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Abstract

In this paper, we study the following nonautonomous rational difference equation

yn+1 =
αn + yn
αn + yn−k

, n = 0, 1, ...,

where {αn}n≥0 is a bounded sequence of positive numbers, k is a positive integer and the initial
values y−k, ..., y0 are positive real numbers. We give sufficient conditions under which the unique
equilibrium ȳ = 1 is globally asymptotically stable. Furthermore, we establish an oscillation result
for positive solutions about the equilibrium point. Our work generalizes and improves earlier results
in the literature.
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1. Introduction

Nonlinear difference equations have been studied intensively in the last few decades. Especially,
there has been great interest in the study of the dynamics of rational difference equations, (for
example, see [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 17, 16, 18, 19]).

In [12], Kocic and Ladas studied the (k + 1)th order difference equation

yn+1 =
a+ byn
A+ yn−k

, n ∈ N, , (1.1)
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a, b, A are nonnegative real numbers and k is a positive integer. They showed that the positive
equilibrium point of the Eq. (1.1) is globally asymptotically stable. In addition, they showed that
all positive solutions of Eq. (1.1) are oscillatory about the positive equilibrium point. These results
were extended by Dekkar et al. [4] to the following nonautonomous analogues rational difference
equation

yn+1 =
αn + yn
αn + yn−k

, n = 0, 1, ... (1.2)

They considered Eq. (1.2) in the case where {αn}n≥0 is a periodic sequence of positive numbers with
period T . In addition, they proposed three open problems. In [10], we solved the first open problem
(when {αn}n≥0 is a convergent sequence), and in this work we give an answer to the second one.
Precisely, we study the dynamics of the following rational difference equation

yn+1 =
αn + yn
αn + yn−k

, n = 0, 1, ..., (1.3)

where {αn}n≥0 is a bounded sequence of positive numbers, k is a positive integer and the initial
values y−k, ..., y0 are positive real numbers. We give sufficient conditions under which the unique
equilibrium ȳ = 1 is globally asymptotically stable. Furthermore, we show, under some conditions,
that every positive solution of (1.3) is oscillatory about the equilibrium point ȳ = 1.

2. Preliminaries

In this preliminary section, we recall some notions and results about the theory of difference
equations. For more details we refer readers to [5, 13].

Let I be an interval of real numbers and let f : N × Ik+1 −→ I be a continuously differentiable
function. Consider the difference equation

yn+1 = f(n, yn, yn−1, ..., yn−k), n ≥ 0, (2.1)

with y0, y−1, ..., y−k ∈ I.

Definition 2.1. A point ȳ ∈ I such that ȳ = f(n, ȳ, ȳ, ..., ȳ) for all n ≥ 0, is called an equilibrium
point of Eq. (2.1).

Definition 2.2. An equilibrium point ȳ of (2.1) is said to be

1. Stable if, for every ε > 0, there exists δ = δ(ε) such that if y0, y−1, ..., y−k ∈ (ȳ − δ, ȳ + δ) ⊂ I
then |yn − ȳ| < ε, for all n ≥ −k. Otherwise, the equilibrium ȳ is called unstable.

2. Attractive if there exists µ > 0 such that if y0, y−1, ..., y−k ∈ (ȳ − µ, ȳ + µ) ⊂ I then

lim
n→∞

yn = ȳ.

If µ = ∞, ȳ is called globally attractive.

3. Asymptotically stable if it is stable and attractive.

4. Globally asymptotically stable if it is stable and globally attractive.

Definition 2.3. A solution {yn}n≥−k of Eq. (2.1) is called nonoscillatory if there exists p ≥ −k
such that either

yn > ȳ, ∀n ≥ p or yn < ȳ, ∀n ≥ p,

and it is called oscillatory if it is not nonoscillatory.
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Lemma 2.4 ([11]). For i = 1, 2, . . . ,m assume that

pi ∈ (0,∞) and ki ∈ {0, 1, . . .} with
m∑
i=1

(pi + ki) ̸= 1.

Let {Pi(n)} be sequences of positive numbers such that

lim inf
n→∞

Pi(n) ≥ pi, for i = 1, 2, . . . ,m.

Suppose that the linear difference inequality

zn+1 − zn +
m∑
i=1

Pi(n)zn−ki ≤ 0, n ∈ N,

has an eventually positive solution. Then, the equation

λ− 1 +
m∑
i=1

piλ
−ki = 0,

has a positive root.

3. Global asymptotic stability

In this section, we show that ȳ = 1 is a globally asymptotically stable equilibrium of all solutions
of Eq. (1.3) with positive initial conditions. Throughout this paper, we use the following notations

a = inf
n≥0

{αn} and A = sup
n≥0

{αn}.

First, we have the following result.

Theorem 3.1. Assume that a > 1. Then, for every positive solution {yn}n≥−k of (1.3) there exist
positive numbers m and M such that

m ≤ yn ≤ M, ∀n ≥ 0.

Proof . Let {yn}n≥−k be a positive solution of (1.3). For all n ≥ 0, we have

yn+1 =
αn + yn
αn + yn−k

< 1 +
1

αn

yn

≤ 1 +
1

a
yn, ∀n ≥ 0. (3.1)

Since a > 1, the right hand side of (3.1) tends to a/(a − 1) as n → ∞, and so, there exists M > 0,
such that yn ≤ M . Hence, Eq. (1.3) yields

yn+1 ≥
a

A+M
= m, ∀n ≥ 0.

□
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Theorem 3.2. Assume that a > 1. Then, ȳ = 1 is stable.

Proof . Choose M > A/(a− 1) such that

y−k, ..., y0 ∈
(

1

A+M
,M

)
.

Therefore, it is readily checked that

yn ∈
(

1

A+M
,M

)
, ∀n ≥ −k. (3.2)

Next, setting

M(ε) = min

{
1 + ε,

1

1− ε
− A

}
and

δ(ε) = min

{
M(ε)− 1, 1− 1

A+M(ε)

}
,

for ε ∈ (0, 1), we obtain

(1− δ, 1 + δ) ⊆
(

1

A+M
,M

)
⊆ (1− ε, 1 + ε). (3.3)

Now, if we take y−k, ..., y0 ∈ (1− δ, 1 + δ), then (3.2), combined with (3.3), yields

yn ∈ (1− ε, 1 + ε), ∀n ≥ −k,

and so ȳ is stable. □

Theorem 3.3. Assume that a > 1. Then, the unique equilibrium point of (1.3) is globally attractive.

Remark 3.4. When {αn}n is T -periodic, Dekkar et al. [4, Theorem 6.1] established the global at-
tractivity of the equilibrium point of Eq. (1.3), provided that αn ≥ 2. In Theorem 3.3, the coefficients
αn just have to be greater than 1.

Proof . Let {yn}n≥−k be an arbitrary positive solution of (1.3). Set

I = lim inf
n→∞

yn and S = lim sup
n→∞

yn

which by Theorem 3.1 exist. Let {np} and {nq} be an infinite increasing sequences of positive integers
such that

lim
q→∞

ynq+1 = I and lim
p→∞

ynp+1 = S.

By taking subsequences we assume that {αnp}p, {αnq}q, {ynp}p, {ynq}q, {ynp−k}p and {ynq−k}q con-
verge to A0, a0, L0, l0, Lk and lk respectively. Clearly

l0, L0, lk, Lk ∈ [I, S] and a0, A0 ∈ [a,A].
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Then, the Eq. (1.3) yields

I =
a0 + l0
a0 + lk

≥ a0 + I

a0 + S

and

S =
A0 + L0

A0 + Lk

≤ A0 + S

A0 + I
.

Since the function (x+ I)/(x+ S) is non-decreasing, we have

I ≥ a+ I

a+ S
. (3.4)

Similarly, since (x+ S)/(x+ I) is non-increasing, we obtain

S ≤ a+ S

a+ I
. (3.5)

Combining (3.4) with (3.5) gives

a+ (1− a)I ≤ IS ≤ a+ (1− a)S.

Consequently, since a > 1 we obtain I ≥ S, and so the sequence {yn} is convergent to the unique
limit l = 1. □

From Theorems 3.2 and 3.3 we obtain the following result.

Theorem 3.5. Assume that a > 1. Then, the unique equilibrium point of Eq. (1.3) is globally
asymptotically stable.

We conclude this section by two illustrative examples:

Example 3.6. We consider the following third order difference equation

yn+1 =
3 + cos(nπ) + 1/(n+ 1) + yn
3 + cos(nπ) + 1/(n+ 1) + yn−2

, (3.6)

with the initial values y−2 = 6, y−1 = 7.5 and y0 = 0.8. From Theorem 3.5, the equilibrium point
ȳ = 1 of Eq. (3.6) is globally asymptotically stable, see Figure 1.

Example 3.7. We consider the following eighth order difference equation

yn+1 =
[sin(nπ/2)− 4]2/8 + yn
[sin(nπ/2)− 4]2/8 + yn−7

, (3.7)

with the initial values y−7 = 1.9, y−6 = 0.01, y−5 = 6, y−4 = 0.4, y−3 = 1.2, y−2 = 0.5, y−1 = 2.5
and y0 = 0.5. From Theorem 3.5, the equilibrium point ȳ = 1 of Eq. (3.7) is globally asymptotically
stable and this appears clearly in Figure 2.
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Figure 1: Plot of the solution {yn}n≥0 of Eq. (3.6) for the initial values y−2 = 6, y−1 = 7.5 and y0 = 0.8.

4. Oscillation of positive solutions

To study the oscillation phenomenon we use the following lemma.

Lemma 4.1. Every positive solution of (1.3) which is not oscillatory about the equilibrium ȳ = 1,
tends to ȳ as n → ∞.

Proof . Let {yn}n≥−k be a positive solution of Eq. (1.3) which is not oscillatory about 1, that is,
there exists n0 ≥ −k such that

yn > 1, for all n ≥ n0, (4.1)

or

yn < 1, for all n ≥ n0. (4.2)

Suppose that (4.1) holds. The case where (4.2) holds is similar and will be omitted. Then for
n ≥ n0 + k,

yn+1

yn
=

αn/yn + 1

αn + yn−k

<
αn + 1

αn + yn−k

< 1, (4.3)
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Figure 2: Plot of the solution {yn}n≥0 of Eq. (3.7) for the initial values y−7 = 1.9, y−6 = 0.01, y−5 = 6, y−4 = 0.4,
y−3 = 1.2, y−2 = 0.5, y−1 = 2.5 and y0 = 0.5.

and this implies that {yn}n≥n0+k is decreasing. Thus, the sequence {yn}n≥−k is convergent to a limit
l. The sequence {αn}n≥0 is bounded, so there exists a subsequence {αni

}i≥0 which converges to a
limit α. Therefore, by taking limits on both sides of Eq. (1.3) we find that

l = lim
i→∞

yni+1 =
limi→∞ αni

+ limi→∞ yni

limi→∞ αni
+ limi→∞ yni−k

=
α + l

α + l
= 1.

□

Theorem 4.2. Assume that a > 0 and

kk

(k + 1)k+1
<

(A+ 1)k

(A− a+ 1)k+1
. (4.4)

Then, every positive solution of (1.3) is oscillatory about the equilibrium point ȳ = 1.

Proof . For the sake of contradiction we assume that Eq. (1.3) has a solution {yn}n≥−k which is
not oscillatory about 1. In this case, we suppose that (4.1) holds, and similarly we prove the case
when (4.2) holds. In view of Lemma 4.1, we have

lim
n→∞

yn = 1.
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Set zn = yn − 1. Then, Eq. (1.3) yields

zn+1 − zn + P1(n)zn + P2(n)zn−k = 0,

where
P1(n) =

αn

αn + yn−k

and P2(n) =
yn

αn + yn−k

.

We have
lim inf
n→∞

P1(n) ≥
a

A+ 1
= p1

and

lim inf
n→∞

P2(n) ≥
1

A+ 1
= p2.

Hence, by applying Lemma 2.4 we see that the equation

λ− 1 + p1 + p2λ
−k = 0

has a positive root. Let
F (λ) = λk+1 + (p1 − 1)λk + p2.

On one hand, the equation F (λ) = 0 has a positive root. On the other hand, we have

F ′(λ) = λk−1 [(k + 1)λ− k (1− p1)] .

F ′ has then two roots: λ = 0 and λ0 = k(A − a + 1)/[(k + 1)(A + 1)]. So, one can check that the
function F is decreasing on (0, λ0] and increasing on [λ0,+∞). Furthermore, we have

F (0) = p2 > 0, lim
λ→∞

F (λ) = +∞

and

F (λ0) =

(
k

k + 1

)k+1(
A− a+ 1

A+ 1

)k+1

−
(
A− a+ 1

A+ 1

)k+1 (
k

k + 1

)k

+
1

1 + A

=

(
k

k + 1

)k (
A− a+ 1

A+ 1

)k+1(
k

k + 1
− 1

)
+

1

A+ 1

=− kk

(k + 1)k+1

(
A− a+ 1

A+ 1

)k+1

+
1

A+ 1
.

Under the condition (4.4), we see that F (λ0) > 0, and so F is positive on [0,∞), which is a
contradiction. □

Corollary 4.3. Assume that a > 0 and A− a ≤ k. Then, every solution of Eq. (1.3) is oscillatory
about ȳ = 1.

Proof . Since A− a ≤ k, then we have

A− a+ 1

k + 1
≤ 1,
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and so (
A− a+ 1

k + 1

)k+1

≤
(
A− a+ 1

k + 1

)k

<

(
A+ 1

k

)k

.

Hence, condition (4.4) is fulfilled, and the result follows by Theorem 4.2. □

To confirm our result on the oscillatory behavior of the positive solutions of Eq. (1.3), we consider
the two following numerical examples.

Example 4.4. We consider the following fourth order difference equation

yn+1 =
[2 + cos(nπ)]/10 + yn
[2 + cos(nπ)]/10 + yn−3

, (4.5)

with the initial values y−3 = 2, y−2 = 1.2, y−1 = 1.3 and y0 = 2.5. We have A− a = 4/10 < 3 = k,
thus the solution of Eq. (4.5) is oscillatory about the equilibrium point ȳ = 1, see Figure 3.

Figure 3: Plot of the solution {yn}n≥0 of Eq. (4.5) for the initial values y−3 = 2, y−2 = 1.2, y−1 = 1.3 and y0 = 2.5.

Example 4.5. We consider the following fifth order difference equation

yn+1 =
[3 + cos(nπ)]/5 + 1/(n+ 1) + yn
[3 + cos(nπ)]/5 + 1/(n+ 1) + yn−4

, (4.6)

with the initial values y−4 = 1.5, y−3 = 0.8, y−2 = 1.7, y−1 = 2.5 and y0 = 1.5. We have A − a =
7/5 < 4 = k, thus the solution of Eq. (4.6) is oscillatory about the equilibrium point ȳ = 1, see
Figure 4.
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Figure 4: Plot of the solution {yn}n≥0 of Eq. (4.6) for the initial values y−4 = 1.5, y−3 = 0.8, y−2 = 1.7, y−1 = 2.5
and y0 = 1.5.
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