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Abstract

A Location-Arc Routing Problem (LARP) is a practical problem, while a few mathematical program-
ming models have been considered for this problem. In this paper, a mixed non-linear programming
model is presented for a multi-period LARP with the time windows under demand uncertainty. The
time windows modeling in the arc routing problem is rarely. To the best our knowledge, it is the first
time that the robust LARP model is verified and an optimal solution is presented for it. For this
purpose, the CPLEX solver is used for solving the treasury locate problems of a bank as a case study.
These problems are node-based with close nods and can be transformed into arc-based. Therefore,
the method LRP and LARP models can be used to solve these problems. The comparing results of
the LRP and LARP models prove that the LARP has a better performance regarding timing and
optimal solution. Furthermore, comparing the results of deterministic and robust LARP models for
this case study shows the validity of the robust optimization approach.
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1. Introduction

Routing problems had two major categories: 1) the node routing problem that customers are
located on the node, 2) the arc routing problems that customers are located on the arc or edge of
a graph [1]. The Vehicle Routing Problem (VRP) and Traveling Salesman Problem (TSP) are node
routing problem. The Rural Postman Problem (RPP) and the Chinese Postman Problem (CPP) are
arc routing problems. In a CPP, all arcs of a graph are served while in an RPP only a subset of arcs
or edges is required to be served [2]. The Capacitated Arc Routing Problem (CARP) was introduced
by Golden and Wong [3] and is an expansion of the RPP; however, it is a complex problem because
of considering multiple vehicles with capacity constraints. In CARP the customer demands are on
arcs (edges) instead of nodes and the goal is to reduce the traveling costs of all links.

A Location-Arc Routing Problem (LARP) is a combination of two well-known problems: 1)
CARP and 2) Location-Allocation Problem (LAP) [4]. The LAPR is similar to the CARP. The only
major difference between LARP and CARP is that besides routing, the best locations for depots
are determined. Therefore, a binary decision variable is added to the mathematical model that has
made it even more complicated. As far as we known, a few research is presented seven mathematical
models for LARP until now. These models are not verified and are solved with heuristic or meta-
heuristic method. For example, in the model of [2] each customer has required one vehicle, and this
is not practical. Besides, Huber [5] formulate two objectives functions and don’t present constraints.
Therefore, this paper presents a new multi-period LARP under uncertain demand. The constraints
of time windows, the time limitation for vehicles, delivery or collection from customer, and using
the vehicle for some customer are added to the model. Definition of time windows in model reduces
the risk of transporting cash. The time windows modeling in arc routing problem has a different
structure than the node routing problem, since a required arc with a time window after servicing,
can be used as a deadheading arc without a time window.

Çetinkaya et al. [6] claim it is not possible to modeling time windows in arc routing problem and
should be transform its to node routing problem. Macedo et al. [7] is not modeled time window
and solving with metaheuristic methode. Lystlund et al. [8] proposed a mathematical model for
this purpose and we inspiration it. The definition of the time window constraint in a case study is
based on the customer requests for the collection or delivery of cash in specified time. Time window
modeling in arc routing problems has a different structure rather than node routing problems because
an required arc with time window can be selected as an deadheading arc without time window on
the other road. The proposed model is linearized and solved with CPLEX solver in GAMS. Beside,
Bertsimas and sim [9] method is used for uncertainty condition.

The rest of the paper is structured as follows. Section 2 is reviewed the CARP and LARP. In
Section 3, the robust and deterministic linear model is presented. The bank case study problems is
described in Section 4. In Section 5, the new model is validated by comparing the results of LARP
and LRP for solving a bank case study. The validation of the robust model is also performed in
Section Section 6. The final conclusions are presented in Section 7.

2. Literature review

There are a few articles in the LARP and proximity with the CARP, in which this section reviews
some studies on the CARP and the LARP.

2.1. CARP review
The review of the CARP from 2000 to 2018 as summarized in Table 1. The most studies have

focused on solving basic CARP under deterministic conditions. For an uncertain condition, only
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Fleury et al. [10] used a stochastic method for the CARP under uncertainty. Besides, Fleury et
al. [11] and Mei et al. [12] applied a robust approach. In most studies, the LARP model has been
solved using heuristic or meta-heuristic methods. Other studies proposing solutions based on exact
methods have applied either some techniques for transforming the CARP to the CVRP or a heuristic
to build an initial solution for decision variables. Furthermore, the CARP with time window is rarely
and all of the research are presented a non-linear mathematical model except the model [8]. All of
them have not verified proposed model and not presented exact solution.

Table 1: Review on the deterministic CARP

Problem Exact methods Heuristics Meta-heuristics
Capacitated arc [13],[14],[15],[16],[17],[18] [3],[19],[20],[21],[22],[23],[24],[25],[26] [35],[36],[37],[38],[39],[40],

routing problem (CARP) ,[27],[28],[29],[30],[31],[32],[33],[34] [41],[42],[43],[44],[45], [46]
CARP with time windows [8],[6],[47] [48],[7],[49]

Multi-period CARP [50] [51],[52],[53]
Open CARP [54] [55],[56]

Split delivery CARP [57]
Multi-compartment CARP [58]

CARP with profits [59],[60]
CARP with refill points [61]
CARP with intermediate [62],[63] [64]
Time-dependent CARP [65] [66],[67]

CARP with mobile depots [68],[69]
Prize-collecting CARP [70] [47]

Rich ARP [71]

2.2. LARP review
Although a few studies in the literature review have focused on the LARP, due to the practical

applications and complexity of this problem, three review papers can be found on this issue. Ghiani
et al. [4] surveyed three main applications of the LARP, namely, postal delivery, garbage collection
and road maintenance, and also algorithms used to solve this problem. Liu et al. [72] presented the
LARP review and identified the research gap on this problem. Moreover, Laporte et al. [1] surveyed
all studies on the LARP and emphasized on developing two presented models [2, 73] and solved this
problem with the exact method.

The first research on the LARP was carried out by Levy et al. [74] for solving the routing problem
at the post office in the USA. They used a Location-Allocation-Routing (L-A-P) method to solve
the model. Based on this method, firstly, the depot location is determined and then required arcs
be allocated depots. Finally, required arcs can be solved a Vehicle Routing Problem (VRP). In
another method, called Allocate-Routing-Location, required arcs are first allocated to the depots,
and then the depot location is determined based on the selected routes. According to the reports,
this method has been more efficient than the previous methods [4]. Ghiani et al. [75] presented a
linear multi-depot model for the LARP. Then, they transformed this model into the RPP and used
a branch-and-cut algorithm for solving their model.

A few research studies have proposed a mathematical model for the LARP, and all have used a
meta-heuristic algorithm for solving the deterministic models Table 2. Doulabi et al. [73] presented
two Mixed-Integer Linear Programming (MILP) models considering the flow variables for single
and multi-depot problems. They proposed a Simulated Annealing (SA) algorithm, which used an
allocation-routing-location method at each iteration. It first builds a routing solution and then
improves the depot locations.

Lopes et al. [2] proposed a mathematical model and solved it by several heuristics. They tested
different constructive heuristics combining Variable Neighbourhood Search (VNS), Greedy Random-
ized Adaptive Search Procedure (GRASP) and Tabu Search (TS). According to their results, the



160 Kahfi, Seyed-Hosseni, Tavakoli-Moghadam

Table 2: Features LARP in this paper and other paper

Refrence

Depot Customer Vehicle Material Model Features
Data Solving Method
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Doulabi et al. [73] × × × ×
Lopes et al. [2] × × ×

Essink et al. [76] × × × × ×
Riquelme-Rodríguez × × ×et al. [77]

Huber et al. [5] × × × ×
Amini et al. [78] × × × ×

Tavakkoli-Moghaddam × × × ×et al. [79]
This paper × × × × × × × × × × × × ×

combination of TS and GRASP is the best case. The disadvantage of this model is that Constraint
(7) in this paper implies that each customer is required an individual vehicle and this is not practi-
cal. The mathematical model in [76] is the same as [2]; however, they are used hybrid TS-GRASP.
Riquelme-Rodríguez et al. [77] compared two methods for locating depots in the network. They pro-
posed a non-linear model for a periodic LARP and used a heuristic method for solving this model.
Huber et al. [5] presented a model with two objectives functions without formulating constraints.
He using heuristic for solving benchmark instances. Amini et al. [78] addressed an uncertain LARP
and employing two scenario-based approaches. Performance of scenario-based models is evaluated
with results of the numerical example.

The review on LARP shows that the time window has not been modeled for it, until now.
However, according to Table 1, in CARP have several studies on this asspect. Vansteenwegen et
al. [49] used a meta-heuristic method to solve the ARP problem with a soft time window for a case
study of mobile mapping van problem. But, they did not present mathematical model. Lystlund
et al. [8] presented two linear models for the CARP problem with soft and hard time window and
solved with heuristic method. Black et al. [47] defined a non-linear model for the prize-collection
CARP. Proposed mathematical model was non-linear and solved with heuristic methode. Çetinkaya
et al. [6] presented a hybrid non-linear integer model for a two-step ARP problem. Also, Vincent
and Lin [70] did not present a mathematical model for prize-collection ARP and solved with meta-
heuristic method. A review of related studies to the time window on arc routing shows that limited
studies focus on presenting a mathematical model and except Lystlund et al. [8] model all models
are non-linear. Because of the similarities between LARP and CARP, in this paper has been used
the model presented in [8].

3. Mathematical formulations

The LARP is defined as a graph G = (V,E ∪ R), which V is a set of vertex, E is a set of edges,
and R is a set of arcs, which can be directed, undirected, or a combination of both. Here, the LARP
problem is a directional graph and the connection of two vertexes is called an arc. The vertex set V
contains a non-empty subset J of n potential depot locations . Every arc has a non-negative traversal
cost and a non-negative demand for service. The arcs with positive demand form the subset A of
the arcs required to be serviced, only once, by a vehicle with capacity. Vehicles start and end their
route in the same depot, and each new vehicle. The sets, parameters, uncertain parameters, decision
variables for multi-period robust LARP model are presented in the following Table 3. The main
assumptions in proposed LARP problem are as follows:
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• Every required arc is traversed by one vehicle

• The vehicle is returned to the depot that was started

• The total demand for the arcs selected on tour is less than the vehicle capacity

• The deadheading arc is movement from the end vertex of one required arc to the start vertex
of another required arc without servicing the traversed arcs

• Each required arc is serviced once that can be used as a deadheading without time window

• The number of deadheading arc selected in every tour is minimized

• Waiting time is allowed for each required arc at the start of service

• The distribution of products is delivery and collection

• The number of deadheaded traverses in each arc is not limited

Table 3: The sets, parameters, uncertain parameters, decision variables

Nomenclature
Sets
I Set of all vertices I = {1, ..., i}, which includes customers and depots
J Set of depots J = {1, , j′} that j′ is the maximum number of depots
K Set of vehicle K = {1, , k}
P Set of period P = {1, , p}
S Set of steps that every vehicle travels S = {1, , s}
A Set of required arcs that has to be visited
VA Set of vertices that are extremities of the arcs in set A

V̂ Union of the set J and VA (V̂ = VA ∪ J)

Â Set of arcs forming a complete graph with V̂
δ+(J)(δ−(J)) Set of arcs leaving (entering) on the set of vertices J . When S contains a single vertex v, δ+(v) is a simplification for

δ+(v).

Parameters
f(j′p) Costs of creating depot j′ in period p
cijp Costs of traversing arc (i, j) in period p, if arc (i, j)∈A cost of servicing is equal to ĉij and if the arc is deadheading

(i.e. arc (i, j)/∈A) is equal c′ij
b(j′p) Capacity of depot j in period p

tij Time of traversing arc (i, j), if arc (i, j)∈A time of traveling is equal to t̂ij and if the arc is deadheading (i.e. arc
(i, j)/∈A) ) is equal arcs t′ij

Tkp The maximum time allowable for vehicle k in period p
Fk Fixed costs of using vehicle k
Np Number of customers in period p
Qkp Capacity of vehicle k in period p
M A very large number

Uncertain Parameters
d̃ijp Demand for service of arc (i, j)∈A in period p

Decision variables
xijksp 1 if arc (i, j)∈Â is traveled by vehicle k in period p at step s; and 0, otherwise

Decision variables
xijksp 1 if arc (i, j)∈Â is traveled by vehicle k in period p at step s; and 0, otherwise
yijksp 1 if arc (i, j)∈A is served by vehicle k in period p at step s; and 0, otherwise
wijj′p 1 if arc (i, j)∈A is allocated to depot j′ in period p

ωijp Time that service of the arc (i, j)∈Âstarts in period p
φiksp Time that vehicle k arrives in node i at step s in period p
ρijksp Time that vehicle k starts traversing arc (i, j)∈Â at step s
uikp Slack variable for eliminating sub-tours
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3.1. LARP model
The mixed-integer non-linear Robust multi-period LARP model is presented in this subsection.

Min
∑
j′∈J

∑
p∈P

fj′pwijj′p +
∑

(i,j)∈Â

∑
k∈K

∑
s∈S

∑
p∈P

cijpxijksp +
∑
k∈K

∑
(i,j)∈δ+(J)

∑
s∈S

∑
p∈P

Fkxijksp (1)

s.t.∑
k∈K

yijksp = 1 ∀(i, j)∈A, s∈S, p∈P (2)∑
(i,j)∈δ+(i)

xijksp −
∑

(i,j)∈δ−(i)

xijksp = 0 ∀i∈VA, k∈K, s∈S, p∈P (3)

xijksp ≥ yijksp ∀(i, j)∈A, k∈K, s∈S, p∈P (4)
uikp − ujkp +Npxijksp ≤ Np − 1 ∀i∈VA, i ̸= j, k∈K, s∈S, p∈P (5)∑
(i,j)∈A

d̃ijpyijksp ≤ Qkp ∀k∈K, s∈S, p∈P (6)

∑
m∈VA

xj′mkspyijksp ≤ Mwijj′p ∀j′∈J, (i, j)∈A, k∈K, s∈S, p∈P (7)∑
(i,j)∈A

d̃ijpwijj′p ≤ bj′p ∀j′∈J, k∈K, p∈P (8)

∑
(i,j)∈Â

∑
s∈S

tijxijksp ≤ Tkp ∀k∈K, p∈P (9)

φiksp − ρijksp ≤ M(1− xijksp) ∀(i, j)∈Â, k∈K, s∈S, p∈P (10)
ρijksp + t̂ij − φjks+1p ≤ M(1− yijksp) ∀(i, j)∈A, k∈K, s∈S, p∈P (11)
φjks+1p − (ρijksp + t̂ij) ≤ M(1− yijksp) ∀(i, j)∈A, k∈K, s∈S, p∈P (12)

ρijksp + t′ij − φjks+1p ≤ M(1− (xijksp − yijksp)) ∀(i, j)∈Â, k∈K, s∈S, p∈P (13)

φjks+1p − (ρijksp + t′ij) ≤ M(1− (xijksp − yijksp)) ∀(i, j)∈Â, k∈K, s∈S, p∈P (14)
ρijksp − ωijp ≤ M(1− yijksp) ∀(i, j)∈A, k∈K, s∈S, p∈P (15)

ωijp + t̂ij − ρijksp ≤ M(1− (xijksp − yijksp)) ∀(i, j)∈Â, k∈K, s∈S, p∈P (16)
φ0k1p = 0 ∀k∈K, p∈P (17)
xijksp, yijksp, wijj′p, uikp∈{0, 1}, ωijp, ρijksp, φiksp ≥ 0 (18)

The objective function (1) minimizes the sum of the fixed costs of creating the depots, the costs
of all traversed arcs, and the cost of selected vehicles, respectively. Constraint (2) ensures that
each required arc is served once by exactly one vehicle. Constraint (3) guarantees that the flow is
preserved (i.e., it ensures the number of arrivals at any vertex is equal to the number of departures).
Constraint (4) implies that an arc is served by a particular vehicle only if it traverses the same vehicle.
Constraint (5) is a sub-tour elimination constraint. In fact, a tour ends at the same depot, from
which it was started. Constraint (6) ensures that the vehicle capacity is not exceeded. Constraint
(7) makes sure that the required arcs are correctly allocated to a depot. Therefore, if the route that
the vehicle takes, starts from and ends at depot j, the route is devoted to depot j. This restriction
is necessary to establish Constraint (8). Constraint (8) ensures that the capacity of the depots is not
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violated. Constraint (9) ensures that the time taking the vehicle to finish the tour does not exceed
the maximum available time.

Constraints (10) to (17) related to time windows Constrait. The time windows modeling in arc
routing problem has a different structure than the node routing problem, since a required arc with a
time window after servicing, can be used as a deadheading arc without a time windows. Constraint
(10) denotes that the start time of the traversal arc (i, j)∈Â cannot be before the arrival time in
node i at step s. Constraints (11) to (14) implies that the arrival time in node j equals the start
time of the service or traversal plus the service time or the travel time for required arc or deadheads
arc, respectively. Constraint (15) fixes the service time variable. Constraint (16) ensures that any
required arc cannot be deadheads arc earlier than the finish time of the service of this arc. Constraints
(10) to (16) are restrictive if the arc (i, j)∈A selecting in optimum routes. Index s that shows steps
travels every vehicle does not effect on the model before Constraint (9). Therefore, the definition of
this index is not required if the problem is without time windows. However, this index is necessary
for Constraints (10) to (17) because for calculate arrival time in node j is used arrival time in node i
in previous step vehicle. Constraint (17) ensures that at the first step the vehicles start in the depot
at time zero. Finally, Constraints (18) shows the binary and positive decision variables.

3.2. Robust-based Bertsimas model
A robust approach is a method for solving problems of linear optimization under an uncertain

condition. When the data change to ensure that the solution remains near-optimal and feasible,
this approach has accepted a sub-optimal solution for the nominal values of the data [9]. Optimal
solutions that are less sensitive to uncertainty is called a robust solution. This method is alternative
for the stochastic programming and sensitivity analysis. This approach is used in discrete problems.
To describe [9], the reader may consider the following linear programming:

Min cx

s.t.∑
j

ãijxj ≤ bi ∀i (19)

x∈X

where coefficients ãij is uncertainty and random variable in [aij − âij, aij + âij] that aij and âij are
the nominal value and the variation magnitude of the uncertain parameter, respectively. Ji denote
the set of uncertain coefficients of row i. For the i − th constraint, a control parameter Γi, called
price of robustness is introduced. Parameters Γi∈[0, |ji|] and |ji| are the cardinality of set ji. In
the proposed LARP model, d̃ijp∈[dijp − d̂ijp, dijp + d̂ijp] in Constraints (6) and (8) is uncertainty.
Accordingly, based on [9], Constraint (6) can be shown in the following non-linear form:

∑
(i,j)∈A

∑
s∈S

dijpyijksp + max
Skp∪{tkp}|Skp⊆Jkp,|Skp|=⌊Γkp⌋,tkp∈Jkp\Skp

{
∑

(i,j)∈A

∑
s∈S

d̂ijpyijksp + (Γkp −
⌊
Γkp

⌋
)d̂ijpyijksp}

≤ Qkp ∀k∈K, p∈P (20)

Given a vector y∗, the protection function of Constraint (20) is as follows:

Bkp(y
∗,Γkp) = max

Skp∪{tkp}|Skp⊆Jkp,|Skp|=⌊Γkp⌋,tkp∈Jkp\Skp

{ ∑
(i,j)∈A

∑
s∈S

d̂ijp|y∗ijksp|+ (Γkp −
⌊
Γkp

⌋
)d̂ijp|y∗ijksp|

}
≤ Qkp ∀k∈K, p∈P (21)
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It is equal to the following linear optimization problem in (22):

Bkp(y
∗,Γkp) = max

{ ∑
j′′∈Jksp

d̂ijp|y∗j′′ |zijj′′
}

s.t.∑
j′′∈Jksp

zijj′′ ≤ Γkp (22)

0 ≤ zijj′′ ≤ 1 j′′∈Jksp

By introducing variables q1kp and r1ijksp for linear optimization problem (22), the dual model is as
follows:

Min q1kpΓ
1
kp +

∑
(j,j)∈A

r1ijksp

s.t.

q1kp + r1ijksp ≥ d̂ijp|yijksp| (23)
q1kp, r

1
ijksp ≥ 0

By interleaving the dual model Constraint (6) will be replaced with the following constraints:∑
(i,j)∈A

dijpyijksp + q1kpΓ
1
kp +

∑
(j,j)∈A

r1ijksp ≤ Qkp ∀k∈K, p∈P (24)

q1kp + r1ijksp ≥ d̂ijpyijksp ∀k∈K, p∈P (25)
q1kp, r

1
ijksp ≥ 0 (26)

Similarly, (8) will be replaced with the following constraints:∑
(i,j)∈A

dijpwijj′p + q2j′pΓ
2
j′p +

∑
(j,j)∈A

r2ijj′p ≤ bj′p ∀j′, p∈P (27)

q2j′p + r2ijj′p ≥ d̂ijpwijj′p ∀j′, p∈P (28)
q2j′p, r

2
ijj′p ≥ 0 (29)

3.3. Linear Programming
Because of the multiplication of two binary variables in Constraint (7), the model is nonlinear.

Therefore, instead of xj′mksp×yijksp, we introduce a new variable, namely, hj′mijksp. Then, Constraint
(7) is replaced with the following constraints:∑

(i,j)∈A

∑
s∈S

hj′mijksp ≤ Mwijj′p ∀j′∈J, (i, j)∈A, k∈K, p∈P (30)

xj′mksp + yijksp ≤ 1 + hj′mijksp ∀j′∈J,m∈VA, (i, j)∈A, k∈K, p∈P (31)
xj′mksp + yijksp ≥ 2hj′mijksp ∀j′∈J,m∈VA, (i, j)∈A, k∈K, p∈P (32)
hj′mijksp∈{0, 1} (33)
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3.4. Linear robust model
Robust model based on Bertsimas and sim method is as follow:

Min
∑
(j′∈J)

∑
p∈P

fj′pwijj′p +
∑

((i,j)∈Â

∑
k∈K

∑
s∈S

∑
p∈P

cijpxijksp +
∑
k∈K

∑
δ+(J)

∑
s∈S

∑
p∈P

Fkxijksp (34)

s.t.∑
k∈K

yijksp = 1 ∀(i, j)∈A, s∈S, p∈P (35)∑
(i,j)∈δ+(i)

xijksp −
∑

(i,j)∈δ−(i)

xijksp = 0 ∀i∈VA, k∈K, s∈S, p∈P (36)

xijksp ≥ yijksp ∀(i, j)∈A, k∈K, s∈S, p∈P (37)
uikp − ujkp +Npxijksp ≤ Np − 1 ∀i∈VA, i ̸= j, k∈K, s∈S, p∈P (38)∑
(i,j)∈A

dijpyijksp + q1kpΓ
1
kp +

∑
(j,j)∈A

r1ijksp ≤ Qkp ∀k∈K, p∈P (39)

q1kp + r1ijksp ≥ d̂ijpyijksp ∀k∈K, p∈P (40)∑
(i,j)∈A

∑
s∈S

hj′mijksp ≤ Mwijj′p ∀j′∈J, (i, j)∈A, k∈K, p∈P (41)

xj′mksp + yijksp ≤ 1 + hj′mijksp ∀j′∈J,m∈VA, (i, j)∈A, k∈K, p∈P (42)
xj′mksp + yijksp ≥ 2hj′mijksp ∀j′∈J,m∈VA, (i, j)∈A, k∈K, p∈P (43)∑
(i,j)∈A

dijpwijj′p + q2j′pΓ
2
j′p +

∑
(j,j)∈A

r2ijj′p ≤ bj′p ∀j′∈J, p∈P (44)

q2j′p + r2ijj′p ≥ d̂ijpwijj′p ∀j′∈J, p∈P (45)∑
(i,j)∈Â

∑
s∈S

tijxijksp ≤ Tkp ∀k∈K, p∈P (46)

φiksp − ρijksp ≤ M(1− xijksp) ∀(i, j)∈Â, k∈K, s∈S, p∈P (47)
ρijksp + t̂ij − φjks+1p ≤ M(1− yijksp) ∀(i, j)∈A, k∈K, s∈S, p∈P (48)
φjks+1p − (ρijksp + t̂ij) ≤ M(1− yijksp) ∀(i, j)∈A, k∈K, s∈S, p∈P (49)

ρijksp + t′ij − φjks+1p ≤ M(1− (xijksp − yijksp)) ∀(i, j)∈Â, k∈K, s∈S, p∈P (50)

φjks+1p − (ρijksp + t′ij) ≤ M(1− (xijksp − yijksp)) ∀(i, j)∈Â, k∈K, s∈S, p∈P (51)
ρijksp − ωijp ≤ M(1− yijksp) ∀(i, j)∈A, k∈K, s∈S, p∈P (52)

ωijp + t̂ij − ρijksp ≤ M(1− (xijksp − yijksp)) ∀(i, j)∈Â, k∈K, s∈S, p∈P (53)
xijksp, yijksp, wijj′p, uikp, hj′mijksp∈{0, 1}, ωijp, ρijksp, φiksp, q

1
kp, r

1
ijksp, q

2
j′p, r

2
ijj′p ≥ 0, φ0k1p = 0 (54)

4. Case study

In this paper, proposed model is used for modelling bank case study problem. This bank has 1200
branches and 30 treasury centers in a special city for providing services to the branches (Figure 1).
Treasury centers and their branches have been divided into 10 clusters based on the bank strategy.
The two main criteria considered by the bank for clustering include:

• There have to be safe roads between cluster members,
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• The cash exchanges between clusters has to be minimized.

Each treasury center is responsible for delivering or collecting cash from its branches. These centers
need to exchange money among themselves. Therefore, the goal is to determine at least one main
center (depot) in each cluster based on a demand of treasury centers.
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Figure 1: Clusters in case study. (number of branches is noted on the image)

The case study problems have a large number of branches in each cluster and large distance
dimension, therefore, it is assumed in each cluster, the nodes are the close and node-based problem
converting into the arc-based problem. Therefore, the branches of each city have been replaced by
the ignorance of the distance and location with the required arc. The arc demand value of each city
is equal to the sum demands branches of that city. But arc demand value of non-candidate treasury
center is equal to demand of same treasury center. Service to the branches of these treasury is not
responsible for central treasury. Selecting deadheading arc that are used as paths should be done
before solving problems. Due to the case study conditions, these routes should have adequate and
acceptable security. Therefore, all roads are evaluated by the AHP method based on indicators of
road safety, traffic, accident history and road type (highway or subway). The time of travel on arcs
are equal averaging the traveling times under different conditions. This case study is a two-period
problem because the changes in cash demand in the first and second half of the year. The dimensions
of the 10 problem of bank case study are presented in Table 4.

Table 4: Dimensions of case study problem

Number of Cluster 1 2 3 4 5 6 7 8 9 10

period 1

Number of nodes 8 12 14 18 23 25 27 27 32 36
Number of depot 1 1 1 2 2 2 2 2 2 3

Number of vehicles 5 6 6 6 7 7 7 8 10 12
Number of required arcs 8 10 14 15 20 22 28 30 34 36

period 2

Number of nodes 8 12 14 18 23 25 27 27 32 36
Number of depot 1 1 1 2 2 2 2 2 2 3

Number of vehicles 2 3 4 4 5 5 6 6 7 8
Number of required arcs 10 14 12 17 18 24 24 28 33 38
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5. Verification and validation of the model

The proposed mathematical model is solved by GAMS software, and all the numerical examples
are tested on a PC with Intel Pentium 4, core i5, 2.4 GHz processor with 4 GB memory. In all of
the LARP studies, it is noted that because this problem is NP-hard with a large number of binary
variables, any exact method cannot be used to solve the model. Therefore, in this paper, we use
the CPLEX solver in GAMS software for the bank case study. Selecting depot(s) in each cluster is
possible by using two different models: 1) Since this problem is discrete and the demand of a treasury
is dependent on the demands for its branches, this problem can be solved by the LRP model. 2) Since
this problem is large-size (Figure 1), the problem can be solved by the LARP model considering the
assumption of using arcs instead of nodes. This strategy reduced the dimension of clusters.

To check the proposed model, cluster 1 is solved with both the LRP model (Figure 2a) and
deterministic LARP model (Figure 2b) and the solutions are analysed. To solve the model, the
following points are considered: In Figure 2a, 1) All the branches of a city assumed to be located on
a straight line and 2) the treasury in each city are assumed as a branch that has cash demand. In
Figure 2b, branches located on a straight line is replaced with an arc, whose demand is equal to the
total demands of those branches. Although the results of the LRP (Figure 3a) and LARP (Figure 3b)
show that the selected path is the same in both cases, it takes GAMS software 50 hours to solve the
LRP model while the solution for LARP model is obtained in only 1 second. Certainly, using the
LRP in other clusters with larger sizes is not reasonable, even if it results in a better solution.
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6. Experimental results

The proposed model has high complexity because of a large number of binary variables. To
evaluate the performance of the proposed robust models, 10 clusters of the case study (Figure 1)
are selected. The deterministic and robust model is solved for each cluster under nominal data. It
should be noted that in the robust model are solved with Γ = 0.2, 0.5, 0.8, 1. Then for realization, 5
problems are solved in each cluster under each Γ. The performance measures of both the deterministic
and robust models are the mean, standard deviation of objective function values under problems of
case study realizations. Objective function value and computational time of solving each model are
reported in Table 5 and Figure 4.

Table 5: Result of the deterministic and robust LARP models for case study

Cluster Γ
Results with nominal data Results under realizations

Cost Time(s) Mean Standard deviation
Deterministic Robust Deterministic Robust Deterministic Robust Deterministic Robust

1

0.2 25,698 25,949 1 1 25,346 25,000 1,590 251
0.5 26,106 1.2 25,469 24,757 2,592 346
0.8 26,430 1.45 25,326 24,348 2,415 367
1 27,957 1.6 25,298 24,130 3,902 560

2

0.2 32,478 34,246 2,720 2,680 34,951 33,538 1,478 183
0.5 34,884 2,825 34,997 32,942 2,346 209
0.8 35,435 3,078 34,423 32,439 2,629 558
1 38,103 3,234 34,136 32,178 3,762 630

3

0.2 65,421 67,514 5,806 6,080 67,443 65,870 1,325 236
0.5 68,926 6,825 66,847 65,524 1,839 364
0.8 71,583 7,634 66,623 65,373 2,323 647
1 73,047 7,978 65,856 65,117 2,905 832

4

0.2 99,736 105,714 11,650 12,812 102,547 100,740 1,578 368
0.5 106,978 13,354 101,940 100,273 2,476 509
0.8 109,000 13,862 101,621 99,624 3,449 958
1 112,546 14,200 100,941 99,480 3,862 1,260

5

0.2 123,654 124,937 16,320 17,031 129,347 125,382 1,979 718
0.4 126,034 17,524 127,607 124,809 3,146 969
0.8 127,745 17,860 126,402 124,373 4,749 1,128
1 130,602 18,432 124,846 123,270 5,576 1,360

6

0.2 129,349 131,345 26,524 27,012 133,623 129,950 2,478 1,318
0.5 132,489 27,854 133,321 129,573 4,546 1,579
0.8 135,243 27,462 132,740 129,324 5,249 1,958
1 137,030 28,900 130,247 128,974 4,762 2,260

7

0.2 145,654 149,364 33,047 35,321 150,623 146,370 4,972 1,435
0.5 151,314 35,647 148,321 145,473 4,654 1,099
0.8 157,974 36,250 147,734 145,224 5,650 1,365
1 163,546 36,834 146,950 145,007 6,546 1,567

8

0.2 179,421 183,039 52,391 54,321 183,706 180,870 5,478 945
0.5 184,986 55,734 182,422 179,773 6,546 1,309
0.8 186,634 56,568 181,824 179,124 6,249 1,558
1 188,912 56,630 181,132 179,007 8,762 1,660

9

0.2 192,345 200,378 87,034 89,107 204,313 193,587 6,478 1,225
0.5 203,236 91,348 200,124 193,324 7,546 1,509
0.8 206,879 92,420 198,740 192,873 8,249 1,658
1 215,647 93,312 196,547 192,270 8,762 1,960

10

0.2 212,340 224,127 111,456 123,110 219,464 212,934 6,478 1,234
0.5 227,923 124,265 218,010 212,562 7,546 1,709
0.8 229,647 125,732 216,965 212,373 8,249 1,858
1 236394 126,974 214,735 211,550 8,362 1,960
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Computational results show that the robust model outperforms the deterministic model in both
quality and standard deviation of the solutions. For results under realizations in the robust model,
some demand values is in the worst case instead of the nominal value. Therefore, Bertsimas objective
value is larger than the deterministic objective value.

The results Figure 4 imply that the robust strategy has a better performance on the large-sized
problems and also higher Γ versus the deterministic one. The gap between (mean and Standard
deviation) the two approaches increases with problem size and Γ. The results emphasize disregarding
uncertainty can lead some losses in uncertain occurrences. Therefore, deterministic model is not
optimum under realizations data. Time-solving has increased in the large-size problem. Time-
solving in the robust model versus deterministic model is increased, because of the increasing number
of constraints and complexity of model.
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Figure 4: Results of case study solving and selected depot

To further explain of results Table 5, Cluster 1 is simplified and is shown in (Figure 5a). The
solving results of deterministic and robust models under nominal data (Figure 5b) and realizations
data (Figure 5c) are illustrated in Figure 5. Although, in both methods, the number of selected
treasury is the same and all the required arcs are served, but in the deterministic method the
selected routes have higher cost. In addition, according to the transported material(cash), choice of
routes within the province is more desirable, which has happened in the robust method. Therefore,
the robust method performs better than the results of the deterministic method.
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(a) Cluster 1 (b) Deterministic result (c) Robust result

Deadheading ArcDepot potential point Selected depot Requeired arc

Figure 5: Results of case study solving and selected depot

Results of solving clusters case study with robust models in Figure 6 shows that 13 treasury from
18 potential point has selected. Selected this treasury for transforming cash between treasury central
(in Tehran) and other treasury reduce bank costs and risk transforming cash.
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7. Conclusion and future research

This paper presented a new mixed non-linear programming model for a multi-period LARP
under uncertainty with time windows, time limitation for vehicles and using the vehicle for multiple
customers. The mathematical model for time windows in the arc routing problem is rarely. The
Bertsimas method was used for uncertainty in demand. The proposed model was linearized and
solved with CPLEX solver in GAMS. The LARP model is used for reduced dimension problem
size for a bank cast study and has better performance than LRP model. The realization of model
demonstrates that the robust strategy versus deterministic has a better performance on the large-size
problem and high uncertainty level. For future research, the model can be expanded with other real
constraints under multiple objectives, and also different meta-heuristic algorithms can be proposed
to solve the presented model.
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