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Abstract

In this paper, we employed fuzzy transforms to present a new method for solving the problem
through a second-order fuzzy initial value. The advantage of the fuzzy transform method is that,
unlike other methods (e.g. high-order fuzzy Taylor series), it does not require any higher-order
derivative calculation, thus reducing the computational cost. In two examples, the results of the
newly proposed method were examined against several conventional methods, indicating the more
desirable performance of the new method.
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1. Introduction

Fuzzy differential equations play a crucial role in various fields including mathematics, physics,
statistics, and engineering. The fuzzy differential equation was first expressed by Kandel and Bayat
[6]. There are various techniques to define fuzzy derivatives and therefore to explore fuzzy differential
equations [1, 3, 4, 5]. The first and foremost method involves the Hokuhara derivative concept
for fuzzy functions. Relying on this method, studies have concentrated on whether there is any
uniformity of solutions to fuzzy differential equations [2, 8]. Since it is impossible to express many
problems accurately, it is critical to use numerical methods. A few numerical methods have been
investigated for solving fuzzy differential equations through the concept of Hokuhara derivative,
such as the fuzzy Euler method by Friedman [5], Pederson [9], Abbasbandy’s Taylor method [1],
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and Allahviranloo’s predictive-corrective method [3]. In classical mathematics, various types of
transforms such as integral, Laplace, Fourier, wavelet, etc. have been adopted as powerful tools
to develop approximate models and solve differential equations. Their main idea is to transform a
space into a special space of functions in which the desired calculations are conducted easier. Then,
another transform to the initial space can be applied to produce the initial or approximate function,
which is called the inverse transform. One of such transforms is known as a fuzzy transform. The
majority of popular classic transforms, some of which were mentioned earlier, use a kernel for the
entire domain. However, fuzzy transforms use kernels or local characteristics to build approximate
models. Functions are described locally by these characteristics. The obtained local descriptions join
together to provide a general description of the function. Fuzzy inverse transform specifies the initial
or approximate function as a linear combination of local characteristics. Since fuzzy transforms are
considered a special type of Takagi-Sugeno fuzzy system with several additional properties. Such
transforms are strongly associated with fuzzy systems. Fuzzy transforms are employed to solve fuzzy
differential equations. This paper primarily attempted to find a new solution for differential equations
with second-order fuzzy initial value through fuzzy transforms.

In this paper, we use fuzzy transform for the second-order initial value problem (IVP). This paper
is organized as follows:
In Section 2, we recall some basic definitions, symbols as well as theorems which used throughout the
paper. In Section 3, reviews basic definition briefly and extends the Taylor formula to obtaining the
numerical solution of IVP fuzzy differential equation of second kind, we also represent the numerical
solution for second-order IVP in three state as well. Some numerical results have been presented
in Section 4 to show accuracy and advantage of the proposed method. Finally, some concluding
remarks are given in Section 5.

2. Preliminaries

We now recall some basic definitions, symbols as well as a couple of theorems needed through the
paper.

Definition 2.1. A fuzzy number is a fuzzy set u : R → [0, 1] which satisfies the following properties:

a) u is upper semi-continuous on R,

b) u(x) = 0 outside of some interval [c,d],

c) there are the real numbers a and b with c ≤ a ≤ b ≤ d, such that u is increasing on [c, a],
decreasing on [b, d] and u(x) = 1 for each x ∈ [a, b],

d) u is fuzzy convex set (that is u(λx+ (1− λ)y) ≥ min {u(x), u(y)}, ∀x, y ∈ R, λ ∈ [0, 1]).

The set of all fuzzy numbers is denoted by E.

Definition 2.2. Let n > 2, a = x0 = x1 < · · · < xn = xn+1 = b be fixed nodes within [a, b] ⊆ R.
Fuzzy sets A1, · · · , An : [a, b] → [0, 1], identified with their membership functions defined on [a, b],
establish a fuzzy partition of [a, b], if they fulfill the following conditions for k = 1, · · · , n:

(1) Ak(xk) = 1;

(2) Ak(x) = 0, if x ∈ [a, b] \ (xk−1, xk+1);

(3) Ak(x) is continuous on [xk−1, xk+1];
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(4) Ak(x) for k = 2, · · · , n strictly increases on [xk−1, xk+1] and for k = 1, · · · , n − 1 strictly
decreases on [xk, xk+1];

(5) for all x ∈ [a, b] the Ruspini condition holds

n∑
k=1

Ak(x) = 1.

We say that n is a size of fuzzy partition {A1, · · · , An} with the elements to which we refer as to
basic functions.

Definition 2.3. For any u ∈ E the α-cut set of u is denoted by [u]α and define by [u]α =
{x ∈ R | u(x) ≥ α}, where 0 ≤ α ≤ 1. The notation [u]α = [uα, uα] , 0 ≤ α ≤ 1 refers to the
lower and upper branches on u.

A fuzzy number u in parametric form is a pair (u, ū), of functions u(r), ū(r), 0 ≤ α ≤ 1, which satisfy
the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0, 1], and right continuous at 0,

2. ū(r) is a bounded non-increasing left continuous function in (0, 1], and right continuous at 0,

3. u(r) ≤ ū(r), 0 ≤ r ≤ 1.
For arbitrary u = (u, ū), ν = (v, ν̄) and k ≥ 0, addition (u + ν) and multiplication by k as
(u+ ν) = u(r) + ν(r), (u+ ν) = ū(r) + ν̄(r), (ku(r)) = ku(r), ku(r) = kū(r) are defined.

Since each y ∈ R can be regarded as a fuzzy number y defined by

ỹ(k) =

{
1 t = y
0 t ̸= y.

Definition 2.4. The Hausdorff distance between fuzzy numbers given by D : E × E → R+U{0},

D(u, v) = supr∈[0,1]max{|u(r)− v(r)|, |ū(r)− v̄(r)|}.

It is easy to see that D is a metric in E and has the following properties (see [10]).

(i). D(u⊕ w, ν ⊕ w) = D(u, ν), ∀u, ν, w ∈ E,

(ii). D(k ⊙ u, k ⊙ ν) = |k|D(u, ν), ∀ ∈ R, u, ν ∈ E,

(iii). D(u⊕ ν, w ⊕ e) ≤ D(u,w) +D(ν, e),∀u, ν, w, e ∈ E,

(iv). (D,E) is a complete metric space.

Definition 2.5. The function f : T → E is called a fuzzy function and the α-cut set of f is
represented by f(t, α) =

[
f(t, α), f(t, α)

]
, ∀α ∈ [0, 1]. A fuzzy function may have domain and fuzzy

range. so the function f : E → E is also a fuzzy function.
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Definition 2.6. Let f : R → E be a fuzzy valued function. If for arbitrary fixed t0 ∈ R and ε > 0,
∋ δ > 0 such that

| t− t0 |< δ ⇒ D(f(t), f(t0)) < ϵ,

f is said to be continuous.

It is well-known that the H-derivative (differentiability in the sense of Hukuhara) for fuzzy mappings
was initially introduced by Puri and Ralescu [11] it is based on the H-difference of sets, as follows:

Definition 2.7. Let x, y ∈ E. If there exists z ∈ E such that x = y + z, then z is called the
H-difference of x and y, and it is denoted by x⊖ y.

Definition 2.8. Let x, y ∈ E. If there exists z ∈ E such that x = y + z, then z is called the
H-difference of x and y, and it is denoted by x⊖ y.

Let A1, · · · , An be basic functions, which form a fuzzy partition of [a, b], and f be any continuous
function on [a, b]. We say that the n-tuple of real numbers [F1, · · · , Fn] given by

Fk =

∫ b

a
f(x)Ak(x)dx∫ b

a
Ak(x)dx

, k = 1, 2, · · · , n.

Theorem 2.9. (See [12].) Let polynomial Fm
k be the orthogonal projection of f ∈ L2(Ak) on

Lm
n (Ak). Then we have Fm

k = ck,0P
0
k + ck,1P

1
k + · · ·+ ck,mP

m
k , where for all i = 0, 1, . . . ,m,

ck,j =
(f, P i

k)k
(P i

k, P
i
k)k

=

∫ xk+1

xk−1
f(x)P i

k(x)Ak(x)dx∫ xk+1

xk−1
P i
k(x)P

i
k(x)Ak(x)dx

. (2.1)

Definition 2.10. Let f : [a, b] −→ R be a function from L2(A1, · · · , An), and let m ≥ 0 be a fix
integer.
Denote Fm

k as the k − th orthogonal projection of f |[xk−1,xk+1] on Lm
2 (Ak), k = 1, · · · , n. We say

that n−tuple of orthogonal polynomials [Fm
1 , · · · , Fm

n ] is an Fm− transform of f with respect to
A1, · · · , An, or formally, Fm[f ] = [Fm

1 , · · · , Fm
n ].

Then Fm
k is called the k− Fm−transform component of f .

In special case for m = 2, we denote F 2
k as the 2-th orthogonal projection of f |[xk−1, xk+1] on

L2
2(Ak), k = 1, · · · , n.

We say that n−tuple of orthogonal polynomials [F 2
1 , . . . , F

2
n ] is an F 2−transform of f with respect

A1, · · · , An, or formally
F 2[f ] = [F 2

1 , . . . , F
2
n ].

Then F 2
k is called the k−th F 2−transform component of f , and for k = 1, 2, . . . , n, we have F 2

k =
ck,0P

0
k + ck,1P

1
k + ck,2P

2
k , where ck,i defined (2.1).

Theorem 2.11. Polynomials

P 0
k = 1, P 1

k (x) = x− xk, P 2
k (x) = (x− xk)

2 − I2
h

where

I2 =

∫ k+1

k−1

(x− xk)
2Ak(x)dx,

are orthogonal in L2(Ak), k = 1, . . . , n.
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Proof . See Lemma 4 and Lemma 5 in [12]. □

Theorem 2.12. (see [12].) By applying Simpson’s formula, we get

I2 =

∫ k+1

k−1

(x− xk)
2Ak(x)dx =

8h3
1

3
Ak(xk + h1) +R1,

where

R1 = −(xk+1 − xk−1)((η − xk)
2Ak(η))

(4)

180
h4
1 = −h5

45
((η − xk)

2Ak(η))
(4), η ∈ (xk−1, xk+1).

Theorem 2.13. The following vector of quadratic polynomials:

F 2[f ] = [c1,0 + c1,1P
1
1 (x) + c1,2P

2
1 (x), . . . , ck,1 + ck,2P

1
k + ck,2P

2
k ],

is the F 2transform of f with respect to A1, · · · , An, where for every k = 1, 2, . . . , n,

ck,0 =

∫ xk+1

xk−1
f(x)Ak(x)dx∫ xk+1

xk−1
Ak(x)dx

ck,1 =

∫ xk+1

xk−1
f(x)(x− xk)Ak(x)dx∫ xk+1

xk−1
(x− xk)2Ak(x)dx

ck,2 =

∫ xk+1

xk−1
f(x)((x− xk)

2 − I2
h
)Ak(x)dx∫ xk+1

xk−1
((x− xk)2 −

I2
h
)Ak(x)dx

.

Theorem 2.14. (see [7].) Let A1, · · · , An be an h−uniform partion of [a, b]. Let function f and Ak

k = 1, 2, . . . , n, the following estimation holds true:

ck,2 =
f ′′(xk)

2
+O(h2).

Definition 2.15. Let f : [a, b] −→ R be a function from L2(A1, · · · , An), and let m ≥ 0 be a fix
integer.
Denote Fm

k as the k− th orthogonal projection of f [xk−1, xk+1] on Lm
2 (Ak), k = 1, · · · , n. We say that

n−tuple of orthogonal polynomials [Fm
1 , · · · , Fm

n ] is an Fm−transform of f with respect to A1, · · · , An,
or formally, Fm[f ] = [Fm

1 , · · · , Fm
n ].

Then Fm
k is called the k− Fm−transform component of f .

In special case for m = 2, we denote F 2
k as the 2-th orthogonal projection of f |[xk−1, xk+1] on

L2
2(Ak), k = 1, · · · , n.

We say that n−tuple of orthogonal polynomials [F 2
1 , . . . , F

2
n ] is an F 2−transform of f with respect

A1, · · · , An, or formally
F 2[f ] = [F 2

1 , . . . , F
2
n ].

Then F 2
k is called the k−th F 2−transform component of f , and for k = 1, 2, . . . , n, we have F 2

k =
ck,0P

0
k + ck,1P

1
k + ck,2P

2
k ,

where ck,i defined as (2.1).
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3. Construction of the solution of second order IVP

In this section, we recall some definition for obtaining the new results firstly, after which we
extends the Taylor formula to obtaining the numerical solution of IVP fuzzy differential equation of
second kind.

Let us remind the brief properties of fuzzy number as well as differential of which.
A fuzzy number u : R −→ [0, 1] is a fuzzy subset of the real line, satisfy the following properties:

(i) u is normal, i.e., there exists s0 ∈ R such that u(s0) = 1,

(ii) u is convex fuzzy set (i.e. u(ts+ (1− tr) ≥ min{u(s), u(r)}, ∀t ∈ [0, 1], s, r ∈ R),

(iii) u is upper semi-continuous on R,

(iv) cls ∈ R|u(s) > 0 is compact where cl denotes the closure of subset. The set of fuzzy numbers
is denoted by RF .

For 0 < α ≤ and u ∈ RF , denote [u]α = {s ∈ R|u(s) ≥ α} and [u]0 = cl{s ∈ R|u(s) > 0}. It is
well-known that for any α ∈ [0, 1], [u]α is a bounded close interval.
The notation

[u]α = [uα, uα].

denotes explicitly the α-level set of u, For u ∈ RF and sum u + v and the scaler product λ, u are
defined by [u+v]α = [u]α+[v]α, [λ, u]α = λ[u]α, ∀α ∈ [0, 1] where [u]α+[v]α means the usual addition
of two intervals (subsets) od R and λ[u]α means the usual product between a scaler and a subset of
R.
The metric structure is given by the Hausdorff distance

D∞ : RF × RF −→ R+ ∪ {0},

by
D∞(u, v) = sup

α∈[0,1]
max{|uα − uα|, |uα − uα|}.

Definition 3.1. Let f : (a, b) → RF and x0 ∈ (a, b). We say that f is differential at x0, If there
exists an element f́(x0) ∈ RF , such that

(1). for all h > 0 sufficiently near to 0, ∃f(x0 + h)⊖ f(x0), ∃f(x0)⊖ f(x0 − h) and the limits (in
the metric D)

lim
h→0+

f(x0 + h)⊖ f(x0)

h
= lim

h→0+

f(x0)⊖ f(x0 − h)

h
= f́(x0)

or

(2). for all h < 0 sufficiently near to 0, ∃f(x0 + h)⊖ f(x0), ∃f(x0)⊖ f(x0 − h) and the limits (in
the metric D)

lim
h→0−

f(x0 + h)⊖ f(x0)

h
= lim

h→0−

f(x0)⊖ f(x0 − h)

h
= f́(x0)
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Now according to the Taylor formula, if we take 4-th differentiable from y(x) on interval I, we have

y(x+ h) = y(x− h) + 2hy′(x) +O(h2) (3.1)

y(x+ h) = y(x) + hy′(x) +
h2

2!
y′′(x) +

h3

3!
y′′′(x) +O(h4) (3.2)

From (3.1), (3.2) we can write:

h2y′′(x) = 2y(x+ h)− 2y(x) + (y(x+ h)− y(x− h))

y′′(x) =
2y(x+ h)− 2y(x) + (y(x+ h)− y(x− h))

h2
+O(h2) (3.3)

and

y′(x) =
y(x+ h)− y(x)

h
+O(h) (3.4)

Now we set y1(x) = y(x+h) and y2 = y(x−h), then we apply the Fuzzy transform on the expression
(3.3) and (3.4) and we have

Fn[y
′] =

1

h
(Fn[y1]− Fn[y]) +O(h) (3.5)

Fn[y
′′] =

1

h2
(Fn[y1]− 2Fn[y] + Fn[y2]) +O(h2) (3.6)

where
Fn[y1] = [Y12 , Y13 , · · · , Y1n−1 ] = [Y11 , Y12 , · · · , Y1n−2 ],

Fn[y2] = [Y22 , Y23 , · · · , Y2n−1 ] = [Y21 , Y22 , · · · , Y2n−2 ],

Fn[y
′] = [Y ′

2 , Y
′
3 , · · · , Y ′

n−1],

Fn[y
′′] = [Y ′′

2 , Y
′′
3 , · · · , Y ′′

n−1],

Fn[y] = [Y2, Y3, · · · , Yn−1] = [Y2, Y3, · · · , Yn−2],

From the properties and definition of fuzzy transform for k = 2, 3, . . . , n− 2 we can write:

Y1,k =

∫ xk+1

xk−1
y(x+ h)Ak(x)dx∫ xk+1

xk−1
Ak(x)dx

(3.7)

Furtheremore, we know from Definition 2.2 that
∫ xk+1

xk−1
Ak(x)dx = h so we have:

Y1,k =

∫ xk+1

xk−1
y(x+ h)Ak(x)dx

h

Now we set x+ h = t and due to the fact that Ak(t− h) = Ak+1(t), we can conlcule that

Y1,k =
1

h

∫ xk+2

xk

y(t+ h)Ak+1(t)dt

=
1

h

∫ xk+2

xk

y(t)Ak+1(t)dt = Yk+1. (3.8)
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Now for special case of k = n − 1 and by the fact that An−1(t − h) = An(t) in Equation (3.7) we
have:

Y1,k =

∫ xn

xn−2
y(t+ h)An−1(t)dt∫ xn

xn−2
An−1(t)dt

=

∫ xn

xn−2
y(t)An(t)dt∫ xn

xn−2
An(t)dt

=
2

h

∫ xn

xn−2

y(t)An(t)dt =
2

h

(
h

2

(
y(xn)An(xn) + y(xn−1)An(xn−1)

))
+O(h3)

= y(xn) +O(h2) = Yn +O(h2),

So we obtain the the equation as fallows.{
Y1k = Yk+1,
Y1n−1 = Yn +O(h2),

Similarly, for n = 3, 4, . . . , n− 1 we have{
Y2l = Yl−1,
Y22 = Y1 +O(h2),

Now according to the (3.4) we have

Y ′
k =

1

h
(Y1k − Yk +O(h) =

1

h
(yk+h − Yk) +O(h), (3.9)

we can also rewrite the (3.3) as fallows.

Y ′′
k =

1

h2
(Y1k − 2Yk + Y2k) +O(h2)

=
1

h2
(Yk+1 − 2Yk + Yk−1) +O(h2) (3.10)

By using (??) we can construct the coefficients matrix of order (n− 2)× (n− 1) such as:

D =
1

h


−1 1 0 0 0 · · · 0
0 −1 1 0 0 · · · 0
0 0 −1 1 0 · · · 0
...

...
. . . . . . . . . 0

0 0 . . . 0 −1 1


(n−2)×(n−1)

We also can using (3.10) and derive the coefficient matrix of the order (n− 2)× n as fallows.

T =
1

h2


1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
0 0 1 −2 1 · · · 0
...

...
. . . . . . . . . 0

0 0 . . . 0 1 −2 1


(n−2)×(n)

Now we can rewrite the Fuzzy transform by using above coefficients matrices

Fn[y
′] = DF c

n[y], Fn[y
′′] = T F̃ c

n[y],
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where
F̃n[y] = [Y1, Y2, · · · , Yn]

T , , F c
n[y] = [Y2, Y3, · · · , Yn−1, Yn]

T ,

Now for converting matrix D to an square (n× n) matrix we add two rows and a single column like
as:

Dc =
1

h



0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0
−1 1 0 0 0 · · · 0
0 −1 1 0 0 · · · 0
0 0 −1 1 0 · · · 0
...

...
. . . . . . . . . 0

0 0 . . . 0 −1 1


n×n

(3.11)

we also add two rows to matrix T like:

T =
1

h2



h 0 0 0 0 · · · 0
−h h 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
0 0 1 −2 1 · · · 0
...

...
. . . . . . . . . 0

0 0 . . . 0 1 −2 1


n×n

Both of T c and Dc are non singular of order (n× n). Now we can represent a pattern to solution of
IVP differential equation in three states.

i) The IVP differential equations without y′:

The IVP differential equation in this state as{
y′′ = f(x, y),
y(x1) = y1, y(x2) = y2,

(3.12)

Now for approximate the solution of the above IVP we use the Fuzzy Transform for both side of
(3.12) such as:

Fn[y
′′] = Fn[f(x, y)] =⇒ T F̃n[y] = Fn[f ],

where in which Fn[f ] = [Fn, F3, · · · , Fn−1]
T is a fuzzy transform f(x, y) respect to x such that we

eliminate the first and end point of domain as boundary point. Then we impose two components
y1
h2

and
y2
h2

for completeness of F̃n[f ] as fallows.

F̃n[f ] =

[
y2
h1

,
y2
h2

, F2, F3, · · · , Fn−1

]T
,

therefore by applying the T c and (??) one can write :

T cF̃n[y] = F̃n[f ] =⇒ F̃n[y] = (T c)−1F̃n[f ], (3.13)



152 Matinfar, Allahviranloo, Ghobadi

For obtaining the solution we need to find the T c inverse as :

T c−1

= h2



1/h 0 0 0 0 · · · 0
1/h 1/h 0 0 0 · · · 0
1/h 2/h 1 0 0 · · · 0
1/h 3/h 2 1 0 · · · 0
1/h 4/h 3 2 0 · · · 0
...

...
...

...
. . . 0

1/h n− 1/h n− 2 . . . 3 2 1


n×n

By substitution T c−1
into (3.13) we have:

F̃n[y] = h2



1/h 0 0 0 0 · · · 0
1/h 1/h 0 0 0 · · · 0
1/h 2/h 1 0 0 · · · 0
1/h 3/h 2 1 0 · · · 0
1/h 4/h 3 2 0 · · · 0
...

...
...

...
. . . 0

1/h n− 1/h n− 2 . . . 3 2 1


n×n

×

[
y2
h1

,
y2
h2

, F2, F3, · · · , Fn−1

]T

,

with expanding the above system we obtain:

Y1 = h2

(
1

h
× 1

h

)
=

1

h
y1,

Y2 = h2

(
1

h
× y1

h2
+

1

h

y2
h2

)
=

1

h
y1 +

1

h
y2 =

1

h
(y1 + y2),

Y3 = h2

(
1

h
× y1

h2
+

2

h

y2
h2

+ 1× F2

)
=

1

h
(y1 + 2y2) + h2F2,

similarlly,

Yk =
1

h

(
y+(k + 1)y2

)
+ h2(k − 2)F2 + (k − 3)F3 + (k − 4)f4 + · · ·+ Fk−1,

Yk =
1

h

(
y+(k + 1)y2

)
+ h2

k−1∑
j=2

(k − j)Fj,

Now we can evaluate the Y3, Y4, · · · , Yn, from above system and (3.13). These components could not
be evaluate in direct maner, so we use the following approximation pattern such as :

F̃k =

∫ b

a
f(x, Yk)Ak(x)dx∫ b

a
Ak(x)dx

, k = 2, 3, · · · , n− 1,

where |Fk − F̃k| = O(h2).
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ii) The IVP differential equations with y′:

Let IVP differential equation as {
y′′ + p(x)y′ = f(x, y),
y(x1) = y1, y(x2) = y2,

(3.14)

In order to find the solution of the above IVP we use the Fuzzy Transform for both side of (3.14)
such as:

Fn[y
′′ + p(x)y′] = Fn[f(x, y)] =⇒ F̃n[y

′′] + p(x)Fn[y
′] = Fn[f(x, y)],

where in which Fn[f ] = [Fn, F3, · · · , Fn−1]
T is a fuzzy transform f(x, y) respect to x such that we

eliminate the first and end point of domain as boundary point. We have also

F̃n[y
′] = DF n[y], F̃n[y

′′] = T F̃n[y]

where
F n[y] = [y2, y3, . . . , yn]

T , F̃n[y] = T F̃n[y2, y3, . . . , yn]
T ,

therefore by (??) we can write the fuzzy transform as:

T cF̃n[y] + p(x)DF n[y] = Fn[f(x, y)],

Then we impose two components
y1
h2

and y′ =
y2
h2

for completeness of Fn[f ] as fallows.

F̃n[f ] =

[
y1
h2

, y′1, F2, F3, . . . , Fn−1

]T
Now we can rewrite the system of IVP differential equation by using Dc, T c and F̃n[f ] as fallows.

(T c + p(x)Dc)F̃n[y] = F̃n[f ] =⇒, F̃n[y] = (T c + p(x)Dc)−1F̃n[f ]. (3.15)

Both of T c and Dc are non singular therefore any linear combination of which such as T c + p(x)Dc

is non sigular if
1

h
̸= −p(x). So its enough to find the inverse of T c + p(x)Dc as

T c−1

= h2



1/h 0 0 0
1/h 1/h 0 0

1/h
(1 + p(x)h)2 − 1

p(x)h2 + (1 + p(x)h)

1

1 + p(x)h
0

1/h
(1 + p(x)h)3 − 1

p(x)h2 + (1 + p(x)h)

(1 + p(x)h)2 − 1

p(x)h(1 + p(x)h)2
0

1/h
...

... 0

1/h
(1 + p(x)h)n−1 − 1

p(x)h2 + (1 + p(x)h)

(1 + p(x)h)n−2 − 1

p(x)h(1 + p(x)h)2
1

1 + p(x)


n×n

In the similar way we have
Y1 = y1

Y2 = (y1 + hy2)

Yk = y1 +
1 + p(x)h)k−1 − 1

p(x)(1 + p(x))k−2
y′1 + h

k−2∑
j=2

1 + p(x)h)k−j − 1

p(x)(1 + p(x))k−j
Fj +

h2

1 + p(x)h
Fk−1.
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iii) The IVP differential equations with g(y′):

Let IVP differential equation as {
y′′ + g(y′) = f(x, y),

y(x1) = y1, y(x2) = y2,
(3.16)

In order to find the solution of the above IVP we assume that g is linear i.e. g(y′) = ay′ + b then we
rewritr the (3.16) such as: {

y′′ + ay′ + b = f(x, y),
y(x1) = y1, y(x2) = y2,

(3.17)

Now we can apply the Fuzzy Transform method for both sides of (3.17) and we have

Fn[Y
′′ + ay′ + b] = Fn[f(x, y)],

we can see that this state is a special case of previous section by p(x) = a and we could rewrite the
right hand of equation as f(x, y)− b and using the method which is

Yk = y1 +
1 + ah)k−1 − 1

a(1 + a)k−2
y′1 + h

k−2∑
j=2

1 + ah)k−j − 1

a(1 + a)k−j
Fj +

h2

1 + ah
Fk−1.

4. Numerical results

In this section, we examine the proposed method to indicate the efficiency of which to approximate
the solution of the second order of IVP differential equations.

Example 4.1. Consider the following second-order fuzzy differential equation with fuzzy initial value

y
′′
(t) = −y(t), (t > 0), (4.1)

y(0) = 0, y
′′
= (0.9 + 0.1r, 1.1− 0.1r).

The exact solution is as follows Y (t, r) = ((0.9 + 0.1r) sin(t), (1.1− 0.1r) sin(t)).

Comparing the results of our suggested solution with the results of Fuzzy Improved Runge-Kutta
Nystrom (FIRKN) method [13] can be seen in Table ??.

Example 4.2. Consider the following second order differential equation of IVP as

y′′(t) = −y(t) + t, (t > 0),

y(0) = [0.9 + 0.1r, 1.1− 0.1r], y(0) = [1.8 + 0.2r, 2.2− 0.2r] (4.2)

The exact solution under (1)-differentiability:

y(t) = [y1(t, r), y1(t, r)] (4.3)

where

y1(t, r) =

(
4

5
+

1

5
r

)
sin(t) +

(
9

10
+

1

10
r

)
cos(t) + t, (4.4)

y2(t, r) =

(
6

5
− 1

5
r

)
sin(t) +

(
11

10
− 1

10
r

)
cos(t) + t
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Table 1: Comparing the results of our suggested solution with the results of (FIRKN) method for Example 4.1

y1(t, r) y1(t, r) y2(t, r) y2(t, r)
r FIRKN5 (s = 4) present method FIRKN5 (s = 4) present method

0.0 2.18E-10 1.01E-12 2.66E-10 1.11E-12
0.1 2.20E-10 1.02E-12 2.64E-10 1.10E-12
0.2 2.23E-10 1.03E-12 2.61E-10 1.09E-12
0.3 2.25E-10 1.04E-12 2.59E-10 1.08E-12
0.4 2.27E-10 1.05E-12 2.57E-10 1.07E-12
0.5 2.30E-10 1.06E-12 2.54E-10 1.06E-12
0.6 2.32E-10 1.07E-12 2.52E-10 1.05E-12
0.7 2.37E-10 1.08E-12 2.49E-10 1.04E-12
0.8 2.40E-10 1.09E-12 2.47E-10 1.03E-12
0.9 2.42E-10 1.10E-12 2.44E-10 1.02E-12
1 2.36E-10 1.11E-12 2.42E-10 1.01E-12

Comparing the results of our suggested solution with the results of Fuzzy Improved Runge-Kutta
Nystrom (FIRKN) method [13] can be seen in Table 2.

Table 2: Comparing the results of our suggested solution with the results of (FIRKN) method for Example 4.2.

y1(t, r) y1(t, r) y2(t, r) y2(t, r)
r FIRKN5 (s = 4) present method FIRKN5 (s = 4) present method

0.0 3.13E-8 2.18E-10 4.32E-8 3.06E-10
0.1 3.19E-8 2.19E-10 4.26E-8 3.04E-10
0.2 3.25E-8 2.20E-10 4.20E-8 3.06E-10
0.3 3.31E-8 2.21E-10 4.15E-8 3.06E-10
0.4 3.37E-8 2.22E-10 4.09E-8 3.01E-10
0.5 3.43E-8 2.23E-10 4.03E-8 3.07E-10
0.6 3.49E-8 2.24E-10 3.97E-8 3.05E-10
0.7 3.55E-8 2.25E-10 3.91E-8 3.09E-10
0.8 3.61E-8 2.26E-10 3.85E-8 3.03E-10
0.9 3.67E-8 2.27E-10 3.79E-8 3.02E-10
1 3.73E-8 2.29E-10 3.73E-8 3.07E-10

5. Conclusion

Since the most physical phenomena in mathematics, physics, mechanics, and scientific compu-
tation are modeled by IVP differential equations, many of such equations are defined inside an
ambiguous environment. Analytically calculation of such problems in a limited and semi-limited
space is not an easy task, lacking the necessary accuracy and speed. Therefore, certain numerical
methods can be useful for solving such problems. Meanwhile, the second-order initial fuzzy value
problems have different states that should be considered. In this paper, we solved three models
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of second-order initial fuzzy value problems, presented in the third section. Our newly proposed
method is based on fuzzy transforms. Fuzzy transforms can reduce computational cost since they do
not require any high-order derivative calculations.
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