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Abstract

In this paper we studying some properties of starlike function of order λ which satisfy in the condition

ℜ(zf
′
(z)

f(z)
+ α

z2f
′′
(z)

f(z)
) < 1− λ+ α

for all z ∈ U = {z : |z| < 1}, where f(z) = 1 +
∞∑
k=1

akz
k is analytic in U, 0 ⩽ α < 2 and 0 ⩽ λ < 1.

Our results extend previos results given by Aghalary et al. (2009) and Wang et al.(2014).
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1. Introduction

Let Σ denote the class of functions f of the form

f(z) =
1

z
+

∞∑
k=1

akz
k (1.1)

which are analytic in the punctured open unit disk

U∗ = {z : 0 < |z| < 1} = U− {0}.
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A function f ∈ Σ is said to be in the class MS∗(α) of meromorphically starlike functions of order α
if it satisfies the inequality

ℜ(zf
′(z)

f(z)
) < −α (z ∈ U; 0 ⩽ α < 1).

Let P denote the class of functions p given by

p(z) = 1 +
∞∑
k=1

pkz
k (z ∈ U) (1.2)

which are analytic in U and satisfy the condition

ℜ(p(z)) > 0 (z ∈ U).

Many authors have studied analytic starlike functions. For some recent investigation, see, for example
[1, 2, 8, 12, 14, 15, 18, 19, 20, 23] and the references therein.
Wang et al. [23] introduced a new class of starlike analytic functions on U∗ as follows:

H(β, λ) =

{
f ∈ Σ : ℜ

(
zf ′(z)

f(z)
+ β

z2f ′′(z)

f(z)

)
< βλ(λ+

1

2
) +

β

2
− λ, (z ∈ U∗)

}
,

where β ⩾ 0 and 1
2
⩽ λ < 1.

In [23] Wang et al. had proved that H(β, λ) is a subclass of MS∗(λ). Also Wang et al. [22]
introduced the following subclass of H(β, λ).
Let H+(β, λ) denote the subset of H(β, λ) such that all functions f ∈ H(β, λ) having the following
form:

f(z) =
1

z
−

∞∑
k=1

akz
k (ak ⩾ 0).

The following two lemmas can be derived from ([6], Theorem 1) (see also [7]).

Lemma 1.1. Let

1 + βλ(λ+
1

2
)− λ− 3

2
β > 0. (1.3)

Suppose also that f ∈ Σ is given by (1.1). If

∞∑
k=1

[k + βk(k − 1) + γ]|ak| ⩽ 1− γ − 2β.

where (and throughout this paper unless otherwise mentioned) the parameter γ is constrained as
follows:

γ = λ− βλ(λ+
1

2
)− β

2
, (1.4)

then f ∈ H(β, λ).

Lemma 1.2. Let f ∈ Σ be given by (1.1). Suppose also that γ is defined by (1.4) and the condition
(1.3) holds. Then f ∈ H+(β, λ) if and only if

∞∑
k=1

[k + βk(k − 1) + γ]ak ⩽ 1− γ − 2β.
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Recently Wang et al. [23]proved some coefficient inequalities, neighborhoods, partial sums and
inclusion relationships for two classes H(β, λ) and H+(β, λ).

In Section 2, we introduced a new class of analytic starlike function. In Section 3 and Section 4,
we prove some coefficient inequalities, neighborhoods and partial sums. Our results extend previous
results given by Aghalary et al. [1] as well as by Wang et al. [23].

2. Preliminaries

In this section we introduce the notation A for the class of all functions f of the form

f(z) = 1 +
∞∑
k=1

akz
k (2.1)

which are analytic in the open unit disk U. Let 0 ⩽ α < 2 and 0 ⩽ λ < 1 and Λ(α, λ) denotes the
class of functions f ∈ A and satisfies the condition

ℜ
(
zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)

)
< 1− λ+ α. (2.2)

A function f ∈ A is said to be in the class V(α, λ) if it satisfies the condition

ℜ
(
zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)

)
< 1− λ+ α(

1

2
+ λ2 − 3

2
λ), (2.3)

such that 0 ⩽ α < 2 and 0 ⩽ λ < 1. Obviously V(α, λ) ⊆ Λ(α, λ). Also suppose that Λ∗(λ) denotes
the class of functions f ∈ A such that satisfies the following condition

ℜ
(
zf ′(z)

f(z)

)
< 1− λ. (2.4)

Obviously Λ(0, λ) = V(0, λ) = Λ∗(λ).
Given two functions f, g ∈ A where f is given by (2.1) and g is given by

g(z) = 1 +
∞∑
k=1

bkz
k.

The Hadamard product (or convolution) f ∗ g is defined by

(f ∗ g)(z) = 1 +
∞∑
k=1

akbkz
k := (g ∗ f)(z).

At first we prove the following lemma.

Lemma 2.1. Let 0 ⩽ α < 2, 0 ⩽ λ < 1 and f ∈ A. Then f ∈ V(α, λ) if and only if
1

z
f ∈

H(
α

1 + 2α
, λ).
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Proof . Let f ∈ A. Then
1

z
f ∈ H(

α

1 + 2α
, λ) if and only if

ℜ

z(
1

z
f(z))′

(
1

z
f(z))

+
α

1 + 2α

z2(
1

z
f(z))′′

(
1

z
f(z))

 <
α

1 + 2α
λ(λ+

1

2
) +

α

2(1 + 2α)
− λ.

Which is equivalent to

ℜ
(
(1− 2α

1 + 2α
)
zf ′(z)

f(z)
+

α

1 + 2α

z2f ′′(z)

f(z)

)
<

α

1 + 2α
λ(λ+

1

2
) +

α

2(1 + 2α)
− λ+ 1− 2α

1 + 2α
.

Hence
1

z
f ∈ H(

α

1 + 2α
, λ) if and only if

ℜ
(
zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)

)
< 1− λ+ α + α(

1

2
+ λ2 − 3

2
λ).

This ineqvality is equivalent to f ∈ V(α, λ), and completes the proof. □

Remark 2.2. If 0 ⩽ λ < 1 and 0 ⩽ β <
2

5
and α =

β

1− 2β
then by similar method in proof of

Lemma 2.1 we can prove that h ∈ H(β, λ) if and only if zh ∈ V( β

1− 2β
, λ).

In order to prove our main results, we need the following useful lemma.

Lemma 2.3. (See[11]) If the function p ∈ P is given by (1.2), then

|pk| ⩽ 2 (k ∈ N).

A function f ∈ Λ(α, λ) of the from

f(z) = 1−
∞∑
k=1

akz
k (ak ⩾ 0) (2.5)

is said to be in the class Λ+(α, λ).

3. Main Results

We start this section by the following lemmas.

Lemma 3.1. Let 0 ⩽ α < 2, 0 ⩽ λ < 1 and f ∈ A is given by (2.1). If

∞∑
k=1

[αk2 − αk + k − γ]|ak| < γ (γ = 1− λ+ α) (3.1)

then f ∈ Λ(α, λ).
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Proof . For z = reiθ, 0 ⩽ r < 1 and 0 ⩽ θ < 2π, from (3.1), we get

ℜ


∞∑
k=1

[αk2 − αk + k]akz
k

1 +
∞∑
k=1

akz
k

 ⩽

∞∑
k=1

[αk2 − αk + k]|ak|rk

1 +
∞∑
k=1

|ak|rk
=

∞∑
k=1

[αk2 − αk + k]|ak|

1 +
∞∑
k=1

|ak|
< γ, (r → 1).

The above inequalities show that f ∈ Λ(α, λ). □

Lemma 3.2. Let 0 ⩽ α < 2 and 0 ⩽ λ < 1 and f ∈ A is given by (2.5). Then

∞∑
k=1

[αk2 − αk + k − γ]ak < γ γ = (1− λ+ α)

if and only if f ∈ Λ+(α, λ) .

Proof . In view of Lemma 3.1, we need only show that f ∈ Λ+(α, λ) satisfies the coefficient condition.
We give f ∈ Λ+(α, λ) , so

ℜ


−

∞∑
k=1

[αk2 − αk + k]akz
k

1−
∞∑
k=1

akz
k

 < γ,

for z = reiθ, 0 ⩽ r < 1 and 0 ⩽ θ < 2π, we have

−
∞∑
k=1

[αk2 − αk + k]akr
k

1−
∞∑
k=1

akr
k

< γ.

The result follows upon letting r → 1.

∞∑
k=1

[αk2 − αk + k]ak

1 +
∞∑
k=1

ak

⩽

∞∑
k=1

[αk2 − αk + k]ak

−1 +
∞∑
k=1

ak

< γ.

□

Lemma 3.3. Let 0 ⩽ α < 2 and 0 ⩽ λ < 1. Suppose also that the sequence {Bk}∞k=1 is defined by

B1 = 2(1− λ+ α) and Bk+1 =
2(1− λ+ α)

k + 1 + αk(k + 1)

(
1 +

k∑
i=1

Bi

)
(k ∈ N). (3.2)

Then

Bk = 2(1− λ+ α)
k−1∏
j=1

j + αj(j − 1) + 2(1− λ+ α)

j + 1 + αj(j + 1)
(k ∈ N). (3.3)
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Proof . By virtue of (3.2), we easily get

[k + 1 + αk(k + 1)]Bk+1 = 2(1− λ+ α)

(
1 +

k∑
i=1

Bi

)

and

[k + αk(k − 1)]Bk = 2(1− λ+ α)

(
1 +

k−1∑
i=1

Bi

)
.

We obtain that
Bk+1

Bk

=
k + αk(k − 1) + 2(1− λ+ α)

k + 1 + αk(k + 1)

Thus, for k ⩾ 2, so we give

Bk =
Bk

Bk−1

· Bk−1

Bk−2

· ... · B2

B1

·B1 = 2(1− λ+ α)
k−1∏
j=1

j + αj(j − 1) + 2(1− λ+ α)

j + 1 + αj(j + 1)

and this evidently completes the proof. □

By using induction and (3.2) we conclude the following proposition.

Proposition 3.4. Let 0 ⩽ α < 2, 0 ⩽ λ < 1 and the sequence {Bk} is given by (3.2). Then

Bk ⩽
k + 1

3
(1 +B1) (k ⩾ 2). (3.4)

Theorem 3.5. Let 0 ⩽ α < 2 and 0 ⩽ λ < 1. If f ∈ Λ(α, λ), then

|a1| ⩽ 2(1− λ+ α) (3.5)

and

|ak| ⩽ 2(1− λ+ α)
k−1∏
j=1

j + αj(j − 1) + 2(1− λ+ α)

j + 1 + j(j + 1)
(k ⩾ 2). (3.6)

Proof . Suppose that

q(z) = −zf ′(z)

f(z)
− α

z2f ′′(z)

f(z)
+ 1− λ+ α

Then, by f ∈ Λ(α, λ), we know that q is analytic in U, q(0) = 1− λ+α > 0 and ℜ[q(z)] > 0. Hence

h(z) =
q(z)

q(0)
=

q(z)

1− λ+ α
∈ P .

If we put

q(z) = c0 +
∞∑
k=1

ckz
k (c0 = 1− λ+ α),

then by Lemma 2.3,
|ck| ⩽ 2(1− λ+ α) (k ∈ N).
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Also
q(z)f(z) = −zf ′(z)− αz2f ′′(z) + (1− λ+ α)f(z)

and so(
c0 +

∞∑
k=1

ckz
k

)(
1 +

∞∑
k=1

akz
k

)
= −

∞∑
k=1

kakz
k − α

∞∑
k=1

k(k − 1)akz
k + (1− λ+ α)

(
1 +

∞∑
k=1

akz
k

)
.

Thus
c0a1 + c1 = −a1 + (1− λ+ α)a1

and

ck+1 + c0ak+1 +
k∑

i=1

aick+1−i = −(k + 1)ak+1 − αk(k + 1)ak+1 + (1− λ+ α)ak+1 (k ∈ N).

Therefore
|a1| ⩽ 2(1− λ+ α)

and

|ak+1| ⩽
2(1− λ+ α)

k + 1 + αk(k + 1)

(
1 +

k∑
i=1

ai

)
(k ∈ N).

Next, we define the sequence {Bk} as follows:

B1 = 2(1− λ+ α) and Bk+1 =
2(1− λ+ α)

k + 1 + αk(k + 1)

(
1 +

k∑
i=1

Bi

)
(k ∈ N).

Hence, by the principle of mathematical induction, we easily have

|ak| ⩽ Bk (k ∈ N).

By using Lemma 3.3, the conditions (3.5) and (3.6) are hold and this completes the proof. □

By using above theorem and Proposition 3.4 we can conclude the following corollaries.

Corollary 3.6. Let 0 ⩽ α < 2 and 0 ⩽ λ < 1. If f ∈ Λ(α, λ),then

|ak| ⩽
k + 1

3
(1 +B1) (k ⩾ 2)

where B1 = 2(1− λ+ α).

Corollary 3.7. Let 0 ⩽ λ < 1 and f ∈ Λ∗(λ). Then

|a1| ⩽ 2(1− λ) and |ak| ⩽
k + 1

3
(3− 2λ) (k ⩾ 2).

Proof . Let α = 0 and apply Corollary 3.6. □
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4. Neighborhoods

We can see the earlier works (based upon the familiar concept of neighborhood of analytic func-
tions) by Goodman [10] and Ruscheweyh [19], and (more recently) by Altintaş et al. [3], Cataş [4],
Cho et al. [5], Liu and Srivastava [15], Frasin [9], Keerthi et al. [13], Srivastava et al. [21] and Wang
et al. [24]. Let 0 ⩽ α < 2 and 0 ⩽ λ < 1 and f ∈ A of the from (2.1). For δ > 0, we denote the
δ − neighborhood of f by the notation N (f, δ) and the following definition:

N (f, δ) =

{
g ∈ A : g(z) = 1 +

∞∑
k=1

dkz
k and

∞∑
k=1

αk2 − αk + k − 1 + λ− α

η
|dk − ak| < δ

}
(4.1)

where

η =

{
1, λ− α < 0;
1− λ+ α, λ− α ⩾ 0.

(4.2)

By above definition, we now prove the following useful theorem.

Theorem 4.1. Let 0 ⩽ α < 2 and 0 ⩽ λ < 1. If f ∈ A is given by (2.1) and satisfies the following
condition

f + ϵ

1 + ϵ
∈ Λ(α, λ) (ϵ ∈ C : |ϵ| < δ; δ > 0)

then
N (f, δ) ⊂ Λ(α, λ).

Proof . Suppose that

g(z) = 1 +
∞∑
k=1

bkz
k ∈ Λ(α, λ).

Hence

ℜ
(
zg′(z)

g(z)
+ α

z2g′′(z)

g(z)
− 1 + λ− α

)
< 0. (4.3)

The condition (4.3) can be written as∣∣∣∣∣∣∣∣
zg′(z)

g(z)
+ α

z2g′′(z)

g(z)
− 1 + λ− α + 1

zg′(z)

g(z)
+ α

z2g′′(z)

g(z)
− 1 + λ− α− 1

∣∣∣∣∣∣∣∣ < 1 (z ∈ U),

which is equivalent to ∣∣∣∣ zg′(z) + αz2g′′(z) + (λ− α)g(z)

zg′(z) + αz2g′′(z) + (λ− α− 2)g(z)

∣∣∣∣ < 1 (z ∈ U). (4.4)

We easily find from (4.4) that g ∈ Λ(α, λ) if and only if

zg′(z) + αz2g′′(z) + (λ− α)g(z)

zg′(z) + αz2g′′(z) + (λ− α− 2)g(z)
̸= σ, (z ∈ U, σ ∈ C, |σ| = 1)

or equivalently

1 +
∞∑
k=1

k + αk(k − 1) + λ− α− σ[k + αk(k − 1) + λ− α− 2]

λ− α− σ(λ− α− 2)
bkz

k ̸= 0
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which is equivalent to (g ∗ h)(z) ̸= 0 where

h(z) = 1 +
∞∑
k=1

ckz
k, ck =

k + αk(k − 1) + λ− α− σ[k + αk(k − 1) + λ− α− 2]

λ− α− σ(λ− α− 2)
. (4.5)

It follows fram (4.5) that

|ck| =
∣∣∣∣k + αk(k − 1) + λ− α− σ[k + αk(k − 1)] + λ− α− 2

λ− α− σ(λ− α− 2)

∣∣∣∣
⩽

k + αk(k − 1) + λ− α + |σ|[k + αk(k − 1) + λ− α− 2]

|σ|(λ− α− 2)− |λ− α|

=
k + αk(k − 1)− 1 + λ− α

η
(|σ| = 1).

If f ∈ A and g(z) =
f + ϵ

1 + ϵ
∈ Λ(α, λ) , we deduce from (g ∗ h)(z) ̸= 0 that

(f ∗ h)(z) ̸= −ϵ (ϵ ∈ C : |ϵ| < δ; δ > 0)

or equivalently,
|(f ∗ h)(z)| ⩾ δ (z ∈ U; δ > 0). (4.6)

Now suppose that

q(z) = 1 +
∞∑
k=1

dkz
k ∈ N (f, δ).

It follows from (4.1) that

|(q − f) ∗ h(z)| =

∣∣∣∣∣
∞∑
k=1

(dk − ak)ckz
k

∣∣∣∣∣ ⩽ |z|
∞∑
k=1

k + αk(k − 1)− 1 + λ− α

η
|dk − ak| < δ. (4.7)

By combining (4.6) and (4.7), we can find that

|(q ∗ h)(z)| = |([f + (q − f)] ∗ h)(z)| ⩾ |(f ∗ h)(z)| − |([q − f ] ∗ h)(z)| > 0,

which implies that
(q ∗ h)(z) ̸= 0 (z ∈ U).

Hence
q(z) ∈ Λ(α, λ).

Therefore N (f, δ) ⊂ Λ(α, λ) and this completes the proof. □

By taking α = 0 we can conclude the following corollary.

Corollary 4.2. Let 0 ⩽ λ < 1. If f ∈ A is given by (2.1) satisfies the following condition

f + ϵ

1 + ϵ
∈ Λ∗(λ) (ϵ ∈ C : |ϵ| < δ; δ > 0)

then
N (f, δ) ⊂ Λ∗(λ).
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Theorem 4.3. Let f ∈ A be given by (2.1) and define the partial sums fn(z) of f by

fn(z) = 1 +
n∑

k=1

akz
k (n ∈ N). (4.8)

If
∞∑
k=1

k + αk(k − 1)− γ

η
|ak| ⩽ 1, (4.9)

where γ = 1− λ+ α and η is given by (4.2),then

1. f ∈ Λ(α, λ);

2.

ℜ
(

f(z)

fn(z)

)
⩽

n+ 1 + αn(n+ 1)− γ − η

n+ 1 + αn(n+ 1)− γ
(4.10)

and

ℜ
(
fn(z)

f(z)

)
⩽

n+ 1 + αn(n+ 1)− γ

n+ 1 + αn(n+ 1)− γ + η
(4.11)

Also the bounds in (4.10) and (4.11) are sharp.

Proof . First of all, we suppose that f0(z) = 1. We know that

f0 + ϵ

1 + ϵ
= 1 ∈ Λ(α, λ).

From (4.9), we easily find that

∞∑
k=1

k + αk(k − 1)− γ

η
|ak − 0| ⩽ 1,

which implies that f ∈ N (f0, 1) ⊂ Λ(α, λ) (by virtue of Theorem 4.1).
Next, it is easy to see that

n+ 1 + αn(n+ 1)− γ

η
>

n+ αn(n− 1)− γ

η
> 1 (n ∈ N).

Therefore, we have

n∑
k=1

|ak|+
n+ 1 + αn(n+ 1)− γ

η

∞∑
k=n+1

|ak| ⩽
∞∑
k=1

k + αk(k − 1)− γ

η
|ak| ⩽ 1 (4.12)

We now suppose that

h(z) =
n+ 1 + αn(n+ 1)− γ

η

(
f(z)

fn(z)
− n+ 1 + αn(n+ 1)− γ − η

n+ 1 + αn(n+ 1)− γ

)

= 1 +

n+ 1 + αn(n+ 1)− γ

η

∞∑
k=n+1

akz
k

1 +
n∑

k=1

akz
k

(4.13)
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It follows from (4.12) and (4.13) that

∣∣∣∣h(z)− 1

h(z) + 1

∣∣∣∣ ⩽
n+ 1 + αn(n+ 1)− γ

η

∞∑
k=n+1

|ak|

2− 2
n∑

k=1

|ak| −
n+ 1 + αn(n+ 1)− γ

η

∞∑
k=n+1

|ak|
⩽ 1,

which implies that ℜ(h(z)) > 0.
Therefor, we deduce that the assertion (4.10) holds true. Furthermore, if we put

f(z) = 1− η

n+ 1 + αn(n+ 1)− γ
zn+1, (4.14)

then

f(z)

fn(z)
= 1− η

n+ 1 + αn(n+ 1)− γ
zn+1 −→ n+ 1 + αn(n+ 1)− γ − η

n+ 1 + αn(n+ 1)− γ
(|z| → 1−),

which implies that the bound in (4.10) is the best possible for each n ∈ N.
Similarly, we suppose that

h(z) =
n+ 1 + αn(n+ 1)− γ + η

η

(
fn(z)

f(z)
− n+ 1 + αn(n+ 1)− γ

n+ 1 + αn(n+ 1)− γ + η

)
,

we readily get the assertion (4.10) of Theorem 4.3. The bound in (4.10) is sharp with the extremal
function f given by (4.14).We thus complete the proof of Theorem. □

The proof of the following theorem is similar to that of Theorem 4.3, we here choose to omit the
analogous details.

Theorem 4.4. Let f ∈ A be given by (2.1) and define the partial sums fn(z) of f by (4.8).If the
conditions (4.9) hold, where γ = 1− λ+ α and η is given by (4.2), then

ℜ
(
f ′(z)

f ′
n(z)

)
⩽

n+ 1 + αn(n+ 1)− γ − (n+ 1)η

n+ 1 + αn(n+ 1)− γ
(4.15)

and

ℜ
(
f ′
n(z)

f ′(z)

)
⩽

n+ 1 + αn(n+ 1)− γ

n+ 1 + αn(n+ 1)− γ + (n+ 1)η
. (4.16)

The bounds in (4.15) and (4.16) are sharp with the extremal function given by (4.14). Finally,
we prove the following inclusion relationship for the function class Λ(α, λ).

Theorem 4.5. If 0 ⩽ α2 < α1 < 2 and 0 ⩽ λ2 < λ1 < 1,then

Λ(α1, λ1) ⊂ Λ(α2, λ2).

Proof . Let f ∈ Λ(α1, λ1). Then

ℜ
(
zf ′(z)

f(z)
+ α1

z2f ′′(z)

f(z)

)
< 1− λ1 + α1 < 1− λ2 + α1,
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which shows that f ∈ Λ(α1, λ2), and subsequently, we see that f ∈ Λ∗(λ2), that is

ℜ
(
zf ′(z)

f(z)

)
< 1− λ2.

Now, by setting µ =
α2

α1

, so that 0 < µ < 1. Therefore, we have

ℜ
(
zf ′(z)

f(z)
+ α2

z2f ′′(z)

f(z)

)
− 1 + λ2 − α2 =

µ

[
ℜ
(
zf ′(z)

f(z)
+ α1

z2f ′′(z)

f(z)

)
− 1 + λ2 − α1

]
+ (1− µ)

[
ℜ
(
zf ′(z)

f(z)

)
+ λ2 − 1

]
< 0,

that is, f ∈ Λ(α2, λ2). □

From Theorem 4.5 and the definition of the function class Λ+(α1, λ1), we easily get the following
inclusion relationship.

Corollary 4.6. If 0 ⩽ α2 < α1 < 2 and 0 ⩽ λ2 < λ1 < 1, then

Λ+(α1, λ1) ⊂ Λ+(α2, λ2) ⊂ Λ∗(λ2).

By virtue of Lemma 3.2, we obtain the following result.

Corollary 4.7. If f ∈ Λ+(α, λ), then

ak ⩽
γ

k + αk(k − 1)− γ
(γ = 1− λ+ α).

Each of these inequalities is sharp, with the extremal function given by

fk(z) = 1 +
γ

k + αk(k − 1)− γ
zk.
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