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Abstract

In this article, we introduce the notion of (α, β)-generalized Meir-Keeler condensing operator in a
Banach space, a characterization using strictly L-functions and provide an extension of Darbo’s fixed
point theorem associated with measures of noncompactness. Then, we establish some results on
the existence of coupled fixed points for a class of condensing operators in Banach spaces. As an
application, we study the problem of existence of entire solutions for a general system of nonlinear
integral-differential equations in a Sobolev space. Further, an example is presented to verify the
effectiveness and applicability of our main results.
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1. Introduction

The theory of systems of differential and integral equations play an important role in nonlinear
analysis and is applicable to numerous problems of the other branches of sciences. There have
recently been many papers regarding the existence solutions of systems of integral equations on some
spaces. For example, Aghajani and Allahyari [2] , Aghajani and Jalilian [3], Aghajani and Sabzali [6]
obtained some interesting results of the existence solutions for systems of nonlinear integral equations
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in Banach spaces. We recall that the existence results of these literatures were formulated with the
help of measures of noncompactness.

The concept of measure of noncompactness was initiated by Kuratowski [14]. Banaś et al. [8]
proposed a generalization of this notion which is more convenient in the applications. The tool of
measure of noncompactness has been used in the theory of operator equations in Banach spaces. They
are frequently used in the theory of functional equations, including ordinary differential equations,
equations with partial derivatives, integral and integro-differential equations, optimal control theory,
etc. In particular, the fixed point theorems derived from them have many applications. The principal
application of measures of noncompactness in the fixed point theory is contained in the Darbo’s fixed
point theorem [11]. The technique of measures of noncompactness in conjunction with it turned into
a tool to investigate the existence and behavior of solutions of many classes of integral equations
such as Volterra, Fredholm and Uryson type integral equations.

In 1969, Meir and Keeler [16] introduced the concept of Meir-Keeler contractive mapping and
proved some fixed point theorems for this kind of mappings. Thereafter, Aghajani et al., [4] gener-
alized some fixed point and coupled fixed point theorems for Meir-Keeler condensing operators via
measures of noncompactness.

On the other hand, Sobolev spaces [9], i.e., the class of functions with derivatives in Lp, play an
outstanding role in the modern analysis. In the last decades, there has been increasing attempts to
study of these spaces. Their importance comes from the fact solutions of partial differential equations
are naturally found in Sobolev spaces. They also highlighted in approximation theory, calculus of
variation, differential geometry, spectral theory, etc.

In this paper, we introduce the notion of (α, β)-generalized Meir-Keeler condensing operator in
a Banach space, and give an extension of Darbo’s fixed point theorem associated with measures
of noncompactness. Then, we establish an existence result of coupled fixed points for a class of
condensing operators in Banach spaces. As an application, we study the problem of existence of
solutions for the following system of nonlinear integral-differential equations in a Sobolev space.

(1.1){
u(x) = f(x, u(x), v(x),

∫
g(y, u(y), ∂u

∂x1
(y), . . . , ∂u

∂xn
(y), v(y))dy)

v(x) = f(x, v(x), u(x),
∫
g(y, v(y), ∂v

∂x1
(y), . . . , ∂v

∂xn
(y), u(y))dy)

Further, an example is presented to verify the effectiveness and applicability of our main results.

2. Preliminaries

In this section, we provide some notations, definitions and preliminary facts which will be needed
further on. Denote by R the set of real numbers and put R+ = [0,+∞). For the Lebesgue measurable
subset D of Rn (n ∈ N), let m(D) be the lebesgue measure of D and let L1(D) be the space of all
Lebesgue integrable functions f on D equipped with the standard norm ∥f∥L1(D) =

∫
D
|f(x)|dx.

Let (E, ∥ · ∥) be a real Banach space with zero element 0. The symbol B(x, r) stands for the
closed ball centered at x with radius r and put Br = B(0, r). For a nonempty subset X of E, the
symbols X and ConvX will denote the closure and closed convex hull of X, respectively. Moreover,
let ME indicate the family of nonempty and bounded subsets of E and NE indicate the family of all
nonempty and relatively compact subsets of E.

Definition 2.1. [8] A mapping µ : ME → R+ is said to be a measure of noncompactness in E if it
satisfies the following conditions:
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1◦ The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE.

2◦ X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3◦ µ(X) = µ(X).

4◦ µ(ConvX = µ(X).

5◦ µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

6◦ If {Xn} is a sequence of closed chains of ME such that Xn+1 ⊂ Xn for n = 1, 2, . . . and if

lim
n→∞

µ(Xn) = 0, then the set X∞ =
∞⋂
n=1

Xn ̸= ∅.

Definition 2.2. [7] Suppose that E1 and E2 are two Banach spaces and µ1 and µ2 are arbitrary
measures of noncompactness on E1 and E2, respectively. Also, suppose T : E1 → E2 is a continuous
operator satisfies the following condition:

µ2(T (Ω)) < µ1(Ω)

for every bounded noncompact set Ω ⊂ E1. Then T is called a (µ1, µ2)-condensing operator.

Theorem 2.3. (Darbo [8]) Let C be a nonempty, bounded, closed and convex subset of a Banach
space E and let T : C → C be a continuous mapping. Assume that a constant k ∈ [0, 1) exists such
that

µ(T (X)) ≤ kµ(X)

for any nonempty subset X of C, where µ is a measure of noncompactness defined in E. Then T
has a fixed point in the set C.

Theorem 2.4. (Tychonoff fixed point theorem [1]) Let E be a Hausdorff locally convex linear topo-
logical space, C a convex subset of E and T : C → E a continuous mapping such that

T (C) ⊆ A ⊆ C,

with A compact. Then T has at least one fixed point.

Definition 2.5. [4] Let C be a nonempty subset of a Banach space E and µ an arbitrary measure
of noncompactness on E. An operator T : C → C is called a Mier-keeler condensing operator if for
any ε > 0, δ > 0 exists such that

ε ≤ µ(X) < ε+ δ implies µ(T (X)) < ε

for any bounded subset X of C.

Definition 2.6. [10] Let X be a nonempty set. An element (x, y) ∈ X ×X is called a coupled fixed
point of a mapping G : X ×X → X if G(x, y) = x and G(y, x) = y.

Here we quote a useful theorem in [7] concerning the construction of a measure of noncompactness
on a finite product space.
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Theorem 2.7. Let µ1, µ2, . . . , µn be measures of noncompactness in Banach spaces E1, E2, . . . , En,
respectively. Moreover, suppose that the function F : [0,∞)n → [0,∞) is convex and F (x1, x2, . . . , xn) =
0 if and only if xi = 0 for i = 1, 2, . . . , n. Then

µ̃(X) = F (µ1(X1), µ2(X2), . . . , µn(Xn)),

defines a measure of noncompactness in E1×E2×, . . .×En, where Xi denotes the natural projection
of X into Ei, for i = 1, 2, . . . , n.

As a result from Theorem 2.7 above, we have the following example which is presented in [6].

Example 2.8. Let µ be a measure of noncompactness on a Banach space E. Take F (x, y) = x+ y
for any (x, y) ∈ R2

+. Then all the conditions of Theorem 2.7 are satisfied. Therefore, µ̃(X) =
µ(X1) + µ(X2) defines a measure of noncompactness in the space E × E where Xi, i = 1, 2 denote
the natural projections of X.

Denote with Ψ the family of increasing functions ψ : R+ → R+ continuous in t = 0 such that
• ψ(t) = 0 if and only if t = 0,
• ψ(t+ s) ≤ ψ(t) + ψ(s).

3. Fixed point results for (α, β)-generalized Meir-Keeler condensing operators

In this section, we define the notion of an (α, β)-generalized Meir-Keeler condensing operator on
a Banach space and describe some fixed point results.

Definition 3.1. Let C be a nonempty subset of a Banach space E and µ be an arbitrary measure
of noncompactness on E. Also, suppose ψ : R+ → R+ is an increasing mapping such that ψ(t) = 0
if and only if t = 0. We say that an operator T : C → C is an (α, β)-generalized Meir-Keeler
condensing operator if for any ε > 0, δ > 0 exists such that

ε ≤ β(µ(X))ψ(µ(X)) < ε+ δ implies α(µ(T (X)))ψ(µ(T (X))) < ε (3.1)

for any bounded subset X of C, where α : R+ → [1,+∞) and β : R+ → (0, 1] are mappings.

Theorem 3.2. Let C be a nonempty, bounded, closed, and convex subset of a Banach space E and
let µ be an arbitrary measure of noncompactness on E. If T : C → C is a continuous and (α, β)-
generalized Meir-Keeler condensing operator, then T has at least one fixed point in the set C and the
set of all fixed points of T in C is compact.

Proof . By induction, we define a sequence {Cn} such that C0 = C and Cn = ConvT (Cn−1), n ≥ 1.
If µ(CN) = 0 for some integer N ≥ 0, then CN is compact. Thus, Theorem 2.4 implies that T has a
fixed point. Now, assume µ(Cn) > 0 for any n ≥ 0. Take εn = β(µ(Cn))ψ(µ(Cn)) > 0 and consider
δn = δ(εn) > 0 such that (3.1) holds. Therefore, by (3.1), we obtain

α(µ(T (Cn)))ψ(µ(T (Cn))) < β(µ(Cn))ψ(µ(Cn)) (3.2)

for each integer n ≥ 0. By using (3.2), we derive that

εn+1 = β(µ(Cn+1))ψ(µ(Cn+1))

≤ ψ(µ(Cn+1))

= ψ(µ(ConvT (Cn)))

≤ α(µ(T (Cn)))ψ(µ(T (Cn)))

< β(µ(Cn))ψ(µ(Cn)) = εn,
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which implies that {εn} is a strictly decreasing sequence of positive real numbers. Thus, there is an
r ≥ 0 so that εn → r as n → ∞. We will show that r = 0. If r > 0, then by hypothesis, a δ(r) > 0
exists such that (3.1) holds and so N0 > 0 exists such that

r ≤ εn = β(µ(Cn))ψ(µ(Cn)) < r + δ(r),

for any n ≥ N0. By the definition of (α, β)-generalized Meir-Keeler condensing operator, we get
α(µ(T (Cn)))ψ(µ(T (Cn))) < r for each n ≥ N0. Then it can be concluded that εn+1 < r for any
n ≥ N0 which gives us a contradiction, so r = 0.
It can be shown that lim

n→∞
ψ(µ(Cn)) = 0, too. For, let ϱ > 0 be given. Then N1 > 0 exists such that

for each n ≥ N1, 0 < εn = β(µ(Cn))ψ(µ(Cn)) < ϱ. Regarding to (3.2), we can write

−ϱ < εn+1 = β(µ(Cn+1))ψ(µ(Cn+1))

≤ ψ(µ(Cn+1))

≤ α(µ(Cn+1))ψ(µ(Cn+1))

= α(µ(T (Cn)))ψ(µ(T (Cn)))

< εn = β(µ(Cn))ψ(µ(Cn))

< ϱ

for all n ≥ N1. It follows that ψ(µ(Cn+1)) → 0 and so ψ(µ(Cn)) → 0 as n→ ∞. Next, we claim that
lim
n→∞

µ(Cn) = 0. To support the claim, let it be untrue. Thus, there is an ε > 0 such that for each

positive integerN, nN ≥ N exists in which µ(CnN
) ≥ ε. By increasing of ψ we have ψ(µ(CnN

)) ≥ ψ(ε),
which is a contradiction with lim

n→∞
ψ(µ(Cn)) = 0. Hence, we deduce that, µ(Cn) → 0 as n→ ∞.

Using this fact and since the sequence {Cn} is nested, in view of part 6◦ of Definition 2.1, it can be

concluded that the set C∞ =
∞⋂
n=1

Cn is nonempty, closed, and convex subset of the C. Furthermore, the

set C∞ is invariant under T, and C∞ ∈ kerµ. Thus, applying Tychonoff fixed point theorem, we find
that the operator T has a fixed point. Now, suppose that FT = {x ∈ C : T (x) = x}. We are going
to show that µ(FT ) = 0. Suppose to the contrary, that µ(FT ) > 0. Take ε0 = β(µ(FT ))ψ(µ(FT )),
then by (3.2) and T (FT ) = FT , we infer that ψ(µ(FT )) < ψ(µ(FT )), which leads to a contradiction.
Then µ(FT ) = 0, which means that FT is relatively compact. As T is a continuous function, thus FT

is compact in C. □
Below, we recall from [15] the notion of a strictly L-function and then we establish an extension of
Darbo’s fixed point theorem using strictly L-functions.

Definition 3.3. A function θ : R+ → R+ is called a strictly L-function if θ(0) = 0, θ(s) > 0 for
s ∈ (0,+∞), and for any s > 0, δ > 0 exists such that θ(t) < s, for all t ∈ [s, s+ δ].

Theorem 3.4. Let α, β, and ψ be as Definition 3.1, C be a nonempty, bounded, closed and convex
subset of a Banach space E, and let T : C → C be a continuous operator such that

α(µ(T (X)))ψ(µ(T (X))) ≤ θ
(
β(µ(X))ψ(µ(X))

)
for any X ⊆ C, where µ is an arbitrary measure of noncompactness on E and θ is a strictly L-
function. Then, T has at least one fixed point.
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Proof . We are going to show that T is an (α, β)-generalized Meir-Keeler condensing operator. For
this purpose, let ε > 0 be arbitrary. By the hypothesis, δ > 0 exists such that

ε ≤ t ≤ ε+ δ implies θ(t) < ε. (3.3)

If X is a subset of C such that ε ≤ β(µ(X))ψ(µ(X)) < ε+δ, then using (3.3) θ(β(µ(X))ψ(µ(X))) < ε
and by considering our assumptions, we have

α(µ(T (X)))ψ(µ(T (X))) ≤ θ
(
β(µ(X))ψ(µ(X))

)
< ε.

Hence, by making appeal to Theorem 3.2, we conclude that T has a fixed point. □
Now, we present a coupled fixed point theorem using strictly L-functions.

Theorem 3.5. Let E, C, β, θ and µ be as Theorem 3.4 and let α : R+ → [1,+∞) be an increasing
map. Also, suppose that ψ ∈ Ψ and G : C × C → C, is a continuous mapping satisfying

α
(
µ(G(X1 ×X2)) + µ(G(X2 ×X1))

)
ψ(µ(G(X1 ×X2))) (3.4)

≤ 1

2
θ
(
β(
µ(X1) + µ(X2)

2
)ψ(

µ(X1) + µ(X2)

2
)
)

for all subsets X1,X2 of C. Then G has at least a coupled fixed point.

Proof . We first note that Example 2.8 implies that µ̃(X) = µ(X1) + µ(X2) is a measure of
noncompactness in the space E ×E, where Xi, i = 1, 2 are the natural projections of X. Define the
mapping G̃ : C×C → C×C by G̃(x, y) = (G(x, y), G(y, x)). Clearly G̃ is continuous. We claim that

G̃ satisfies all the conditions of Theorem 3.4. To prove this fact, let us choose a nonempty subset X
of C × C. By properties of the mappings α and ψ and using (3.4) we have

α
(
µ̃(G̃(X1 ×X2))

)
ψ(µ̃(G̃(X1 ×X2)))

≤ α
(
µ̃(G(X1 ×X2)×G(X2 ×X1))

)
ψ(µ̃(G(X1 ×X2)×G(X2 ×X1)))

≤ α
(
µ(G(X1 ×X2)) + µ(G(X2 ×X1))

)
ψ(µ(G(X1 ×X2)))

+α
(
µ(G(X2 ×X1)) + µ(G(X1 ×X2))

)
ψ(µ(G(X2 ×X1)))

≤ θ
(
β(
µ(X1) + µ(X2)

2
)ψ(

µ(X1) + µ(X2)

2
)
)

= θ
(
β(
µ̃(X1 ×X2)

2
)ψ(

µ̃(X1 ×X2)

2
)
)
.

Therefore,

α
(1
2
µ̃(G̃(X1 ×X2))

)
ψ(

1

2
µ̃(G̃(X1 ×X2))) ≤ θ

(
β(

1

2
µ̃(X1 ×X2))ψ(

1

2
µ̃(X1 ×X2))

)
and taking µ̂ = 1

2
µ̃, we obtain

α
(
µ̂(G̃(X1 ×X2))

)
ψ(µ̂(G̃(X1 ×X2))) ≤ θ

(
β(µ̂(X1 ×X2))ψ(µ̂(X1 ×X2))

)
.

Since µ̂, is also a measure of noncompactness, so Theorem 3.4 guarantees that G̃ has a fixed point,
or equivalently G has a coupled fixed point. □
The next result is a special case of the theorem above, which will be used in Section 4.
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Corollary 3.6. Let C be a nonempty, bounded, closed and convex subset of a Banach space E and
G : C × C → C be a continuous mapping satisfying

ψ(µ(G(X1 ×X2))) ≤
1

2
θ
(
ψ(
µ(X1) + µ(X2)

2
)
)

(3.5)

for all subsets X1,X2 of C, where µ is an arbitrary measure of noncompactness in the space E, θ is
a strictly L-function, and ψ ∈ Ψ. Then G has at least a coupled fixed point.

4. Application

In this section, we study the existence of solutions for a system of nonlinear integral-differential
equations. We also provide an illustrative example to verify the effectiveness and applicability of our
results.
We start with some preliminaries which we need in subsequent.

Lemma 4.1. [12] Let Ω be a Lebesgue measurable subset of Rn and 1 ≤ p ≤ ∞. If {fk} is convergent
to f in the Lp-norm, then there is a subsequence {fkm} which converges to f a.e., and there is
g ∈ Lp(Ω), g ≥ 0, such that

|fkm(x)| ≤ g(x) for a.e. x ∈ Ω.

Definition 4.2. [5] We say that a function f : Rn ×Rm → R satisfies the Carathéodory conditions
if the function f(., u) is measurable for each u ∈ Rm and the function f(x, .) is continuous for almost
all x ∈ Rn.

Let Ω be a subset of Rn and k ∈ N, we denote by W k,1(Ω) the space of functions f which, together
with all their distributional derivatives Dαf of order |α| ≤ k, belong to L1(Ω). Here α = (α1, . . . , αn)
is a multi-index, i.e., each αj is a nonnegative integer, |α| = α1 + . . .+ αn, and

Dα = ∂|α|/∂xα1
1 . . . ∂xαn

n .

Then, W k,1(Ω) is equipped with the complete norm

∥f∥Ωk,1 = max
0≤|α|≤k

∥Dαf∥L1(Ω).

Now, we are ready to define a measure of noncompactness on the spaces W k,1(Ω).

Theorem 4.3. Suppose that 1 ≤ k < ∞ and U is a bounded subset of W k,1(Ω). For u ∈ U , ε > 0
and 0 ≤ |α| ≤ k, let

ωT (u, ε) = sup{∥ThD
αu−Dαu∥L1(BT ) : h ∈ Ω, ∥h∥Rn < ε, 0 ≤ |α| ≤ k},

ωT (U, ε) = sup{ωT (u, ε) : u ∈ U},
ωT (U) = lim

ε→0
ωT (U, ε),

ω(U) = lim
T→∞

ωT (U),

and

d(U) = lim
T→∞

sup{∥Dαu∥L1(Ω\BT ) : u ∈ U, 0 ≤ |α| ≤ k},

where BT = {a ∈ Ω : ∥a∥Rn ≤ T} and Thu(t) = u(t+ h).
Then ω0 : MWk,1(Ω) → R given by

ω0(U) = ω(U) + d(U)

defines a measure of noncompactness on W k,1(Ω).
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Proof .Here, we give a sketch of proof.
1◦ follows from the definition of ω0 and applying [13, Theorem 5].
2◦ is obvious by the definition of ω0.
3◦ is a straightforward consequence of the definition of ω0 and part 2◦.
4◦ follows directly from Dα[Conv(U)] = Conv(DαU) (U ∈ MWk,1(Ω)).
5◦ can be obtained by using the equality

Dα(λu1 + (1− λ)u2) = λDαu1 + (1− λ)Dαu2

for all λ ∈ [0, 1], u1 ∈ X and u2 ∈ Y .
To verify 6◦, suppose that {Un} is a sequence of closed and nonempty sets of MWk,1(Ω) such that

Un+1 ⊂ Un for n = 1, 2, . . ., and lim
n→∞

ω0(Un) = 0. Now, for any n ∈ N, take un ∈ Un and set G = {un}.
We show that G is a compact set in W k,1(Ω). For, let ε > 0 be fixed. Since lim

n→∞
ω0(Un) = 0, there

exists sufficiently large m1 ∈ N such that ω0(Um1) < ε. Hence, there is small enough δ1 > 0 and
large enough T1 > 0 such that ωT1(Um1 , δ1) < ε and d(Um1) < ε. Therefore,

∥ThD
αun −Dαun∥L1(BT1

) < ε

and
∥Dαun∥L1(Ω\BT1

) < ε

for all n > m1, 0 ≤ |α| ≤ k and h ∈ Ω such that ∥h∥Rn < δ1. Then, we obtain

∥ThD
αun −Dαun∥L1(Ω)

≤ ∥ThD
αun −Dαun∥L1(BT1

) + ∥ThD
αun −Dαun∥L1(Ω\BT1

)

≤ ∥ThD
αun −Dαun∥L1(BT1

) + ∥ThD
αun∥L1(Ω\BT1

) + ∥Dαun∥L1(Ω\BT1
)

< 3ε.

On the other hand, we know that the set {u1, u2, . . . , um1} is compact, hence δ2 > 0 and T2 > 0 exist
such that

∥ThD
αun −Dαun∥L1(BT2

) < ε

for all n = 1, 2, . . . ,m1, 0 ≤ |α| ≤ k and h ∈ Ω with ∥h∥Rn < δ2.
Furthermore,

∥Dαun∥L1(Ω\BT2
) < ε,

which implies that
∥ThD

αun −Dαun∥L1(Ω) < 3ε

for all n = 1, 2, . . . ,m1.
Thus,

∥ThD
αun −Dαun∥L1(Ω) < 3ε

and
∥Dαun∥L1(Ω\BT ) < ε < 3ε

for all n ∈ N, ∥h∥Rn < min{δ1, δ2} and T = max{T1, T2}. By making use of [13, Theorem 5] we find
that G is a compact set.
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Using compactness of G, a subsequence {unj
} and u0 ∈ W k,1(Ω) exist such that unj

→ u0. Since
un ∈ Un, Un+1 ⊂ Un and Un is closed for all n ∈ N, we yield

u0 ∈
∞⋂
n=1

Un = U∞,

that finishes the proof of 6◦.□
In the sequel, to demonstrate the applicability of our results, we study the existence of solutions for
the system of integral-differential equations (1.1) in the Sobolev space W 1,1(Ω)×W 1,1(Ω) under the
following general assumptions.
(1) f : Ω× R3 → R and ∂f

∂xi
, i = 1, 2, . . . , n satisfy the Caratéodory conditions, and constants b > 0

and λ ∈ [0, 1
6
) and a ∈ L1(Ω) exist such that

(i) |f(x, u(x), v(x), w)| ≤ a(x) + λmax
{
|Dαu(x)| : α = 0, 1

}
+ λmax

{
|Dαv(x)| : α = 0, 1

}
+ b|w|,

(ii) | ∂f∂xi
(x, u(x), v(x), w)| ≤ a(x) + λmax

{
|Dαu(x)| : α = 0, 1

}
+ λmax

{
|Dαv(x)| : α = 0, 1

}
+ b|w|,

(iii) |∂f∂u (x, u(x), v(x), w)
∂u
∂xi

(x)| ≤ a(x) + λmax
{
|Dαu(x)| : α = 0, 1

}
+ λmax

{
|Dαv(x)| : α = 0, 1

}
+ b|w|,

(iv) |∂f∂v (x, u(x), v(x), w)
∂v
∂xi

(x)| ≤ a(x) + λmax
{
|Dαu(x)| : α = 0, 1

}
+ λmax

{
|Dαv(x)| : α = 0, 1

}
+ b|w|,

for any u, v ∈ W 1,1(Ω) and x ∈ Ω, where

w = w(u, v) =

∫
Ω

g(y, u(y),
∂u

∂x1
(y),

∂u

∂x2
(y), . . . ,

∂u

∂xn
(y), v(y))dy.

(2) Suppose h ∈ Rn, with ∥h∥Rn small enough, Th : Ω ⊆ Rn → Rn be the transformation mapping
i.e., Th(x) = x+ h, and let ψ ∈ Ψ and Λ ⊆ Ω be arbitrary so that

(i) ψ(
∫
Λ
|f(Th(x), u1(x), v1(x), w)− f(x, u(x), v(x), w)|dx)

≤ 1
6θ

(
1
4ψ(max

{
∥Dα(u1 − u)∥L1(Λ) : α = 0, 1

}
+max

{
∥Dα(v1 − v)∥L1(Λ) : α = 0, 1

}
)
)
,

(ii) ψ(
∫
Λ
| ∂f∂xi

(Th(x), u1(x), v1(x), w)− ∂f
∂xi

(x, u(x), v(x), w)|dx)
≤ 1

6θ
(

1
4ψ(max

{
∥Dα(u1 − u)∥L1(Λ) : α = 0, 1

}
+max

{
∥Dα(v1 − v)∥L1(Λ) : α = 0, 1

}
)
)
,

(iii) ψ(
∫
Λ
| ∂f
∂u1

(Th(x), u1(x), v1(x), w)
∂u1

∂xi
(x+ h)− ∂f

∂u (x, u(x), v(x), w)
∂u
∂xi

(x)|dx)
≤ 1

6θ
(

1
4ψ(max

{
∥Dα(u1 − u)∥L1(Λ) : α = 0, 1

}
+max

{
∥Dα(v1 − v)∥L1(Λ) : α = 0, 1

}
)
)
,

(iv) ψ(
∫
Λ
| ∂f∂v1

(Th(x), u1(x), v1(x), w)
∂v1

∂xi
(x+ h)− ∂f

∂v (x, u(x), v(x), w)
∂v
∂xi

(x)|dx)
≤ 1

6θ
(

1
4ψ(max

{
∥Dα(u1 − u)∥L1(Λ) : α = 0, 1

}
+max

{
∥Dα(v1 − v)∥L1(Λ) : α = 0, 1

}
)
)
,

where θ is a continuous strictly L-function such that θ(a+ b) ≥ θ(a) + θ(b) (a, b ∈ R+).
(3) g : Ω × Rn+2 → R satisfies the Caratéodory conditions and there exists a bounded continuous
function a1 : Ω → R+ such that |a1(x)| ≤M for all x ∈ Ω and someM > 0, and a concave increasing
lower semi-continuous function ξ : R+ → R+ so that

|g(x, u0, u1, . . . , un+1)| ≤ a1(x)ξ( max
0≤i≤n+1

|ui|).

(4) There exists a positive solution r0 of the inequality

3
(
∥a∥L1(Ω) + 2λr + bMm(Ω)2ξ(

1

m(Ω)
r)
)
≤ r. (4.1)
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Theorem 4.4. Under the assumptions (1)-(4), the system of integral-differential equations (1.1) has
at least one solution in the space W 1,1(Ω)×W 1,1(Ω).

Proof . First, we define the operator G : W 1,1(Ω)×W 1,1(Ω) → W 1,1(Ω) by

G(u, v)(x) = f(x, u(x), v(x),

∫
Ω

g(y, u(y),
∂u

∂x1
(y), . . . ,

∂u

∂xn
(y), v(y))dy).

Notice that, the space W 1,1(Ω) ×W 1,1(Ω) is equipped with the norm ∥(u, v)∥1,1 = ∥u∥Ω1,1 + ∥v∥Ω1,1
for each (u, v) ∈ W 1,1(Ω)×W 1,1(Ω). Now, by using of conditions (1), (3) and Jensen’s inequality we
have

|G(u, v)(x)| =
∣∣∣f(x, u(x), v(x),∫

Ω

g(y, u(y),
∂u

∂x1
(y), . . . ,

∂u

∂xn
(y), v(y))dy)

∣∣∣
≤ a(x) + λmax

{
|Dαu(x)| : α = 0, 1

}
+ λmax

{
|Dαv(x)| : α = 0, 1

}
+b

∫
Ω

a1(y)ξ
(
max

{
|u(y)|, |v(y)|, | ∂u

∂xi
(y)| : i = 1, 2, . . . , n

})
dy

≤ a(x) + λmax
{
|Dαu(x)| : α = 0, 1

}
+ λmax

{
|Dαv(x)| : α = 0, 1

}
+ bMm(Ω)ξ

( 1

m(Ω)
max

{
∥u∥Ω1,1, ∥v∥Ω1,1

})
.

By integrating over Ω we obtain∫
Ω

|G(u, v)(x)|dx ≤ ∥a∥L1(Ω) + λ∥u∥Ω1,1 + λ∥v∥Ω1,1 + bMm(Ω)2ξ
( 1

m(Ω)
max

{
∥u∥Ω1,1, ∥v∥Ω1,1

})
. (4.2)

Using chain rule and with a similar argument as above we have∣∣∣∂G(u, v)(x)
∂xi

∣∣∣ =
∣∣∣ ∂
∂xi

f(x, u(x), v(x), w)
∣∣∣

≤
∣∣∣ ∂f
∂xi

(x, u(x), v(x), w)
∣∣∣+ ∣∣∣∂f

∂u
(x, u(x), v(x), w)

∂u

∂xi
(x)

∣∣∣
+
∣∣∣∂f
∂v

(x, u(x), v(x), w)
∂v

∂xi
(x)

∣∣∣+ ∣∣∣ ∂f
∂w

(x, u(x), v(x), w)
∂w

∂xi

∣∣∣
≤ 3

(
a(x) + λmax

{
|Dαu(x)| : α = 0, 1

}
+ λmax

{
|Dαv(x)| : α = 0, 1

}
+bMm(Ω)ξ

( 1

m(Ω)
max

{
∥u∥Ω1,1, ∥v∥Ω1,1

}))
.

By integrating over Ω, we deduce∫
Ω

∣∣∣∂G(u, v)(x)
∂xi

∣∣∣ ≤ 3
(
∥a∥L1(Ω) + λ∥u∥Ω1,1 + λ∥v∥Ω1,1 + bMm(Ω)2ξ

( 1

m(Ω)
max

{
∥u∥Ω1,1, ∥v∥Ω1,1

}))
. (4.3)

Due to inequalities (4.2) and (4.3), we infer that G is well defined and

G(Br0 ×Br0) ⊆ Br0 ,

where r0 is any solution of (4.1).
Now, we show that the map G : Br0 × Br0 → Br0 is continuous. For, let {(un, vn)} be an arbitrary
sequence in Br0 ×Br0 which converges to (u, v) ∈ Br0 ×Br0 . By Lemma 4.1 there are subsequences

{unk
} and {vnk

} which converge to u and v a.e., respectively, and for i = 1, . . . , n {∂unk

∂xi
}, {∂vnk

∂xi
}

converge to { ∂u
∂xi

}, { ∂v
∂xi

} a.e., respectively and there is h ∈ L1(Ω), h ≥ 0 such that

max
{
|unk

(y)|,
∣∣∣∂unk

∂x1
(y)

∣∣∣, . . . , ∣∣∣∂unk

∂xn
(y)

∣∣∣, |vnk
(y)|

}
≤ h(y) for a.e. y ∈ Ω.
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From condition (3) we have

g(y, unk
(y),

∂unk

∂x1
(y), . . . ,

∂unk

∂xn
(y), vnk

(y)) ≤ a1(y)ξ
(
max

{
|unk

(y)|, |vnk
(y)|,

∣∣∣∂unk

∂xi
(y)

∣∣∣ : i = 1, . . . , n
})

≤ a1(y)ξ(h(y)).

Since g satisfies the Caratéodory conditions, it follow that

g(y, unk
(y),

∂unk

∂x1
(y), . . . ,

∂unk

∂xn
(y), vnk

(y)) → g(y, u(y),
∂u

∂x1
(y), . . . ,

∂u

∂xn
(y), v(y))

as k → ∞. As a consequence of Lebesgue’s Dominated Convergence Theorem, it yields that∫
g(y, unk

(y),
∂unk

∂x1
(y), . . . ,

∂unk

∂xn
(y), vnk

(y))dy →
∫
g(y, u(y),

∂u

∂x1
(y), . . . ,

∂u

∂xn
(y), v(y))dy

as k → ∞. We know that f satisfies Caratéodory conditions, then

G(unk
, vnk

) = f(x, unk
(x), vnk

(x),

∫
Ω

g(y, unk
(y),

∂unk

∂x1
(y), . . . ,

∂unk

∂xn
(y), vnk

(y))dy)

is convergent to

G(u, v) = f(x, u(x), v(x),

∫
Ω

g(y, u(y),
∂u

∂x1
(y), . . . ,

∂u

∂xn
(y), v(y))dy).

Similarly,
∂G(unk

,vnk
)

∂xi
converges to ∂G(u,v)

∂xi
(x) as k → ∞. These give us

∥G(unk
, vnk

)−G(u, v)∥1,1 → 0

as k → ∞. Therefore G is a continuous function from Br0 ×Br0 into Br0 . To finish the proof we have
to verify that condition (3.5) is satisfied. For this, let T > 0 and ε > 0 be arbitrary constants and
let U × V be a nonempty and bounded subset of Br0 × Br0 . Choose (u, v) ∈ U × V and x, h ∈ BT

with ∥h∥Rn ≤ ε, then from condition (2) we have

ψ(∥τhG(u× v)−G(u× v)∥L1(BT ))

= ψ(

∫
BT

|f(Th(x), τhu(x), τhv(x), w)− f(x, u(x), v(x), w)|dx)

≤ 1

6
θ
(1
4
ψ(max

{
∥τhDαu−Dαu∥L1(BT ) : α = 0, 1

}
+max

{
∥τhDαv −Dαv∥L1(BT ) : α = 0, 1

}))
≤ 1

2
θ
(1
4
ψ(ωT (u, ε) + ωT (v, ε))

)
≤ 1

2
θ
(1
4
ψ(ωT (U, ε) + ωT (V, ε))

)
.

Thus, by using continuity of ψ and θ, we obtain

lim
ε→0

sup
{
ψ(∥τhG(u× v)−G(u× v)∥L1(BT )) : h ∈ Ω, ∥h∥Rn < ε, u ∈ U, v ∈ V

}
≤ 1

2
θ
(1
4
ψ(ωT (U) + ωT (V ))

)
.

and taking T → ∞ we deduce

lim
T→∞

lim
ε→0

sup
{
ψ(∥τhG(u×v)−G(u×v)∥L1(BT )) : h ∈ Ω, ∥h∥Rn < ε, u ∈ U, v ∈ V

}
≤ 1

2
θ
(1
4
ψ(ω(U)+ω(V ))

)
. (4.4)

By the same reasoning as above we have
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ψ(∥τhDG(u× v)−DG(u× v)∥L1(BT ))

= ψ(

∫
BT

∣∣∣Df(Th(x), τhu(x), τhv(x), w)−Df(x, u(x), v(x), w)
∣∣∣dx)

≤ ψ(

∫
BT

∣∣∣ ∂f
∂xi

(x+ h, τhu(x), τhv(x), w)−
∂f

∂xi
(x, u(x), v(x), w)

∣∣∣dx
+

∫
BT

∣∣∣ ∂f
∂τhu

(x+ h, τhu(x), τhv(x), w)
∂τhu

∂xi
(x+ h)− ∂f

∂u
(x, u(x), v(x), w)

∂u

∂xi
(x)

∣∣∣dx
+

∫
BT

∣∣∣ ∂f
∂τhv

(x+ h, τhu(x), τhv(x), w)
∂τhv

∂xi
(x+ h)− ∂f

∂v
(x, u(x), v(x), w)

∂v

∂xi
(x)

∣∣∣dx
≤ 1

2
θ
(1
4
ψ(max

{
∥τhDαu−Dαu∥L1(BT ) : α = 0, 1

}
+ max

{
∥τhDαv −Dαv∥L1(BT ) : α = 0, 1

}
)
)

≤ 1

2
θ
(1
4
ψ(ωT (u, ε) + ωT (v, ε))

)
≤ 1

2
θ
(1
4
ψ(ωT (U, ε) + ωT (V, ε)

)
and so

lim
T→∞

lim
ε→0

sup
{
ψ(∥τhDG(u× v)−DG(u× v)∥L1(BT )) : h ∈ Ω, ∥h∥Rn < ε, u ∈ U, v ∈ V

}
(4.5)

≤ 1

2
θ
(1
4
ψ(ω(U) + ω(V ))

)
.

The relations (4.4) and (4.5) imply that

ψ(ω(G(U × V )) ≤ 1

2
θ
(1
4
ψ(ω(U) + ω(V ))

)
. (4.6)

Next, taking into account our hypotheses and Jensen’s inequality, for an arbitrary (u, v) ∈ U × V
and x ∈ Ω \BT we derive that

ψ(∥G(u× v)∥L1(Ω\BT )) = ψ(

∫
Ω\BT

|f(x, u(x), v(x), w|dx)

≤ ψ(

∫
Ω\BT

|f(x, u(x), v(x), w)− f(x+ h, 0, 0, w)|dx+

∫
Ω\BT

|f(x+ h, 0, 0, w)|dx)

≤ 1

6
θ
(1
4
ψ(max

{
∥Dαu∥L1(Ω\BT ) : α = 0, 1

}
+max

{
∥Dαv∥L1(Ω\BT ) : α = 0, 1

}
)
)

+

∫
Ω\BT

a(x+ h) + b|w|dx

≤ 1

2
θ
(1
4
ψ(max

{
∥Dαu∥L1(Ω\BT ) : α = 0, 1

}
+max

{
∥Dαv∥L1(Ω\BT ) : α = 0, 1

}
)
)

+ ∥a∥L1(Ω\BT ) + bMm(Ω \BT )m(Ω)ξ(
1

m(Ω)
max

{
∥u∥1,1, ∥v∥1,1

}
). (4.7)

Similarly,

ψ(∥DG(u× v)∥L1(Ω\BT )) ≤
1

2
θ
(1
4
ψ(max

{
∥Dαu∥L1(Ω\BT ) : α = 0, 1

}
+max

{
∥Dαv∥L1(Ω\BT ) : α = 0, 1

})
+ ∥a∥L1(Ω\BT ) + bMm(Ω \BT )m(Ω)ξ(

1

m(Ω)
max

{
∥u∥1,1, ∥v∥1,1

}
). (4.8)

Passing T to infinity in the relations (4.7) and (4.8) it follows that

ψ(d(G(U × V ))) ≤ 1

2
θ
(1
4
ψ(d(U) + d(V ))

)
. (4.9)
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On combining (4.6) and (4.9) and increasing of mappings θ and ψ we obtain

ψ(µ(G(U × V ))) = ψ(ω(G(U × V )) + d(G(U × V )))

≤ 1

2

(
θ(

1

4
ψ(ω(U) + ω(V ))) + θ(

1

4
ψ(d(U) + d(V )))

)
≤ 1

2
θ
(1
4
ψ(ω(U) + ω(V )) +

1

4
ψ(d(U) + d(V ))

)
≤ 1

2
θ
(2
4
ψ(ω(U) + d(U) + ω(V ) + d(V ))

≤ 1

2
θ
(
ψ(
µ(U) + µ(V )

2
)
)
.

Now, Corollary 3.6 guarantees that G has a coupled fixed point in Br0 × Br0 and thus system of
integral-differential equations (1.1) have at least one solution in W 1,1(Ω)×W 1,1(Ω). □

Example 4.5. Consider the following system of integral-differential equations

u(x1, x2) = ln(1 + x1 + x2) +
1

192
sin(x21x2)u(x1, x2) +

1
576

cos(2x1 + 3x2)v(x1, x2)

+1
8

∫ 1

0

∫ 1

0
ey1+y2 tanh(

7

√
sin2 u(y1, y2)e

∂u
∂x1

(y1,y2)− ∂u
∂x2

(y1,y2) + y31 ln |v(y1, y2)|)dy1dy2,

v(x1, x2) = ln(1 + x1 + x2) +
1

192
sin(x21x2)v(x1, x2) +

1
576

cos(2x1 + 3x2)u(x1, x2)

+1
8

∫ 1

0

∫ 1

0
ey1+y2 tanh(

7

√
sin2 v(y1, y2)e

∂v
∂x1

(y1,y2)− ∂v
∂x2

(y1,y2) + y31 ln |u(y1, y2)|)dy1dy2.

(4.10)

Observe that system (4.10) is a special case of the system (1.1) with Ω = [0, 1]2,

f(x1, x2, u(x1, x2), v(x1, x2), w) = ln(1 + x1 + x2) +
1

192
sin(x21x2)u(x1, x2) +

1

576
cos(2x1 + 3x2)v(x1, x2) +

1

8
w

and

g(x1, x2, u(x1, x2),
∂u

∂x1
(x1, x2),

∂u

∂x2
(x1, x2)) = ex1+x2 tanh(

7

√
sin2 u(x1, x2)e

∂u
∂x1

(x1,x2)− ∂u
∂x2

(x1,x2) + x31 ln |v(x1, x2)|).

In this example, hypothesis (1) of Theorem 4.4 holds if we define a(x1, x2) = ln 3, λ = 1
7
, b = 1

8
.

Moreover, take ψ(t) = θ(t) = t
2
, then for each h ∈ Rn with sufficiently small ∥h∥Rn, hypothesis (2)

is valid, too. Indeed, for arbitrary subset Λ of Ω we have∫
Λ
|f(x+ h, u1(x), v1(x), w)− f(x, u(x), u(x), w)|dx

≤
∫
Λ

| ln(1 + x1 + h1 + x2 + h2)− ln(1 + x1 + x2)|dx1dx2

+
1

192

∫
Λ

| sin((x1 + h1)
2(x2 + h2))u1(x1, x2)− sin(x21x2)u(x1, x2)|dx1dx2

+
1

576

∫
Λ

| cos(2(x1 + h1) + 3(x2 + h2))v1(x1, x2)− cos(2x1 + 3x2)v(x1, x2)|dx1dx2. (4.11)

The first term of right hand side of (4.11) tends to zero as ∥h∥Rn → 0. On the other hand, we have

| sin((x1 + h1)
2(x2 + h2))u1(x1, x2)− sin(x21x2)u(x1, x2)|

≤ | sin((x1 + h1)
2(x2 + h2))||u1(x1, x2)− u(x1, x2)|

+| sin((x1 + h1)
2(x2 + h2))− sin(x21x2)||u(x1, x2)|

≤ |u1(x1, x2)− u(x1, x2)|+ |h21x2 + h2x
2
1 + h21h2 + 2h1x1x2 + 2h1h2x1||u(x1, x2)|,



300 Amiri, Khanehgir, Allahyari

which implies that∫
Λ

| sin((x1 + h1)
2(x2 + h2))u1(x1, x2)− sin(x21x2)u(x1, x2)|dx1dx2 ≤ ∥u1 − u∥L1(Λ),

where ∥h∥Rn is small enough.
Similarly, ∫

Λ

| cos(2(x1 + h1) + 3(x2 + h2))v1(x1, x2)− cos(2x1 + 3x2)v(x1, x2)|dx1dx2 ≤ ∥v1 − v∥L1(Λ).

With the help of previous inequalities, part (i) of hypothesis (2) can be concluded. The other parts of
(2) are similar and we ignore the details. In addition, property (3) holds if we consider a(x1, x2) = e2,
ξ(t) = 1, andM = e2. It can be easily shown that each number r ≥ 21(ln 3+ e2

8
) satisfies the inequality

(4.1). Consequently, all the conditions of Theorem 4.4 are satisfied.
It implies that the system of integral-differential equations (4.10) has at least one solution in the
Sobolev space W 1,1(Ω)×W 1,1(Ω).
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