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Abstract

Parameter recovery of dynamical systems has attracted much attention in recent years. The proposed
methods for this purpose can not be used in real-time applications. Besides, little works have been
done on the parameter recovery of the fractional dynamics. Therefore, in this paper, a convolutional
neural network is proposed for parameter recovery of the fractional dynamics. The presented network
can also estimate the uncertainty of the parameter estimation and has perfect robustness for real-time
applications.
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1. Introduction

Fractional dynamics have been used for modeling various phenomena in different fields including
engineering, biology [1], cognitive science, and fluid dynamics[2]. So, simulating and parameter
estimation of them are very important. Generally, there are three types of problem in dynamical
systems:
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• Modeling: The first level of application of fractional calculus is modeling. At the modeling level,
the question is how can we interpret phenomena in terms of fractional differential equations
[3].

• Simulation: In the second level, in order to study the behavior of the modeled phenomena in
various conditions, it should be simulated. Therefore, the behavior of the fractional model has
been simulated by different numerical algorithms.

• Parameter estimation: The last level of application for the fractional calculus is parameter
estimation of appropriate fractional models obtaining from the first level. After developing
a fractional model and some simulation studies on the behavior of the fractional model, it
could fit on the real data sets. Thus, the existence of some parameter estimation procedures is
crucial in the real-world applications of fractional dynamics. Generally, two types of problems
are defined in fitting a model on the data.

– Offline parameter estimation: In this type of fitting problem, time is not a concern and
the assumption is that there is enough time for the purpose of fitting the model on data.

– Online parameter estimation: Despite the offline problems, the online problems or real-
time problems consider the computation time and the computations should be finished
by a deadline. For example, in system identification problems, time of estimation is very
important especially in imaging and radiography problem [4].

Therefore, if there is not exist an accurate and fast parameter recovery procedure, the fractional
models can not be utilized in real-time applications. Fig (1) illustrates how these levels of applications
are related to each other [5].

Figure 1: The flowchart of how different levels of the problem are related to each other [5].

In this paper, an online parameter estimation algorithm based on a convolutional neural network
is presented. In the next section, a formal formulation for the parameter estimation of the fractional
dynamics is presented.



Likelihood free parameter estimation of fractional dynamics12 (2021) No.1,189–201 191

1.1. Statement of the problem
Despite the simulation problems, which include a dynamic and some conditions (i.e. initial and/or

boundaries), the data-driven discovery only consists of a dynamic with some unknown parameters
and a set of noisy observations. So, we have:f

K(u(x), θ) = f(x)

{(x1, u1), · · · , (xn, un)}
xi ∈ Rd, ui ∈ R

, (1.1)

where K(., .) is a (non)linear fractional operator with the unknown parameters θ = (θ1, · · · , θm)
and {(x1, u1), · · · , (xn, un)} is the set of noisy observations. The aim is to find θ, so the unknown
parameters should be approximated in such order that the obtained dynamical system behavior be
close to the actual behavior of the dynamical system in the measured points. So the problem can be
reformulated as follows:

θ∗ = argminθ
∑

(U(xi)− ui)2 (1.2)

such that:
K(U(x), θ) = f(x).

But this minimization problem is very hard to solve and the proposed algorithms for solving such op-
timization problems are very time-consuming. Therefore, we are going to approximate the unknown
parameters of the dynamical system, but without solving the mentioned minimization problem.

1.2. Literature review
Until now, several works have been done on parameter estimation of the fractional dynamics. In

[6], the authors have developed an algorithm based on simulating the fractional system and converting
it to an optimization problem. In the first step of this algorithm, the fractional system is simulated
by the fractional predictor-corrector method and then it converts to an optimization problem. After
that, the optimization problem is solved with a heuristic optimization algorithm. In [7], the authors
have presented an algorithm for estimation of two-dimensional space fractional models based on a
combination of implicit difference method with fast bi-conjugate gradient stabilized method. Raissi
and his collaborators have utilized the Gaussian process for parameter estimation of integer and
fractional order linear models in [8]. They also extend this approach for the nonlinear dynamics in
[9]. Recently, some neural network algorithms have been introduced by the researchers to recover the
parameters of the dynamical systems. PDE-Net 2 [10], physics informed neural networks [11, 12],
and DLGA-PDE [13] are some examples of neural networks that are presented for the purpose of
estimating the unknown parameters.

The remaining of the paper organized in the following order: in Section 2, some preliminaries
about the fractional calculus, approximate Bayesian computing, and the convolutional neural network
which is used in this work are presented, in Section 3, the steps of the proposed algorithm for
estimating the parameters of a fractional dynamic are discussed and in Section 4, the performance of
the parameter recovery procedure is illustrated on some examples; finally, a conclusion is presented
in Section 5.

2. Preliminaries

In this section, the preliminaries materials for the proposed algorithm is presented. These ma-
terials include, definition of the fractional derivative and basics of the fractional calculus, basics of
approximate Bayesian computing, and architecture of a convolutional neural network for parameter
estimation.
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2.1. Fractional derivative
By considering f(x) as a function, the Cauchy formula for n-th order can be obtained, and

by generalizing the Cauchy formula for non-integer orders, we can achieve the Riemann-Liouville
definition of fractional integral, and due to this, the well-known Gamma function is used as the
factorial function for non-integer numbers. Hence, by denoting the Riemann-Liouville definition of
the fractional order of integral as [14] Iβx f(x), it can be defined as follows:

Iβx f(x) =
1

Γ(β)

∫ x

0

(x− t)β−1f(t) dt, (2.1)

in which β is a real number which indicates the order of integral. Moreover, there is another definition
for fractional derivative, called, Caputo definition, and denoted by C

aDβxf(x). It can be defined as
follows:

Dβxf(x) = I(k−β)
x f (k)(x) =

{
1

Γ(k−β)

∫ x
0

f (k)(t)dt
(x−t)β+1−k if β /∈ N

dβ

dxβ
if β ∈ N

. (2.2)

It is worth to mention that, since the fractional derivative is an integral operator, so it inheritances
the linear property. Thus, we have[15]:

Dαx (λf(x) + µg(x)) = λ Dαxf(x) + µ Dαxg(x) λ, µ ∈ R. (2.3)

2.2. Approximate Bayesian computing
One of the powerful frameworks for the parameter estimation is the Bayesian framework. The

aim of this paradigm is to maximize the conditional probability of p(θ|x) in which θ is the unknown
parameter and x is the recorded data. By using the Bayes rule we have [16]:

p(θ|x) =
p(x|θ)π(θ)∫
p(x|θ)dθ

, (2.4)

where p(x|θ) is the likelihood function and π(θ) is the prior distribution for the parameters. Since
the value of the denominator of Bayes rule fraction is constant, to maximize p(θ|x) we can maximize
the numerator of the Bayes rule fraction. So, we have:

p(θ|x) ∝ p(x|θ)π(θ). (2.5)

The important thing that should be considered is that there is no exact likelihood function for the
wide range of problems. Therefore, it is necessary to approximate the likelihood function [17]:

p(θ|x) ∝ p(x|θ)π(θ) ≈ q(.|θ)π(θ). (2.6)

After approximating the likelihood function, the main part of the approximate Bayesian computing
method is constructing a reference table. The reference table contains some summary statistics of a
large number of samples from the approximated posterior and it can be generated by the Algorithm
(1).

Algorithm 1 Generation of the reference table

1: procedure Generate table(π(.), q(.))
2: T ←− Create a blank reference table
3: for i in {1, 2, · · · , N} do
4: θ(i) ←− sample from π(.)
5: x̃(i) ←− simulate from q(.|θ(i))
6: Store the pair

{
η(x̃(i)), θ(i)

}
in row i of the reference table T #η(.) computes the summary statistics

7: end for
8: return T
9: end procedure
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After obtaining the reference table, the procedure of parameter estimation is based on comparing
the stored summary statistics with summary statistics of recorded data that we are going to extract
its parameters. A simple algorithm based on utilizing a reference table is the rejection algorithm
that compares the distance between the summary statistics of the recorded data and the stored rows
of the table with a threshold [18].

2.3. Convolutional neural network

Deep neural networks have obtained many achievements in solving various problems in different
fields of science. Thus, it is interesting if deep neural networks can improve the precision of the
parameter estimation in complex models. The idea is that the network learns the model or sampled
data instead of using summary statistics. So, based on this idea, the network is considered as
a function to map the sampled data to the parameter space( θ̂(i) = fW (x(i)). So, the Gaussian
conditional probability of the parameters can be defined as [19]:

p(θ|x̃;W ) = N (θ|fW (x̃), σ2), (2.7)

the likelihood function is obtained as:

p(θ|x̃;W ) =
∏

p(θ(i)|x̃(i);W ). (2.8)

So, the negative log-likelihood function of the parameter estimation is obtained as follows:

− log p(θ|x̃;W ) = −
∑

log p(θ(i)|x̃(i);W ) = −
∑

logN (θ(i)|fW (x̃(i)), σ2) (2.9)

= −
∑

log

(
1√

2πσ2
e−

1
2σ2

(θ̂(i)−θ(i))2
)

=
∑ ‖θ̂(i) − θ(i)‖

σ2
+
N

2
log(2πσ2).

By minimizing the negative log likelihood function, the estimation can be done. So, the loss function
of the network can be defined as:

L(W ) =
1

N

∑ ‖θ̂(i) − θ(i)‖
σ2

+
1

2
log(2πσ2). (2.10)

This loss function is known as heteroscedastic loss. As obvious in this loss function the network
should also estimate the σ2(x̃(i)). It can deduced that, the output layer of the network consists 2N
neurons where N is the number of unknown parameters. It is worth mentioning that the activation
functions corresponding to unknown parameters are linear and the activation functions corresponding
to the variance output are softplus function (i.e. z = log(1 + ex)). On the other hand, some
convolutional layers are held at the beginning of the network to extract the features of the sampled
data automatically. In addition, number of the input channels of the network is d + 1 in which d is
the dimension of the dynamical system. Fig (2) shows the architecture of the convolutional neural
network.
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Figure 2: Structure the proposed convolutional neural network that consists some convolutional layers at the beginning,
an average pooling layer and a dense layer at the end of network.

3. Methodology

In this section, the proposed method for recovering the unknown parameters of a fractional
dynamical system is presented. The proposed algorithm consists of three steps:

i Data generation

ii Training the network

iii Prediction

The first two steps are done in an offline manner and the last step can be done in an online manner
(i.e. real time). In the remaining of this section, different parts of the proposed method are discussed.

Data generation: The most time-consuming part of the algorithm is the data generation part.
In this step, a specific model with some unknown parameters is considered. After that, based on
prior knowledge about the physics of the model, some specific prior distributions are selected for the
unknown parameters. Then, by generating samples from the prior distributions, a solvable model
is obtained. Therefore, it is feasible to solve the obtained model numerically or analytically. There
are various methods and algorithms for simulating a fractional (partial) differential equation such as
multi-step methods [20], finite difference methods [21], spectral [22] and spectral element methods
[23]. But all of these approaches have acceptable precision. So, there is no preference for selecting
the numerical algorithm. After simulating the fractional dynamic, we should add some noise to the
obtained data because the network should learn the noisy data. In the final step, the obtained noisy
data set and the generated parameters should be stored. The procedure of the data simulation is
presented in Algorithm (2).
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Algorithm 2 Data simulation

1: procedure Generate Data(π(.), K(., .), σnoise)
2: T ←− Create a blank reference table
3: for i in {1, 2, · · · , N} do
4: θ(i) ←− sample from π(.)
5: (x̃(i), ũ(i))←− simulate the dynamical system K(u(x), θ(i))
6: ei ←− N (0, σ2

noise)
7: Store the (x̃(i), ũ(i) + ei), θ

(i)
}

in row i of the reference table T
8: end for
9: return T

10: end procedure

Training : In the second step of the algorithm, we should train a neural network to learn our
considered dynamical system. For this purpose, a convolutional neural network with the architecture
where is mentioned in section 2.3, is utilized, and afterward, the procedure of the learning of the
network is started with the obtained data set in the previous step. The network input is the noisy
behavior of the system and the output of the network is the parameters of the system.

Prediction: In the prediction phase, a trained network is used for estimating the unknown pa-
rameters of recorded data. Since the neural network is trained and its weights are tuned, so, it can
start inference by receiving the input data and there is no delay for adapting or training. Thus the
in the prediction phase the proposed network can be applied to real-time problems.

4. Results

In this section, the performance of the proposed method is illustrated by presenting five examples.
In all of these examples the fractional order the system is considered unknown and we are going to
recover unknown order. The proposed examples consist two ordinary and three partial fractional
differential equations. The performance of the estimation procedure is measured with the Pearson
correlation between the true parameters and the estimated which is obtained by by the following
formula:

r =
n
∑
θtruei θestimatei −

∑
θtruei

∑
θestimatei√

n
∑

(θtruei )2 − (
∑
θtruei )2

√
n
∑

(θtruei )2 − (
∑
θtruei )2

.

Addition to the Pearson correlation, R-squared measure is also computed for the purpose of tracking
the variance of the estimation and it can be calculated as follows:

R2 = 1−
∑

(θtruei − 1
n

∑
θtruei )2∑

(θtruei − θestimatei )2
.

All the examples have use a network which has five convolutional layers with the 64, 64, 128, 128,
128 filter sizes respectively.

4.1. Test example 1

As the first example, a nonlinear fractional differential equation is considered as follows [22]:

Dα
t y(t) =

40320

Γ(9− α)
x8−α− 3

Γ(5 + α
2
)

Γ(5− α
2
)
x4−α

2 +
9

4
Γ(α+ 1) +

(3

2
x
α
2 − x4

)3

− y(t)
3
2 0 < α < 2. (4.1)
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The training data set of this problem consists 24750 noisy samples with the normal noise N (0, 0.2).
These samples simulate the behavior of the Eq (4.1) in t ∈ [0, 2] and α ∈ [0, 2]. The Pearson
correlation of the estimated parameters and the true parameters is 0.99 which is very high value for
the correlation. Moreover, the R-squared value is 0.98 which yields the variance of estimation is very
low and has good precision. Fig (3) shows the scatter plot of the recovered parameters with different
value for α.

Figure 3: Quality of estimating α parameter for example 4.1

It is clear that the network can recover the low values of the α better than the high values of the α
for this problem. The precision of parameter estimation can be effected by number of training point.
In Table (1), the obtained r, and R2 for estimating, after training with 14850, 19800, and 24750 are
presented. These results yield that, we can obtain enough precision for parameter estimating with
less number of training points.

Table 1: Evaluation of the performance of the proposed algorithm with different numbers of training points in example
4.1

#training points
14850 19800 24750

r 0.99 0.99 0.99
R2 0.96 0.98 0.98

4.2. Test example 2

For the second example, the following linear fractional differential equation is considered [22]:

Dαt y(t) + y(t) = 0 0 < α < 2. (4.2)

The training data set of this problem consists of 24750 noisy samples with the normal noise N (0, 0.2).
These samples simulate the behavior of the Eq (4.2) in t ∈ [0, 2] and α ∈ [0, 2]. Similar results have
repeated for this example. The Pearson correlation value is equal to 0.99 and the R-squared value is
equal 0.97. Fig (4) presents the scatter plot of the estimated parameters with different value for α.
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Figure 4: Quality of estimating α parameter for example 4.2

The variance of estimation is approximately constant for all values of the α parameter. Similar
to previous example, the evaluation of the performance of the introduced algorithm with different
number of training data is presented in Table (2) and similar result is repeated again.

Table 2: Evaluation of the performance of the proposed algorithm with different numbers of training points in example
4.2

#training points
14850 19800 24750

r 0.98 0.98 0.99
R2 0.96 0.96 0.97

4.3. Test example 3

The third example is a linear non-homogeneous time fractional diffusion equation [24]. Parameter
recovery of this type of equation is very important because of applications of this family in source
identification.

Dαt u(x, t) + u(x, t) =
∂2u(x, t)

∂x2
+

2t2−α

Γ(3− α)
x(2− x) + x(2− x)t2 + 2t2. (4.3)

The convolutional layers of the network for this problem has three channels. Moreover, 49500 noisy
sample have been used for training the network and the domain of simulation is (x, t) ∈ [0, 2]× [0, 2]
and the domain of simulation for α is [0.05, 1]. Additionally, the noise which is added to simulation
data has normal distribution with mean 0 and variance 0.2. The correlation value and the R-squared
value are 0.99, and 0.98 yielding the power of algorithm in recovering the of multi-dimensional models.
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Figure 5: Quality of estimating α parameter for example 4.3

Table (3) which compares the performance of the proposed method with various amount of
training data shows that the proposed method have enough good precision in estimating the unknown
parameters by different numbers of training point.

Table 3: Evaluation of the performance of the proposed algorithm with different numbers of training points in example
4.3

#training points
29700 39600 49500

r 0.99 1 0.99
R2 0.97 1 0.96

4.4. Test example 4

The fourth example is a time fractional nonlinear Fokker-Plank equation [25]. This problem arise
in fitting a probability distribution on data and have many applications in various field s of science.
Consider the following equation:

Dαt u(x, t) = [
∂

∂x
(
4u(x, t)

x
− x

3
) +

∂2u(x, t)

∂x2
]u(x, t). (4.4)

For this problem 49500 noisy samples with N(0, 0.2) noise are utilized. Moreover, the domain of the
problem is considered (x, t) ∈ [0, 1]× [0, 1], and the α parameter located in the interval [0, 1] for the
simulations. The quality of the recovery is presented in Fig (6).
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Figure 6: Quality of estimating α parameter for example 4.4

The obtained correlation value and R-squared value is equal to 0.81 and 0.65, respectively. It is
true that the precision of the estimation for this example is not very high but it is acceptable because
the value of R-squared is greater than 1

2
. Moreover, the effect of number of training points on the

performance of the proposed neural network is presented in Table (4).

Table 4: Evaluation of the performance of the proposed algorithm with different numbers of training points in example
4.4

#training points
29700 39600 49500

r 0.8 0.81 0.81
R2 0.64 0.65 0.65

4.5. Test example 5

The example is a homogeneous time fractional 3-dimensional heat equation as below [26]:

Dαt u(x, y, t) =
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
. (4.5)

Since this example is a 3-dimensional problem, so the training network should have 4 channels for
the input convolutional layer. 74250 noisy samples representing the behaviour of the mention heat
equation in the domain (x, y, t) ∈ [0, 1]× [0, 1]× [0, 1] and for α ∈ [0.15, 1], have been used to train
the network. The added noise is N(0, 0.1) for this example. The correlation value is equal to 0.96
and the R-squared value is equal to 0.92. These values imply that the recovery procedure works well
for this problem. Fig (7) shows the quality of the parameter recovery for this example.
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Figure 7: Quality of estimating α parameter for example 4.5

Generally the precision of the parameter estimation is good but by decreasing the value of alpha,
the variance of estimation increases. Table (5) shows the performance of the proposed method by
various numbers of training data.

Table 5: Evaluation of the performance of the proposed algorithm with different numbers of training points in example
4.5

#training points
49500 39600 74250

r 0.97 0.96 0.96
R2 0.94 0.91 0.92

5. Conclusion

In this paper, a convolutional neural network with heteroscedastic loss function has been used
for the purpose of parameter estimation of the fractional dynamics. The proposed method can
be applied to real-time applications. Besides, it has acceptable accuracy for recovering unknown
parameters from noisy data and it can handle both linear and nonlinear problems. Additionally, one
of the main advantages of the proposed method is that the network can handle the dimension of the
model by adding a channel to the convolutional layers. The accuracy of the recovery procedure, for
the nonlinear cases, is not as well as the linear ones but it is acceptable. Moreover, by using more
layers in the network or more complex architectures it is possible to improve the accuracy of the
estimation while the network training time increases.
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