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Abstract

We are aimed to develop a fast and direct algorithm to solve linear complementarity problems (LCP’s)
arising from option pricing problems. We discretize the free boundary problem of American options
in temporal direction and obtain a sequence of linear complementarity problems (LCP’s) in the finite
dimensional Euclidian space Rm. We develop a fast and direct algorithm based on the active set
strategy to solve the LCP’s. The active set strategy in general needs O(2mm3) operations to solve
m dimensional LCP’s. Using Thomas algorithm, we develop an algorithm with order of complexity
O(m) which can extremely speed up the computations.
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1. Introduction

Many mathematical problems can be written as variational inequalities introduced by Hartman
and Stampacchia [6]. Variational inequality problems are closely related to a system of inequalities
called the “linear complementarity problems” (LCP’s). It is possible to formulate a wide range of
free boundary problems as a variational inequalities and linear complementarity problems (see e.g .
[3], [2]). In financial mathematics, option pricing problems can be state as variational inequalities
[10, 13]. In the first section of this paper, we review some properties of linear complementarity
problems in finite dimensional Euclidian spaces. In section 2, we investigate a simple example of
linear complementarity problems called “the obstacle problem” and then we demonstrate a direct
algorithm to solve it. In section 3, we focus on the problem of valuation of American options under
the well known Black-Scholes model. We develop a fast and direct algorithm for solving the LCP of
the Black-Scholes model. Finally, in section 4, we include some illustrative examples to demonstrate
the validity and applicability of the proposed algorithm.
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1.1. Linear complementarity problems in finite dimensional Euclidian spaces

Problem 1.1. (Linear complementarity problem) For a given matrix M ∈ Rm×m and a vector
b ∈ Rm,

Find x ∈ Rm such that


x ≥ 0,
Mx+ b ≥ 0,
x⊤(Mx+ b) = 0,

(1.1)

where the inequalities have meaning element-wise. The linear complementarity problems have a rich
mathematical theory, variety of algorithms, and a wide range of applications in applied science and
technology. For a detailed discussion of LCP’s see [1]. The sufficient condition for existence and
uniqueness of solutions to the problem (1.1) is provided in the following theorem.

Theorem 1.2. (See [1, Theorem 3.1.6 page 141]) Let M ∈ Rm×m be a positive definite matrix, then
the linear complementarity problem (1.1) has a unique solution for all vectors b ∈ Rm.

Several direct and iterative methods have been proposed to solve problems of type (1.1), for example
the well known PSOR method has been applied in [10] to solve LCP’s. The sufficient conditions for
convergance of the PSOR algorithm to the unique solution of LCP is provided in [5]. In [8], the LU
decomposition method is developed for solving complementarity problems arising from the pricing
of American options, in [11] a fast algorithm is introduced for the symmetric linear complementarity
problems. In the sequel, we describe a direct algorithm called “the active set strategy” to solve LCP’s
of the form (1.1).

1.2. The active set strategy

Let y = Mx+b, the third statement of (1.1) means that for each i we have xiyi = 0 i.e. at least
one of xi,yi is zero. Given the index set I = {1, 2, . . . ,m} we partition I into two sets

A = { i | i ∈ I and yi > 0}

F = { i | i ∈ I and yi = 0}

We rewrite the system y = Mx+ b as[
yA
yF

]
=

[
MAA MAF
MFA MFF

] [
xA
xF

]
+

[
bA
bF

]
but yA > 0 implies that xA = 0 so[

yA
0

]
=

[
MAA MAF
MFA MFF

] [
0
xF

]
+

[
bA
bF

]
hence[

yA
0

]
=

[
MAFxF + bA
MFFxF + bF

]
the elements of solution x which are correspond to F are computed by

xF = −M−1
FFbF . (1.2)
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Algorithm 1.1.
(
The active set strategy

)
1. choose a partition {A,F} of the index set I
2. compute xF = −M−1

FFbF and yA = MAFxF + bA

3. if xF ≥ 0,yA ≥ 0 then

[
0
xF

]
is a solution for (1.1) and stop the algorithm

else choose another partition of I and go to stage 2.

There are 2m possible partitions for the index set I. Computing xF from (1.2) needs O(m3) operation
in the worst case (for full matrices), hence the complexity order of the active set strategy in the worst
case is O(2mm3). In the next sections, we develop a modification of the active set strategy with order
of complexity O(m) which can extremely speed up the computations.

2. One dimensional obstacle problem

In this section, we describe a simple example of variational inequalities called “the obstacle
problem”.

2.1. Obstacle problem

Assume an obstacle g(x) ∈ C1(0, 1) with following conditions (compare Figure 1)

� g(x) > 0 for 0 < x < α,

� g′′ < 0 for x ∈ (0, 1),

� g(0) = 0 and g(1) < 0.

0 1
( )g x

( )u x

α

Figure 1: Function u(x) (dashed) across the obstacle g(x) (solid). Before the free boundary x = α, the solution u(x)
coincides with the obstacle g(x) and after that the solution becomes a straight line. At the free boundary x = α the
curve u(x) touches the obstacle tangentially.

Across the obstacle, a function u(x) with minimal length is stretched like a rubber thread. Before
x = α, the curve u(x) clings to the obstacle g(x). At x = α the curve of u(x) touches the obstacle
tangentially. The value of α is unknown initially. The function u shown in Figure 1 is defined by the
requirement u ∈ C1(0, 1) and by

for 0 < x < α : u′′ ≤ 0 (because u = g and u′′ = g′′ < 0),
for α < x < 1 : u′′ = 0 (because u becomes a straight line, also u > g).
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The obstacle problem can be states as following problem [13]

Find function u(x) ∈ C1(0, 1) such that

− u′′ ≥ 0, (2.1a)

u− g ≥ 0, (2.1b)

(u− g)u′′ = 0, (2.1c)

u(0) = u(1) = 0. (2.1d)

Notice that the unknown free boundary α does not appear in (2.1) explicitly. After solving (2.1) one
can read off the position of α from the solution. Obstacle problems have been studied as a part of
theory of variational inequalities and wide abstract theory has been developed for them [6].

2.2. The finite difference discretization of the obstacle problem

We discretize the interval [0, 1] using m equidistant points T = {x1, x2, . . . , xm} with step size h.
We approximate the derivatives using the following finite difference method

u′′(xi) =
u(xi+2)− 2u(xi+1) + u(xi)

h2
, (2.2)

substituting (2.2) in (2.1) we get

find u ∈ Rm such that


u− g ≥ 0,
Au ≥ 0,
(u− g)⊤Au = 0.

(2.3)

The matrix A is a sparse matrix with the following tridiagonal structure.

A =


2
h2

−1

h2 0 . . . 0
−1

h2
2
h2

−1

h2 0

0 0

.

.

.
.
.
.

.

.

.

0 −1

h2
2
h2

−1

h2

0 . . . 0 −1

h2
2
h2

 (2.4)

By change of variable x = u− g we achieve the standard LCP of the form (1.1).

Theorem 2.1. The coefficient matrix A in (2.3) is positive definite and in view of theorem 1.2 the
LCP (2.3) has a unique solution.
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Proof . Let α = (α1, α2, . . . , αm)
⊤ be an arbitrary vector in Rm, then

α⊤Aα =
m∑
i=1

m∑
j=1

αiAijαj

=
1

h2

(
2α1α1 − α1α2 +

m−1∑
i=2

αi(−αi−1 + 2αi − αi+1)− αmαm−1 + 2αmαm

)

=
1

h2

(
2α1α1 − α1α2 + (−α2α1 + 2α2α2 − α2α3)

+(−α3α2 + 2α3α3 − α3α4)

+ . . .

−αmαm−1 + 2αmαm

)
=

1

h2

(
α2
1 + (α1 − α2)

2 + (α2 − α3)
2 + . . .+ (αm−1 − αm)

2 + α2
m

)
≥ 0,

with equality if and only if α1 = α2 = . . . αm = 0. □

3. The Black-Scholes model for pricing American options

3.1. Linear complementarity problem of the Black-Scholes model

Under the standard Black-Scholes model, the value of an American option satisfies a free boundary
partial differential equation which is equivalent to a variational inequality problem as follows (see
[10, 13])

Pτ (S, τ) + LP (S, τ) ≥ 0, (S, τ) ∈ (0,∞)× (0, T ),
P (S, τ) ≥ h(S),
(P − h) (Pτ (S, τ) + LP (S, τ)) = 0,
P (S, τ) = E, limS→∞ P (S, τ) = 0,

(3.1)

where h(S) = max{E − S, 0} and L is the Black-Scholes partial differential operator introduced by

LP (S, τ) =
1

2
σ2S2PSS(x, t) + rSPS(S, τ)− rP (S, τ).

In (3.1), P (S, τ) denotes the price of option at time τ when the spot price of underlying asset is S.
The “strike price” E, “volatility” σ, “interest rate” r and “maturity” T are all positive constants.
The domain of problem (3.1) has shown in Figure 2.

The theory of free boundary problems is closely related to linear complementarity problems and
variational inequality problems. For a detailed discussion of this relation we refer the reader to [2].
Two basic references on the complementarity problems and variational inequalities are [1] and [9].

Now we turn our attention to the Black-Scholes inequality (3.1). By some change of variables we
can transform (3.1) into a LCP of heat equation type

ut − uxx ≥ 0, −∞ < x < ∞, 0 ≤ t ≤ tmax,
u ≥ g,
(ut − uxx)(u− g) = 0,
u(x, 0) = g(x, 0),
limx→±∞ u(x, t) = g(x, t).

(3.2)
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Figure 2: The domain of problem (3.1). Before the free boundary (early exercise curve) Sf (τ), the solution P coincides
with the payoff function h(S) and we have Pτ +LP > 0. In the right hand of free boundary, the equation Pτ +LP = 0
holds.

where
g(x, t) = e

t
4
(q+1)2 max{e

x
2
(q−1) − e

x
2
(q+1), 0}.

This equivalence can be proved by means of the transformations given in table 1. For more discussion

x = ln(S/E), t = σ2

2
(T − τ), tmax = σ2

2
T, q = 2r

σ2 ,

p(x, t) = Ee−
x
2
(q−1)− t

4
(q+1)2u(x, t),

P (S, τ) = p
(
ln(S/E), σ

2

2
(T − τ)

)
.

Table 1: Change of variables for the Black-Scholes equation .

about this equivalence the reader is referred to [13] .

Figure 3: The domain of problem (3.1).

In what follows, we use the implicit Euler method to discretize (3.1) in temporal direction and
obtain a sequence of linear complementarity problems (LCPs) in a finite dimensional Euclidean space.
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3.2. The finite difference discretization of the Black-Scholes equation

We truncate the infinite domain R in (3.2) for x to be [xmin, xmax] with a positive and sufficiently
large xmax . The truncation error with respect to x has been shown to decrease exponentially [7].
Notice that the last condition in (3.2) states that g(x, t) is the asymptote of u(x, t) when x tends to
±∞, however we replace it by

u(xmin, t) = g(xmin, t), u(xmax, t) = g(xmax, t).

Now we discretize (3.2) according to the following implicit Euler method

ut(x, tn) =
u(x, tn)− u(x, tn−1)

δt
,

using notation un(x) := u(x, tn), the semi-discrete version of (3.2) will be achieved


un − δtun′′ − un−1 ≥ 0,
un ≥ gn,
(un − δtun′′ − un−1)(un − gn) = 0,
u0 = g(x, 0),
limx→±∞ un = g(x, tn).

(3.3)

( , )
n

g x t

0
m in

x maxx

( , )
n

u x t

(the position of free boundary)

Figure 4: Solution u(x, t) across the obstacle g(x, t) at time tn. Before the position of free boundary the solution u
coincides with obstacle g. At x = 0 the obstacle g(x, tn) has a slope discontinuity.

Time discretization using implicit Euler method deduces accuracy of order O(δt). To achieve
second order accuracy of time, we can discretize (3.2) using the Crank-Nicholson method. In this
case, the first equation of (3.3) becomes

un − 1

2
δtun′′ − 1

2
δtun−1′′ − un−1 ≥ 0.

The initial value u(x, 0) as shown in figure 4 has a slope discontinuity at x = 0. In such cases the
popular Crank-Nicholson method can lead to a numerical solution with oscillations due to the lack
of L-stability [14]. To reduces these oscillations one can use the Rannacher time stepping scheme
proposed in [12]. The Rannacher time stepping starts the computations with two implicit Euler steps
and after that it uses the Crank-Nicholson method. Using this scheme the full second order accuracy
of the Crank-Nicholson scheme can be achieved. A convergence analysis of Rannacher time-stepping
is given in [4].



268 Moradipour

Now we discretize the spatial domain [xmin, xmax] similar to section 2 . Since the transformed
payoff function g(x, 0) as shown in figure 4 has a slope discontinuity at x = 0, it is reasonable to
assume that 0 ∈ T . Let

un = (un
1 , u

n
2 , . . . , u

n
m)

⊤ , un
j = un(xj),

gn = (gn1 , g
n
2 , . . . , g

n
m)

⊤ , gnj = g(xj, tn).
(3.4)

The discretization of problem (3.2) is

Find un ∈ Rm such that


un − gn ≥ 0,
Mun − un−1 ≥ 0,
(un − gn)⊤ (Mun − un−1) = 0.

(3.5)

In equation (3.5), M = I + δtA where A is introduced by (2.4) and the m-vector gn can be
easily replaced by g(x, tn) computed at points of T . By change of variable x = un − gn we achieve
a sequence of LCPs of the standard form (1.1).

Theorem 3.1. The linear complementarity problem (3.5) has a unique solution .

Proof .from theorem 2.1, we know that the matrix A is positive definite, so the coefficients matrix
M = I+ δtA is also positive definite. □

The linear complementarity problem (3.5) most be solved at every time step tn. In the sequel we
propose a very fast modification of the active set strategy to solve LCPs.

3.3. Modification of the active set strategy for American options

For American options, the unknown boundary of the problem, divides the computational domain
into two partitions (see figure 4). Before the position of free boundary, the solution u coincides with
the payoff function and the inequality Mx+b > 0 holds. In the right hand side of free boundary we
have the equationMx+b = 0. We define two index setsA = {1, 2, . . . i−1} and F = {i, i+2, . . . ,m}.
We choose an initial guess for i then we compute xF form formula (1.2) and check the conditions in
the third stage of algorithm 1.1. Since M is a tridiagonal matrix, we use the Thomas algorithm to
compute xF .

Algorithm 3.1.
(
Active set strategy for American options

)
1. Choose the partitions A = {1, 2, . . . i− 1} and F = {i, i+ 1, . . . ,m}
2. Solve the system MFFxF = bF by Thomas algorithm and compute yA = MAFxF + bA

3. if xF ≥ 0,yA ≥ 0 then

[
0
xF

]
is a solution for (1.1) and stop the algorithm

else set i := i− 1 and go to stage 2.

In the third stage of algorithm 3.1 when we decrease i, the dimension of matrixMFF will be increased.
If the initial guess of i would be chosen near the free boundary, after a few iterations the solution[
0
xF

]
will be found. Since the Thomas algorithm for tridiagonal matrices has the complexity of

order O(m), we can state the following theorem.

Theorem 3.2. The algorithm 3.1 to solve the LCP (1.1) only needs O(m) operations.
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4. Numerical experiments

In this section, the proposed numerical algorithm is validated through experimental tests.

Example 4.1. In the first example, we consider the obstacle problem (2.1) with obstacle function

g(x) = x(
√
2
2

− x). The exact position of the free boundary is α = 1 − 1
2

√
4− 2

√
2 and the exact

solution of the obstacle problem is

u(x) =

{
x(

√
2
2
− x), 0 ≤ x ≤ α,

g(α)
α−1

(x− 1) α ≤ x ≤ 1.

We discretize the domain [0, 1] using m equidistance points with different values of m. We apply
the finite difference method and reduce the obstacle problem to a linear complementarity problem.
We solve the LCP using modified active set strategy proposed in algorithm 3.1. We compare the
estimated solutions with exact solutions in the sense of root mean square (RMS) error:

RMS error =

√∑m
i=1[u(xi)− uh(xi)]2

m

Figure 5 illustrates the RMS error for various values of m (number of elements). Figure 6 shows
computational times for modified active set strategy. The programs have been tested and run on
Windows 10 operated by Intel Core i5-7200U processor with 8 GB of RAM. We can see that the
computational time grows linearly with respect to m.
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Figure 5: RMS error respect to various values of m for obstacle problem (2.1)
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Figure 6: computation time for various values of m for problem (2.1).

Example 4.2. In the second example, we focus on the Black Scholes linear complementarity
problem of American put option (3.1) with parameters

T = 0.5, r = 0.06, σ = 0.4, E = 100.

We solve the equivalent problem (3.2) using the spatial computational domain [xmin, xmax] = [−1, 1]
and discretize it with m = 101 equidistant points, then we discretize the time interval [0, tmax]
using N = 20 temporal levels. We solve the complementarity problems in each time step using the
modified active set strategy explained in section 3.3. Financially, the value of option at time τ = 0
is important because P (S, 0) denotes the option prices at present time. Figure 7 shows the solutions
to the problem (3.1) at times τ = 0 across the obstacle function max{E − S, 0}.
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Figure 7: Approximation of the American put option price P (S, τ) at time τ = 0 across the obstacle function
max{E − S, 0}.
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