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Abstract

In this study two actual types of problems are considered and solved: 1) determining the maximum
common connected fragment of the T -tree (T -directed tree) which does not change with time; 2)
determining all non-isomorphic maximum common connected fragments of the T -tree (T -directed
tree) which do not change with time. The choice of the primary study of temporal directed trees and
trees is justified by the wide range of their practical applications. Effective method for their solution
is proposed. Examples of the solution of the problem for temporal trees and temporal directed
trees are given. It is shown that the experimental estimates of the computational complexity of the
solution for problems of the temporal directed trees and the temporal trees.

Keywords: maximum common fragments, temporal tree, temporal directed tree, methods of
solution, graph-dynamics.

1. Introduction

We can say that the study [1] is one of the first in graph-dynamics, that is, in the analysis of di-
graphs whose structure changes with time ( T -digraphs). The problem of analysis includes the study
of changing the global and local characteristics of T -digraphs. The set of methods for describing and
studying T -digraphs was called graph-dynamics. The most significant problems of graph-dynamics
were:
1) the problem of determining the distance, giving an idea of the stability of changes in the struc-
ture of the T -digraph (graph trajectories) with respect to small perturbations and the monotony
in the sense of this distance of processes in graph-dynamics; 2) the problem of determining in the
T -digraph the fragment that does not change or little change with time. In connection with the
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expansion of practical applicability spheres in the analysis of temporal networks (computer, social,
communication, etc.), since 2006 , the studies on graph-dynamics have been actualized [2]-[15]. In
([9], [11], [13],[15]) the following are distinguished as actual applied problems:
1) determining the maximum subnet of the corporate social network (CSN); which does not change
with time. 2) analysis of changes in the time of the CSN structures in particular, communication
networks of the company’s employees; 3) establishing the direction of changing the structure of the
network in order to increase the validity of management decisions, etc. However, the field of research
on solving new problems specific to graph-dynamics is not disclosed in the modem scientific refer-
ences. It should be noted that the paper [6] , in which for the first time two methods were proposed,
which allows on the basis of complexity models to study the changes in local and global properties
of T -digraphs, determine the similarity of T -digraphs and identify trends of change for the prop-
erties of T -digraphs. In all examples, the structure in the simplest and effectively analyzed case is
adequately displayed by a tree, directed tree and in the most complex by a network or digraph. In
this study, two problems are considered and solved:
1) determining the maximum common connected fragment of the T -tree ( T -directed tree) which
does not change with time; 2) determining all non-isomorphic maximum common connected frag-
ments of the T -tree (T -directed tree) which do not change with time.
The choice of the primary study of temporal directed trees and trees is justified by the wide range of
their practical applications, for example, in the study of the dynamics of changing: 1 ) the nomencla-
ture of goods or products [1]; 2 ) the administrative structures of the organization, city, state [1]; 3)
tree-like configuration management structures [16]. In addition, it is established that the following
problems can be effectively solved: 1 ) determining the maximum common fragment of two trees
(directed trees); 2) determining the orbits of the auto-morphisms group of the tree vertices (directed
tree vertices); 3 ) disassembling the tree (directed tree) into non-isomorphic subtrees; 4) determining
the isomorphic embedding of one tree (directed tree) in another tree (directed tree) [16].

2. Basic Definitions

Directed tree is a connected acyclic digraph. Below we give all definitions for the temporal
directed tree.
The triple ~G =

〈
V (t), E(t), T

〉
is called the temporal directed tree, where V (t) is the vertex set of ~G at

time t with the number of vertices
∣∣V (t)

∣∣ = p(t), T = {t1, . . . , ti, . . . , tn} is the set of natural numbers

that define (discrete) time, E(t)− the family of correspondences or mappings Γt ∈ E(t) of the set of

vertices V (t) into itself at time t ∈ T . By t ~G, we denote ~G -directed tree at time t. If we remove one
or some of vertices and incident edges (directed edges) in t ~G, we obtain its fragment ~f .

The directed tree t1 ~G =
〈
V (t1), E(t1), T

〉
is isomorphic to the directed tree t2 ~G =

〈
V (t2), E(t2), T

〉
(denoted by t1 ~G ≈ t2 ~G

)
, if there exists a mapping ϕ : V (t1) → V (t2),such that,(

∀vi, vj ∈ V (t1)
) (
〈vi, vj〉 ∈ E(t1) ↔ 〈ϕ (vi) , ϕ (vj)〉 ∈ E(t2)

)
, where ϕ (vi) , ϕ (vj) ∈ V (t2).

The directed tree t1 ~G =
〈
V (t1), E(t1), T

〉
is isomorphically embedded in the directed tree t2 ~G =〈

V (t2), E(t2), T
〉
, If there exists in t2 ~G a fragment ~f ≈ t1 ~G. For an isomorphic embedding, we denote

by t1 ~G
−→⊆ t2 ~G

The set of all isomorphisms t ~G onto itself forms the group Aut(t ~G) by multiplication of the per-

mutations ϕ, we denote the order of the group by |Aut(t ~G)|. By the number of canonical isomorphic

embedding t
−→
G∗ in t ~G we will understand the quantity defined as follows:

w
(
t ~G∗, t ~G

)
= W

(
t ~G∗, t ~G

)
/
∣∣∣Aut

(
t ~G∗

)∣∣∣ , where W
(
t ~G∗, t ~G

)
is the number of all isomorphic em-
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beddings of t ~G∗ in t ~G.

3. Problems of determining the maximum common fragments of temporal tree or tem-
poral directed tree.

Problem 1.1 . Given the temporal tree G =
〈
V (t), E(t), T

〉
, T = {t1, . . . , tn}.

It is necessary to find the maximum common connected fragment, i.e. find a connected
MCF (t1G, . . . , tiG, . . . , tnG)
Problem 1.2. Given the temporal tree G =

〈
V (t), E(t), T

〉
, T = {t1, . . . , tn}.

It is necessary to find all non-isomorphic maximum common connected fragments, i.e. find all non-
isomorphic connected MCF (t1G, . . . , tiG, . . . , tnG).

Problem 2.1. Given the temporal directed tree ~G =
〈
V (t), E(t), T

〉
, T = {t1, . . . , tn} .

It is necessary to find the maximum common connected fragment, i.e. find a connected
−−−→
MCF

(
t1 ~G, . . . , ti ~G, . . . , tn ~G

)
.

Problem 2.2. Given the temporal directed tree ~G =
〈
V (t), E(t), T

〉
, T = {t1, . . . , tn}.

It is necessary to find all non-isomorphic maximum common connected fragments, i.e. find all non-

isomorphic connected
−−−→
MCF

(
t1 ~G, . . . , ti ~G, . . . , tn ~G

)
.

Figure 1 shows an example of a T -tree G consisting of all trees with the number of vertices p = 6

t1G t2G t3G t4G t5G t6G

Figure 1: T -tree G consisting of all trees with the number of vertices p = 6

The result of solving problems 1.1 and 1.2 for a T -tree G (fig.1) is easy to obtain on the basis of the
definition of MCF (t1G, t5G).

4. The basis of the method for solving the problems of determining the maximum
common fragments of temporal tree or temporal directed tree.

The method of the solving includes the following four basic steps: 1 ) choosing the smallest

order among tiG ∈ G
(
ti ~G ∈ ~G

)
of tree (directed tree) or t1G

(
t1 ~G

)
if the orders of all structures in

G(~G) are the same ; 2) the selection of the set of non-automorphic hanging vertices in the chosen

tiG ∈ G
(
ti ~G ∈ ~G

)
; 3 ) sequential removal ( from tiG ∈ G (ti ~G ∈ ~G)) of vertices from the set

of hanging non-automorphic in order to identify a set of connected non-automorphic fragments of

maximum order in tiG ∈ G
(
ti ~G ∈ ~G

)
; 4 ) for each selected fragment from the constructed set

of fragments, determining the possibility of its isomorphic embedding (of all canonical isomorphic
embeddings) in each of the remaining structures of the T -tree ( T -directed tree).
Calculations were performed based on the author’s software package [17].
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5. Experimental estimates of the computational complexity of solving the problems
of searching the maximum common fragments of temporal tree (temporal directed
tree).

Below, an approach is implemented to determine the experimental estimation of the computa-
tional complexity (EECC) of the method on the average based on the use of tG (t ~G) structures with
average values of complexity indices in the basis of chains (paths).

The methods of constructive enumeration of all tG(t ~G) with a given number of vertices, the gen-

eration of medium-complexity tG(t ~G) and random tG(t ~G) are programmed in the ”Graph-models
Workshop” [18] , and were used for research.

Figure 2 shows an example of a medium-complexity diagram in the basis of a tree chains with
vertex degrees at most four (from the left) and a random tree (from the right) with a number of

vertices 100. Figure 3 shows an example of a T -directed tree ~G and its maximum common connected

fragment
−−−→
MCF (~G).
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Figure 2: Medium-complexity diagram in the basis of a tree chains with vertex degrees at most four
(from the left) and a random tree (from the right) with a number of vertices 100
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Figure 3: T -directed tree ~G and its maximum common connected fragment
−−−→
MCF (~G)
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Figure 4 shows an example of the existence of different types of connected
−−−→
MCF for t1 ~G ∈ ~G, t2 ~G ∈ ~G,

where ~G =
〈
V (t), E(t), T

〉
, T = {t1, t2}

t1G t2G MCF1 MCF2

Figure 4: Different types of connected
−−−→
MCF for t1 ~G ∈ ~G, t2 ~G ∈ ~G

Figure 5 (figure 6 ) shows a diagram of the computational complexity function of the method for
solving the problem 1.1(1.2) for the medium-complexity (tG ∈ G) in the basis of chains and the
degree of vertex at most four (random tG ∈ G) with the numbers of vertices from 200 to 1000 (from
50 up to 500 ). Each T -tree G included 10 non-isomorphic structures tG ∈ G with the same number
of vertices.
Computational experiments have shown that the EECC of the method for solving problem 2.1 of
medium -complexity and random t ~G ∈ ~G has polynomials of second degree and third, but with
different coefficients. We note that the time for solving Problem 1.2 essentially depends on the
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Figure 5: Diagram of the computational complexity function of the method for solving the problem
1.1

Figure 6: Diagram of the computational complexity function of the method for solving the problem
1.2

symmetry of the analyzed trees tG, which are difficult examples when determining all canonical
isomorphic embeddings of a fragment in tG.

Increasing classes of automorphic hanging vertices and vertices in each class means increasing
the time spent in solving problem 1.2. By NIE we denote the number of isomorphic embeddings of
MCF , into one structure tG, and by NCIE - the number of canonical isomorphic embeddings of
MCF .
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In Table 1, shows the results of solving the problem 1.2(2.2) of medium-complexity structures

tG(t ~G) of T -trees (T -directed trees) with numbers p(tG)(p(t ~G)) from 24 to 104 inclusive, containing

for each number of vertices 10 non-isomorphic structures tG (t ~G)

Table 1: The results of solving the problem 1.2 (2.2)

p(tG)
T -trees T -directed trees

p(MCF ) NIE NCIE
Time
Ms.

p(MCF ) NIE NCIE
Time
Ms.

24 24 4 1 3578 24 4 1 2012
34 34 32 1 4323 34 16 1 2509
44 44 288 1 5210 44 62 1 3678
54 54 12288 1 5812 54 384 1 4099
64 64 6144 1 6500 64 190 1 5201
74 74 2304 1 8211 74 264 1 6012
84 84 3456 1 9308 84 108 1 7655
94 94 73728 1 11499 94 192 1 9324
104 104 73728 1 14201 104 192 1 12109

Figure 7 shows the EECC of method for solving problem 1.2(y1) and problem 2.2(y2) using the
results given in table 1 .

EECC of method for solving problem 2.2 of random root growing structures t ~G ∈ ~G with numbers
of vertices from 50 to 500 including 10 non-isomorphic t ~G for each number of vertices is shown in
figure 8 . Note that the root growing regular structures t ~G are the most laborious for calculations,
since they have a high degree of symmetry.
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Figure 7: EECC of method for solving problem 1.2(y1) and problem 2.2(y2)

Figure 8: EECC of method for solving problem 2.2 of random root growing structures t ~G ∈ ~G with
numbers of vertices from 50 to 500 including 10 non-isomorphic t ~G for each number of vertices

The analysis of the obtained results shows the high efficiency of the method when solving the problems
1.1, 1.2, 2.1, and 2.2 of medium-complexity and random T -trees and T -directed trees.
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6. Conclusion:

Currently, the most relevant area is the development of methods for analyzing graphs with a
changeable structure with time (temporal digraphs). The study included two types of graph-dynamics
problems related to determining the maximum common connected fragment of temporal directed
trees (T -directed trees) (2.1,2.2) and two types of graph-dynamics problems related to determining
the maximum common connected fragment of temporal trees (T -trees )(1.1, 1.2), which does not
change with time. The solution method included four basic steps related to the global and local
characteristics of ( T -trees) and T -directed trees. The analysis of the obtained results using Exper-
imental estimates of the computational complexity, shows the high efficiency of the method when
solving the problems 1.1, 1.2, 2.1, and 2.2 of medium-complexity and random T -trees and T -directed
trees. In general, it is clear that the study of the characteristics of the graphs enables the researcher
to develop the solution methods used to solve these problems and therefore the difference of the
solution methods depends mainly on the nature of the characteristics used and this is evident in the
time spent on the solution. In future work, it is possible to suggest generalizing the results of solv-
ing problems 1.1 and 1.2 for a T -tree G (figure 1) to consider the validity of the following propositions.

Proposition 1 . If a T -tree G with a number of vertices p > 3 consists of an N-set of all non-
isomorphic tG trees with a number of vertices p, then MCF (t1G, . . . , tiG, . . . , tnG) ≈ Pk, where
Pk− is a chain with length k and k = 2

Proposition 2 . If a T -tree G with a number of vertices p > 3 consists of an N-set of
all non-isomorphic tG trees with a number of vertices p, then the number of all non-isomorphic
MCF (t1G, . . . , tiG, . . . , tnG) is equal to 1 .

A similar analysis leads to the validity of the following propositions.

Proposition 3 . If a T -directed tree ~G with a number of vertices p > 2 consists of the M-set of all

non-isomorphic t ~G directed trees with a number of vertices p, then
−−−→
MCF

(
t1 ~G, . . . , ti ~G, . . . , tn ~G

)
≈

−→
Pk, where

−→
Pk− is a path with length k and k = 1

Proposition 4 . If a T -directed tree ~G with a number of vertices p > 2 consists of the M-set of all
non-isomorphic t ~G directed trees with a number of vertices p, then the number of all non-isomorphic
−−−→
MCF

(
t1 ~G, . . . , ti ~G, . . . , tn ~G

)
is equal to 1 .
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