1Σ

(Rp)

(i=1)[a
i
(u,p)a

i
(u′ ,p)

kp(x, x
′
)] (4)

= ΣP
p=1[b(u,u′ )

pkp(x, x
′
)]

This spi(x) where i = 1, . . . , Rp and p = 1, . . . , P has ((0) mean, kp(x, x
′
) is cov[s

i(x)
p , s

(i
′
)

(p′ )
(x)

′
] if

i = i
′ ,and p = p

′ . But cov[fp(x), f(p′ )(x′ )] covariance ) is given by �((x, x′
))(u,u′ ) and the K(x, x

′
) is

written as Eq(5).

K(x, x
′
) = ΣP

(p=1)BpKp(x, x
′
) (5)
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The coregionalisation matrix is Bp ∈ R(U×U), and the kernel results from Latent Matric Coregional-
isation (LMC), which is a summation of the products of two kernel (covariance) functions; the first
model depends on the input vector x and outputs. In the second model, the input dependence with
independence of �{fu(x)}Uu=1 is called the covariance function Kp(x, x

′
)) [26] [19].

2.2.3. Sparse Gaussian process methods
The Gaussian process (GP) is a famous and sophisticated method for Bayesian non-parametric

non-linear classification and regression [8][28]. However, due to its non-parametric nature, it cannot
be directly applied to the real world and is intractable for large datasets where it causes computational
problems and requires O(n3) computation time where n is the training data. Therefore, many studies
have attempted to obtain sparse approximations of the complete Gaussian process to reduce this
complexity down to M2N [29] [30].

These methods include choosing a subset of the M-size training data (active) on which a com-
putation is based to speed up GP learning; GP through M < N inducing point f− be estimated to
obtain (SPGP) prior : p(f) =

∫
df̄

∏
n p(fn|f̄)p(f̄)

GP prior SPGP prior
N(0, KN) ≈ .p(f) =N(0, KNMK

(−1)
M KMN + .Λ)

Where SPGP covariance upended in O(M2N) ≪ O(N3) is faster than GP. SPGP is equal or
similar to GP with covariance that is non-stationary and parameterised by X−. The data {X, y
summation with noisy σ2, the predicting variance and mean can be computed in O(M2)and O(M)
per test case, respectively [31][32].

The selection of the kernel hyper-parameters and the inducing inputs are required for the Sparse
Gaussian process that uses making variables. We applied this technique to regression and found the
affected genes in the retina and hippocampus tissues with three strains for young and old humans
[33][34][35].

An objective function used in relation to the projected process approximation, Eq(6), is a form

F = log[N(y|0, σ2I +Qnn)] (6)

of log marginal likelihoods.
In PP, Qnn (an approximation of the true Knn.) is KnmKmm(−1)Kmn, where Kmn refers to the

m× n cross covariance matrix between inducing and training points.

Qnn = diag[Knn −Knm ∗K(−1)
mm ∗Kmn] +Knm ∗K(−1)

mm ∗Kmn (7)

Knm = KT
mm, and Kmm is the m×m matrix on the inducing inputs.

In SPGP, when modifying the GP prior, the F is obtained when comparing Eq(2) with Eq(3). The
inducing inputs Xm show the role of more hyper-parameters of kernel (similar to θ) with parametrised
Qnn.

In extra hyper-parameters (similar θ), the inducing input Xm is an important factor where it
parametrises the matrix Qnn as continuous optimisation of F heavily parametrised with respect to
Xm does not reliably estimate the same Gaussian process model.
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2.3. The pathway analysis
Pathway analysis is used to obtain a perception of the motivating biology of the gene expression.

It can increase the explanatory power and decrease complexity; gene profiling and high-throughput
sequencing are used to examine whether a gene or a list of genes are factors for a phenomenon which
can be used to analyse gene ontology (GO) and for further comparisons.

3. Methodology
The methodology focused on a set of important genes and pathway of molecular indices of the be-

haviour of the retina and hippocampus tissues in SAMs strains. The general stages of this manuscript
are described in Fig. 1. Downloading the dataset is the first step followed by computation of the
gene expression values from “.cel files”. Thereafter, normalisation of the gene expression values train-
ing data (Y ) for three strains is performed with respect to two factors (old and young age) with
two or three replicates with its dimensional (num_genes(PorbeID), num_points); in this step, the
statistical student’s t test was utilised as shown in Eq(8).

t =
x̄− u

s/
√
n

(8)

Where x̄ mean of x, s is standard deviation.[36] [4]
In this model, the Y with the parameters were the inputs. In the first step, creating a matrix

depended on the conditions (the experiments (time series)), number of tissues, number of strains,
number of replicates for young and old human where the matrix dimensionality is (num _ times
series, coregionalise _ dim); the X has 27 rows and four columns as in Fig1. The optimisation
process was used to infer and optimise the hyper-parameters. Then one of the two models was
selected depending on the highest value of likelihood for each gene. For each case there is one model
for each gene. After optimisation stage, the Logit and ODDs was computed as Eq(9) and Eq(10)
depending the accuracy of one model with the others. Depending on the largest probability value,
one model was selected.

logit = −log((1/p)− 1) (9)
The ratio of these two probabilities are defined as follows:

ODDs = p/1− p (10)

• Prediction making
The prediction of the variance and mean matrixes were computed using the previous equations that
has two steps. The best model is shown and the genes that change their behaviour depending on
the retina and hippocampus types were selected with three cases that were plotted separately. After
this process, pathways of genes were examined in DAVID.
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Figure 1: Highlighted boxes represent the sequence of involved steps.

4. Results

4.1. Downloading the dataset
This work demonstrates the human model that has a ID of GEO Series file (GSE6238) which

was downloaded for this experiment as shown in Figure 2. The description of dataset in presented
in Table I. This explains the details of number of tissues and strains and number of the types for
each strain and number of the replicates for each type. The discussed data was deposited in NCBI’s
Gene Expression Omnibus are available.

Table 1: Description of Dataset
Title of Dataset GSE6238

Characteristics of Attribute Real
Characteristics of Data Set Real

Missing Values Yes
Number of Attributes 27
Number of Instances 12422

Publication https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6238 [6]

4.2. Results of prepossessing stage
In this stage, two functions were applied (the Mmgmos and RMA functions) for the analysis to

obtain the values of gene expression. The Mmgmos method in the Puma package and RMA method
in Limma package via R language were used as shown in Figure 3.
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4.3. Building the X matrix
The matrix of time series (X) was computed for the correlation among two tissues and three

strains (Samp8, Samp10, SAMR) with two or three replicates for young and old participants where
X is shown as Table 2.

Figure 2: A form of Data Set

Figure 3: Boxplot of computing the Gene Expression using a) RMA method, b) mmgmos method.

4.4. The Model’s results
We applied the model for each gene; in this work, all genes (12422) were trained in two models. Af-

ter the training process, the maximum of probability was the criteria to select the best model. These
models are sorted and one is subsequently selected. In this paper, two models were obtained; the first
used the OU with white functions, and the second was applied with only white covariance function.
For example, in the first model, the parameters for the gene (ocm), probe ID (”101174at”)wasused.
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The comparison step used the likelihood value; One model was selected for the same gene (ocm),
where the best model is the first; its likelihood is (-23.7141012439). Where there were two models
for each gene (12422 genes), the models were sorted the one with the highest probability value for
each gene (12422 genes) was selected.

Table 2: A Matrix of time series
Time series Samp10& Samp8& SamR Samp10& Samp8& SamR (Young &Old with replicates)
30 (young) 0 0 0
30 (young) 0 0 0

30 (old) 0 0 1
30 (old) 0 0 1

30 (young) 0 1 0
30 (young) 0 1 0

30 (old) 1 0 0
30 (old) 1 0 0

30 (young) 1 0 1
30 (young) 1 0 1

30 (old) 1 1 0
30 (old) 1 1 0

80 (young) 0 0 0
80 (young) 0 0 0

80 (old) 0 0 1
80 (old) 0 0 1
80 (old) 0 0 1

80 (young) 0 1 0
80 (young) 0 1 0

80 (old) 1 0 0
80 (old) 1 0 0
80 (old) 1 0 0

80 (young) 1 0 1
80 (young) 1 0 1

80 (old) 1 1 0
80 (old) 1 1 0
80 (old) 1 1 0

• Results of posterior step
The posterior mean and variance were computed. There are parameters necessarily built to compute
it; Xnewhastestpoints(testdata).

Thereafter, DAVID was used to check the genes. The majority of the changes of the age-linked
genes were strain specific with only some usual pathways found for accelerated neurological and
normal aging. Screening of polymorphism guided to the identification of mutations that have a
direct influence on important disease processes, including a mutation in a fibroblast growth factor
gene and a mutation in and ectopic expression of the gene which is involved in inflammatory response.
This work examined the expression levels of two differentially genes. The analysis was performed
on SAMP8, SAMP10, and SAMR1 mice. There were more expressions of genes in the retina and
hippocampus of SAMP8 than SAMR1 and more abundant genes in the retina and hippocampus of
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SAMP8 mice than SAMR1. Increased signal in Samp8 and Samp10 retina and hippocampus was
relative to SAMR. There were dropped genes in the GO categories.
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Figure 4: The results of models explains the behaviour of genes expression.

5. Conclusions

There are multiple tissues and processes involved in the aging process, and a set of genes and
pathways are also involved in the same. In the pathology of SAMP8, SAMP10 and SAMR mice,
gene expressions with some important candidates were associated. The multiple strain tissue analysis
with the integration of gene expression derived from many experiments was essential for decoding
the molecular biology of the aging process in humans and animals. Furthermore, relating the ob-
tained knowledge from all genome sequencing of many strains with analyses of gene expressions with
phenotypic contrast will help enhance the knowledge regarding the process of aging. The used Sparse
Gaussian process considered multiple replicates. For validation, a widely acceptable gene ontology
was demonstrated as well as a tool for functional annotation was used to indicate highlighted genes
and their obtained characteristics using this research. These results led to the achievement that this
model developed basing SGP can successfully predict genes. These results can be helpful for further
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research and analysis.
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