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Abstract

In this paper, Avery-Henderson (Double) fixed point theorem and Ren fixed point theorem are used to
investigate the existence of positive solutions for fractional-order nonlinear boundary value problems
on infinite interval. As applications, some examples are given to illustrate the main results.
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1. Introduction

In applied mathematics and mathematical analysis, fractional derivative is a derivative of any arbi-
trary order, real or complex. The first appearance of the concept of a fractional derivative is based
in a letter written to Guillaume de L’Hospital by Gottfried Wilhelm Leibniz in 1695. Since then,
the new theory turned out to be very attractive to mathematicians as well as physicists, biologists,
engineers and economists. The first application of fractional calculus was due to Abel in his solution
to the Tautocrone problem [12]. It also appears in many engineering and scientific disciplines as
the mathematical models of systems and processes in the fields of aerodynamics, electrodynamics of
complex medium, polymer rheology, physics, chemistry. In [8], Oldham et al. provide an encyclope-
dic treatment of the subject. Recently, there are many papers dealing with the existence of solutions
of nonlinear initial or boundary value problems for fractional differential equations by virtue of tech-
niques of nonlinear analysis, for example, see [4], [5], [9], [10], [11], [14] and the references therein.
Also, few existence of positive solutions results are obtained on an infinite interval, see [2], [15], [17]
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and [18]. For general results and backround on the fractional calculus, we refer the reader to [1], [3]
and [13].

In [17], Ge and Zhao considered the following fractional boundary value problem on an infinite
interval:

Dα
0+u(t) + a(t)f(t, u(t)) = 0, t ∈ (0,∞), α ∈ (1, 2),

u(0) = 0,

lim
t→+∞

Dα−1
0+ u(t) = βu(ξ),

where Dα
0+ is the standard Riemann-Liouville fractional derivative. They obtained the existence of

the unique positive solution for the above fractional order boundary value problem by using the
Leray-Schauder nonlinear alternative theorem.

In [15], Liang and Zhang considered the following m-point fractional boundary value problem on
an infinite interval:

Dα
0+u(t) + a(t)f(u(t)) = 0, 0 < t < +∞,

u(0) = u′(0) = 0,

Dα−1
0+ u(+∞) =

m−2∑
i=1

βiu(ξi),

where 2 < α < 3, Dα
0+ denotes the standard Riemann-Liouville fractional derivative, 0 < ξ1 < ξ2 <

... < ξm−2 < +∞, i = 1, ...,m− 2 satisfies 0 <
m−2∑
i=1

βiu(ξi) < Γ(α). They obtained the existence of

three positive solutions by using the Legget-Williams fixed point theorem.
In [18], Gholami considered the following fractional integral boundary value problem on an infinite

interval:
Dα

0+u(t) + a(t)f(t, u(t), u′(t)) = 0; t ∈ (0,∞), α ∈ (2, 3),

u(0) = u′(0) = 0,

lim
t→+∞

Dα−1
0+ u(t) =

m−2∑
i=1

βiD
α−1
0+ u(t) |t=ξi ,

where Dα
0+ denotes the standard Riemann-Liouville fractional derivative, 0 < ξ1 < ξ2 < ... < ξm−2 <

+∞, i = 1, ...,m − 2, βi ∈ R. The author obtained the existence of an unbounded solution for a
fractional order boundary value problem by using the Leray-Schauder nonlinear alternative theorem.

In [2], Wang considered the following fractional boundary value problem on semi-infinite interval:
Dαu(t) + f(t, u(t)) = 0, 0 < t < +∞,

u(0) = u′(0) = 0,

Dα−1u(+∞) = ξIβu(η), β > 0.

The author obtained the existence of the unique solution by using the monotone iterative technique.
Motivated by the above works, in this paper, we consider the following fractional-order nonlinear

boundary value problem (BVP). Our boundary conditions are more complicated than the BVP
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studied in [2].
Dα

0+u(t) + a(t)f(t, u(t)) = 0, t ∈ [0,+∞)

u(0) = u′(0) = u′′(0) = ... = u(n−2)(0) = 0

Dα−1
0+ u(+∞) =

m−2∑
i=1

ηiI
β
0+u

(n−3)(ξi)

(1.1)

where n ∈ N, n ≥ 3, n − 1 < α ≤ n, Dα
0+ denotes the standard Riemann-Liouville fractional

derivative, 0 < ξ1 < ξ2 < ... < ξm−2 < +∞, ηi > 0, i = 1, ...,m− 2, β > 0. Throughout this paper
we assume that following conditions hold:

(H1) 0 <
m−2∑
i=1

ηiξ
α+β−n+2
i < Γ(α + β − n+ 3);

(H2) f : [0,+∞)× R −→ [0,+∞) continuous and 0 <

∫ +∞

0

a(s)ds < +∞;

(H3) F (t, u) = f(t, (1 + tα−1)u), f ∈ C([0,+∞) × R, [0,+∞)), f(0, u) ̸≡ 0 on any subinterval of
(0,+∞) and when u is bounded f(t, (1 + tα−1)u) is bounded on [0,+∞).

In this paper, we will prove the existence of at least two and three positive solutions for the BVP
(1.1) using Avery-Henderson (double) fixed point theorem in [6] and Ren’s fixed point theorem in [7]
respectively.

This paper is organized as follows. In section 2, we provide some definitions and preliminary
lemma which are key tools for our main results. Section 3 is devoted to the theoretical discussions
concerning the existence of at least two and three positive solutions of the problem under consider-
ation and give some examples to illustrate how the main results can be used in practice. Finally,
conclusion part is established in section 4.

2. Preliminaries

In this section, to state the main results of this paper, we need the following lemmas and defini-
tions.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function f : (0,∞) →
R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a continuous func-
tion f : (0,+∞) → R is given by

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)∫ t

0

f(s)

(t− s)α−n+1
ds,

where n− 1 ≤ α < n, provided that the right-hand side is pointwise defined on (0,+∞).

Lemma 2.3. Let α > 0; then Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + c3t

α−3 + ... + cnt
α−n, where

ci ∈ R, i = 1, 2, ..., n (n = [α] + 1). Here Iα0+ stands for the standard Riemann-Liouville fractional
integral of order α > 0 and Dα

0+ denotes the Riemann-Liouville fractional derivative.
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3. Main Results

In this section, we will give the necessary lemma and theorems to demonstrate the existence of
solutions.

Lemma 3.1. Assume that the conditions (H1) − (H3) are satisfied. If h ∈ C[0,+∞), fractional
boundary value problem


Dα

0+u(t) + h(t) = 0, t ∈ [0,+∞)

u(0) = u′(0) = u′′(0) = ... = u(n−2)(0) = 0

Dα−1
0+ u(+∞) =

m−2∑
i=1

ηiI
β
0+u

(n−3)(ξi)

(3.1)

has an integral expression

u(t) =

∫ +∞

0

G(t, s)h(s)ds (3.2)

where

G(t, s) = G1(t, s) +G2(t, s), (3.3)

here

G1(t, s) =
1

Γ(α)

{
tα−1 − (t− s)α−1, 0 ≤ s ≤ t < +∞,

tα−1, 0 ≤ t ≤ s < +∞.
(3.4)

and

G2(t, s) =

m−2∑
i=1

ηit
α−1

Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

]
(3.5)

.

{
ξα+β−n+2
i − (ξi − s)α+β−n+2, 0 ≤ s ≤ ξi < +∞,

ξα+β−n+2
i , 0 ≤ ξi ≤ s < +∞.

Proof . According to Lemma 2.3, we can obtain that u(t) = −Iα0+h(t) + c1t
α−1 + c2t

α−2 + c3t
α−3 +

...+ cnt
α−n. By the boundary conditions of (3.1), we have

c1 =

Γ(α + β − n+ 3)

∫ +∞

0

h(s)ds−
m−2∑
i=1

ηi

∫ ξi

0

(ξi − s)α+β−n+2h(s)ds

Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

]
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and c2 = 0, c3 = 0, ..., cn = 0. Therefore, we obtain

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+
Γ(α + β − n+ 3)tα−1

Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] ∫ +∞

0

h(s)ds

−

m−2∑
i=1

ηit
α−1

Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] ∫ ξi

0

(ξi − s)α+β−n+2h(s)ds

=

∫ +∞

0

G(t, s)h(s)ds, t ∈ [0,+∞).

□

Lemma 3.2. [15] The function G1(t, s) defined by (3.4) satisfies

i) G1(t, s) is a continuous and G1(t, s) ≥ 0 for (t, s) ∈ [0,+∞)× [0,+∞),

ii) G1(t, s) is strictly increasing in the first variable,

iii) G1(t, s) is concave in the first variable for 0 < s < t < +∞.

Lemma 3.3. [15] If k > 1, then G1(t, s) defined by (3.4) has the following property

min
1
k
≤t≤k

G1(t, s)

1 + tα−1
≥ 1

4k2(1 + kα−1)
max

t∈[0,+∞)

G1(t, s)

1 + tα−1
.

Lemma 3.4. From the definition of G1(t, s), we have

G1(t, s)

1 + tα−1
≤ 1

Γ(α)
,

G(t, s)

1 + tα−1
≤ L for (t, s) ∈ [0,+∞)× [0,+∞),

where L =
Γ(α + β − n+ 3)

Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] .
Proof . The functions G(t, s), G1(t, s) and G2(t, s) are as defined in (3.3), (3.4) and (3.5)
respectively. Let s ≤ t. Using Lemma 3.2, we have

G1(t, s)

1 + tα−1
=
tα−1 − (t− s)α−1

Γ(α)(1 + tα−1)
≤ tα−1

Γ(α)(1 + tα−1)
≤ 1

Γ(α)
.

Let t ≤ s. From Lemma 3.2, we get

G1(t, s)

1 + tα−1
=

tα−1

Γ(α)(1 + tα−1)
≤ 1

Γ(α)
,

tα−1

1 + tα−1
→ 1 with t→ +∞

In both cases, we obtain
G1(t, s)

1 + tα−1
≤ 1

Γ(α)
.
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Similarly, we can get an inequality for function G2(t, s). If 0 ≤ s ≤ ξi, then

G2(t, s)

1 + tα−1
=

m−1∑
i=1

ηit
α−1
(
ξα+β−n+2
i − (ξi − s)α+β−n+2

)
(1 + tα−1)Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

]

≤

m−2∑
i=1

ηit
α−1ξα+β−n+2

i

(1 + tα−1)Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

]

≤

m−2∑
i=1

ηiξ
α+β−n+2
i

Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] .
On the other hand, if 0 ≤ ξi ≤ s, then

G2(t, s)

1 + tα−1
=

m−1∑
i=1

ηit
α−1ξα+β−n+2

i

(1 + tα−1)Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

]

≤

m−2∑
i=1

ηiξ
α+β−n+2
i

Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] .
The following inequality is obtained from both cases:

G2(t, s)

1 + tα−1
≤

m−2∑
i=1

ηiξ
α+β−n+2
i

Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] .
Finally, by means of the equation (3.3), we get

G(t, s)

1 + tα−1
≤ Γ(α + β − n+ 3)

Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] .
□
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Lemma 3.5. If k > 1, then G2(t, s) defined by (3.5) has the following property

min
1
k
≤t≤k

G2(t, s)

1 + tα−1
≥ 1

kα−1(1 + kα−1)
max

t∈[0,+∞)

G2(t, s)

1 + tα−1
.

Proof . Let 0 ≤ s ≤ ξi, then by using (3.5), we obtain

min
1
k
≤t≤k

G2(t, s)

1 + tα−1
= min

1
k
≤t≤k

m−2∑
i=1

ηit
α−1
(
ξα+β−n+2
i − (ξi − s)α+β−n+2

)
(1 + tα−1)Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

]

≥

m−2∑
i=1

ηi

(
1

k

)α−1 (
ξα+β−n+2
i − (ξi − s)α+β−n+2

)
(1 + kα−1)Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

]

=
1

kα−1(1 + kα−1)
max

t∈[0,+∞)

m−2∑
i=1

ηit
α−1
(
ξα+β−n+2
i − (ξi − s)α+β−n+2

)
(1 + tα−1)Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] .
Let 0 ≤ ξi ≤ s, then the following inequality is obtained:

min
1
k
≤t≤k

G2(t, s)

1 + tα−1
≥ 1

kα−1(1 + kα−1)
max

t∈[0,+∞)

G2(t, s)

1 + tα−1
.

□

Lemma 3.6. For a fixed k > 1,

min
1
k
≤t≤k

G(t, s)

1 + tα−1
≥ λ(k) max

t∈[0,+∞)

G(t, s)

1 + tα−1

where

λ(k) = min

{
1

4k2(1 + kα−1)
,

1

kα−1(1 + kα−1)

}
.

Proof . This Lemma is obvious from Lemma 3.4 and Lemma 3.5. □
Set

E =

{
u ∈ C[0,+∞) : max

t≥0

|u(t)|
1 + tα−1

< +∞
}
.

Clearly, E is a Banach space with the norm

∥u∥ = max
0≤t<+∞

|u(t)|
1 + tα−1

< +∞.
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Lemma 3.7. Assume that (H1)-(H3) hold. Let u ∈ E and k > 1. Then, u(t) ≥ 0 and min
1
k
≤t≤k

|u(t)|
1 + tα−1

≥

λ(k) ∥u∥.

Proof . Lemma 3.2, positivity of G2(t, s) and conditions (H1)-(H3) imply that u(t) ≥ 0. For a fixed
k > 1, by using Lemma 3.6

min
1
k
≤t≤k

u(t)

1 + tα−1
= min

1
k
≤t≤k

1

1 + tα−1

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds

≥
∫ +∞

0

min
1
k
≤t≤k

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥ λ(k)

∫ +∞

0

max
t≥0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥ λ(k)max
t≥0

∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥ λ(k) ∥u∥

□
By using Lemma 3.7, we can define the cone P ⊂ E by

P =

{
u ∈ E : u(t) ≥ 0, min

1
k
≤t≤k

|u(t)|
1 + tα−1

≥ λ(k) ∥u∥

}
.

Denote the operator T : P → E by

Tu(t) =

∫ +∞

0

G(t, s)a(s)f(s, u(s))ds. (3.6)

Lemma 3.8. Assume that (H1)-(H3) hold. Then T : P → P is completely continuous operator.

Proof . Firstly, it is easy to check that T : P → P is well-defined. Now, we will show that T is a
completely continuous operator in three steps.
Step 1: T : P → P is a continuous operator.
Let un ∈ P , there exists a sequence un → u, n → +∞ in P . Since the convergent sequences are
bounded, there is a real number r0 such that max

n∈N\{0}
∥un∥ < r0. Denote the set

Br0 = max {f(t, (1 + tα − 1)u), (t, u) ∈ [0,+∞)× [0, r0]} .

For all (t, s) ∈ [0,+∞), by the Lebesgue Dominated Convergence theorem and Lemma 3.4, we can
get ∣∣∣∣Tun(t)− Tu0(t)

1 + tα−1

∣∣∣∣ =

∣∣∣∣∫ +∞

0

G(t, s)

1 + tα−1
a(s)[f(s, un(s))− f(s, u(s))]ds

∣∣∣∣
≤
∫ +∞

0

G(t, s)

1 + tα−1
a(s) |f(s, un(s))− f(s, u(s))| ds

≤ L

∫ +∞

0

a(s) |f(s, un(s))− f(s, u(s))| ds→ 0, (n→ +∞).
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This implies that

max
t≥0

∣∣∣∣Tun(t)− Tu0(t)

1 + tα−1

∣∣∣∣ = ∥Tun(t)− Tu0(t)∥ → 0.

Thus, T : P → P is sequential continuous. If T is sequential continuous, then T is continuous.
Step 2: T : P → P is relatively compact operator.
Let Ω be any bounded subset of P . Then there exists r > 0 such that ∥u∥ ≤ r for all u ∈ Ω. So,
from (H2) and Lemma 3.4, for all x ∈ Ω,

Tu(t)

1 + tα−1
≤ L

∫ +∞

0

a(s)f(s, u(s))ds

= L

∫ +∞

0

a(s)f

(
s, (1 + sα−1)

u(s)

1 + sα−1

)
ds

≤ LBr

∫ +∞

0

a(s)ds

< +∞.

This yields that ∥Tu(t)∥ < +∞. So TΩ is uniformly bounded. Next, we show that TΩ is equicon-
tinuous on [0,+∞). For any a > 0 and t1, t2 ∈ [0, a], without loss of generality, we may assume that
t2 > t1. For all u ∈ Ω, we have∣∣∣∣(Tu)(t1)1 + tα−1

1

− (Tu)(t2)

1 + tα−1
2

∣∣∣∣ ≤
∫ +∞

0

∣∣∣∣ G(t1, s)1 + tα−1
1

− G(t2, s)

1 + tα−1
2

∣∣∣∣ a(s)f(s, u(s))ds
≤
∫ +∞

0

∣∣∣∣G1(t1, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
2

∣∣∣∣ a(s)f(s, u(s))ds
+

∫ +∞

0

∣∣∣∣G2(t1, s)

1 + tα−1
1

− G2(t2, s)

1 + tα−1
2

∣∣∣∣ a(s)f(s, u(s))ds
≤
∫ +∞

0

∣∣∣∣G1(t1, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
2

∣∣∣∣ a(s)f(s, u(s))ds

+

m−2∑
i=1

ηiξ
α+β−n+2
i

∣∣∣∣ tα−1
1

1 + tα−1
1

− tα−1
2

1 + tα−1
2

∣∣∣∣
Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] ∫ +∞

0

a(s)f(s, u(s))ds

≤
∫ +∞

0

∣∣∣∣G1(t1, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
2

− G1(t2, s)

1 + tα−1
1

+
G1(t2, s)

1 + tα−1
1

∣∣∣∣ a(s)f(s, u(s))ds

+

m−2∑
i=1

ηiξ
α+β−n+2
i

∣∣∣∣ tα−1
1

1 + tα−1
1

− tα−1
2

1 + tα−1
2

∣∣∣∣
Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] ∫ +∞

0

a(s)f(s, u(s))ds
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≤
∫ +∞

0

∣∣∣∣G1(t1, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
1

∣∣∣∣ a(s)f(s, u(s))ds
+

∫ +∞

0

∣∣∣∣G1(t2, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
2

∣∣∣∣ a(s)f(s, u(s))ds

+

m−2∑
i=1

ηiξ
α+β−n+2
i

∣∣∣∣ tα−1
1

1 + tα−1
1

− tα−1
2

1 + tα−1
2

∣∣∣∣
Γ(α)

[
Γ(α + β − n+ 3)−

m−2∑
i=1

ηiξ
α+β−n+2
i

] ∫ +∞

0

a(s)f(s, u(s))ds.

On the other hand, we have∫ +∞

0

∣∣∣∣G1(t1, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
1

∣∣∣∣ a(s)f(s, u(s))ds
=

∫ t1

0

∣∣∣∣G1(t1, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
1

∣∣∣∣ a(s)f(s, u(s))ds
+

∫ t2

t1

∣∣∣∣G1(t1, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
1

∣∣∣∣ a(s)f(s, u(s))ds
+

∫ +∞

t2

∣∣∣∣G1(t1, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
1

∣∣∣∣ a(s)f(s, u(s))ds
≤ Br

∫ t1

0

(tα−1
2 − tα−1

1 ) + ((t2 − s)α−1 − (t1 − s)α−1)

1 + tα−1
1

a(s)ds

+Br

∫ t2

t1

(tα−1
2 − tα−1

1 ) + (t2 − s)α−1

1 + tα−1
1

a(s)ds+Br

∫ +∞

t2

(tα−1
2 − tα−1

1 )

1 + tα−1
1

a(s)ds

≤ Br

∫ t1

0

(tα−1
2 − tα−1

1 ) + ((t2 − s)α−1 − (t1 − s)α−1)

1 + tα−1
1

a(s)ds

+Br

∫ t2

t1

(tα−1
2 − tα−1

1 ) + (t2 − t1)
α−1

1 + tα−1
1

a(s)ds

+Br

∫ +∞

t2

(tα−1
2 − tα−1

1 )

1 + tα−1
1

a(s)ds → 0 as t1 → t2.

In a similar way, one can see that∫ +∞

0

∣∣∣∣G1(t2, s)

1 + tα−1
1

− G1(t2, s)

1 + tα−1
2

∣∣∣∣ a(s)f(s, u(s))ds→ 0 as t1 → t2.

Hence, we obtain ∣∣∣∣ Tu(t1)1 + tα−1
1

− Tu(t2)

1 + tα−1
2

∣∣∣∣→ 0 as t1 → t2.

That is, TΩ is equicontinuous on [0,+∞).
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Step 3: T : P → P is equiconvergent at +∞.
For any u ∈ Ω, we have∫ +∞

0

a(s)f(s, u(s))ds ≤ Br

∫ +∞

0

a(s)ds < +∞.

It follows from Lemma 3.4 that

lim
t→+∞

∣∣∣∣ Tu(t)1 + tα−1

∣∣∣∣ = lim
t→+∞

∣∣∣∣∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

∣∣∣∣
≤ L lim

t→+∞

∣∣∣∣∫ +∞

0

a(s)f(s, u(s))ds

∣∣∣∣
< +∞.

Hence, TΩ is equiconvergent at +∞. Therefore, we conclude that T : P → P is a completely
continuous operator. □

In order to obtain at least two positive solutions of BVP (1.1), we will apply the following theorem.

Theorem 3.9. (Avery-Henderson (Double) Fixed Point Theorem)[6] Let P be a cone in a real Ba-
nach space E. Assume α and γ are increasing, nonnegative continuous on P . Let β be a nonnegative
continuous functional on P with β(0) = 0 such that, for some positive constants q and M,

γ(u) ≤ β(u) ≤ α(u) and ∥u∥ ≤Mγ(u)

for all u ∈ P (γ, q). Suppose that there exist positive numbers l < r < q such that

β(λu) ≤ λβ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P (β, r).

If T : P (γ, q) → P is a completely continuous operator satisfying

(i) γ(Tu) > q for all u ∈ ∂P (γ, q),

(ii) β(Tu) < r for all u ∈ ∂P (β, r),

(iii) P (α, l) ̸= ∅ and α(Tu) > l for all u ∈ ∂P (α, l),

then T has at least two fixed points u1 and u2 such that

l < α(u1) with β(u1) < r and r < β(u2) with γ(u2) < q.

Let 0 <
1

k
≤ t ≤ k, α, γ be nonnegative, increasing, continuous functionals on P and β be a

nonnegative continuous functional on P be defined by

α(u) = max
t∈[0,k]

u(t)

1 + tα−1
, β(u) = max

t∈[ 1
k
,k]

u(t)

1 + tα−1
, γ(u) = min

t∈[ 1
k
,k]

u(t)

1 + tα−1
(3.7)

and let P (γ, q) = {u ∈ P : γ(u) < q} .

For convenience, we denote

K =

∫ k

1
k

a(s)ds

Γ(α)kα−1(1 + kα−1)
, N = L

∫ +∞

0

a(s)ds (3.8)

where L is defined by Lemma 3.4.
We now state growth conditions on F so that (1.1) has at least two positive solutions.



328 Yaslan Karaca, Oz

Theorem 3.10. Assume that (H1)− (H3) hold. Suppose there exist positive numbers 0 < l < r < q

such that 0 < l <
K

N
r <

K

N
λ(k)q and the function F satisfies the following conditions:

(H4) F (t, u) >
q

K
for (t, u) ∈

[
1

k
, k

]
×
[
q,

q

λ(k)

]
,

(H5) F (t, u) <
r

N
for (t, u) ∈ [0,+∞)×

[
0,

r

λ(k)

]
,

(H6) F (t, u) >
l

K
for (t, u) ∈ [0, k]× [0, l] .

where K and N are as defined in (3.8). Then the boundary value problem (1.1) has at least two
positive solutions u1 and u2 such that

l < max
t∈[0,k]

u1(t)

1 + tα−1
with max

t∈[ 1
k
,k]

u1(t)

1 + tα−1
< r and r < max

t∈[ 1
k
,k]

u2(t)

1 + tα−1
with min

t∈[ 1
k
,k]

u2(t)

1 + tα−1
< q.

Proof . It is obvious that for each u ∈ P , γ(u) ≤ β(u) ≤ α(u). In addition, from Lemma 3.6, for
each u ∈ P

∥u∥ ≤ 1

λ(k)
min
1
k
≤t≤k

u(t)

1 + tα−1
=

1

λ(k)
γ(u), M =

1

λ(k)
> 0.

For 0 ≤ λ ≤ 1 and each u ∈ P we obtain β(λu) = λβ(u). Also, it is clear that β(0) = 0.
We now show that the remaining conditions of Theorem 3.9 are satisfied. We define the completely
continuous operator T by (3.6). So, it is easy to check that T : P (γ, q) → P . We now turn to

property (i) of Theorem 3.9. Choose u ∈ ∂P (γ, q). Then γ(u) = min
t∈[ 1

k
,k]

u(t)

1 + tα−1
= q. Since u ∈ P ,

∥u∥ ≤ q

λ(k)
, t ∈

[
1

k
, k

]
. This implies that

q ≤ u(t)

1 + tα−1
≤ q

λ(k)
, t ∈

[
1

k
, k

]
.

As a consequence of (H4),

F (t, u) >
q

K
, (t, u) ∈

[
1

k
, k

]
×
[
q,

q

λ(k)

]
.

Also, Tu ∈ P , and so

γ(Tu) = min
t∈[ 1

k
,k]

∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥
∫ +∞

0

min
t∈[ 1

k
,k]

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥
∫ +∞

0

min
t∈[ 1

k
,k]

(
G1(t, s)

1 + tα−1
+
G2(t, s)

1 + tα−1

)
a(s)f(s, u(s))ds

≥
∫ +∞

0

(
min
t∈[ 1

k
,k]

G1(t, s)

1 + tα−1
+ min

t∈[ 1
k
,k]

G2(t, s)

1 + tα−1

)
a(s)f(s, u(s))ds

≥
∫ +∞

0

min
t∈[ 1

k
,k]

G1(t, s)

1 + tα−1
a(s)f(s, u(s))ds
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≥
∫ +∞

0

min
t∈[ 1

k
,k]

G1(t, s)

1 + tα−1
a(s)F

(
s,

u(s)

1 + sα−1

)
ds

≥
∫ +∞

0

G1(
1
k
, s)

1 + kα−1
a(s)F

(
s,

u(s)

1 + sα−1

)
ds

≥
∫ k

1
k

G1(
1
k
, s)

1 + kα−1
a(s)F

(
s,

u(s)

1 + sα−1

)
ds

=
1

Γ(α)

1

kα−1

1

(1 + kα−1)

∫ k

1
k

a(s)F

(
s,

u(s)

1 + sα−1

)
ds

>
q

K

1

Γ(α)

1

kα−1

1

(1 + kα−1)

∫ k

1
k

a(s)ds

= q.

We conclude that (i) of Theorem 3.9 is satisfied. We next adress (ii) of Theorem 3.9. So, let us

choose u ∈ ∂P (β, r). Then β(u) = max
t∈[ 1

k
,k]

u(t)

1 + tα−1
= r. This implies 0 ≤ u(t)

1 + tα−1
≤ r, t ∈

[
1

k
, k

]
.

Noticing that ∥u∥ ≤ 1

λ(k)
γ(u) ≤ 1

λ(k)
β(u) =

1

λ(k)
r, we get

0 ≤ u(t)

1 + tα−1
≤ r

λ(k)
for t ∈ [0,+∞).

Using (H5),

F (t, u) <
r

N
, (t, u) ∈ [0,+∞)×

[
0,

r

λ(k)

]
.

Tu ∈ P , and so, for t ∈
[
1

k
, k

]
,

Tu(t)

1 + tα−1
=

∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≤ L

∫ +∞

0

a(s)f(s, u(s))ds

= L

∫ +∞

0

a(s)F

(
s,

u(s)

1 + sα−1

)
ds

<
r

N
L

∫ +∞

0

a(s)ds

< r.

This yields that β(Tu) < r. Hence, condition (ii) is satisfied. For the final part, we turn to (iii)

of Theorem 3.9. For this part, if we first define u(t) =
l

2
, for all t ∈ [0, k], then α( l

2
) < l, and
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P (α, l) ̸= ∅. Now, let us choose u ∈ ∂P (α, l). Then α(u) = max
t∈[0,k]

u(t)

1 + tα−1
= l. This implies

0 ≤ u(t)

1 + tα−1
≤ l, t ∈ [0, k] .

Using assumption (H6),

F (t, u) >
l

K
, (t, u) ∈ (t, u) ∈ [0, k]× [0, l] .

As before Tu ∈ P, and so

α(Tu) = max
t∈[0,k]

∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥ min
t∈[ 1

k
,k]

∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥
∫ +∞

0

min
t∈[ 1

k
,k]

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥
∫ +∞

0

min
t∈[ 1

k
,k]

[
G1(t, s)

1 + tα−1
+
G2(t, s)

1 + tα−1

]
a(s)f(s, u(s))ds

≥
∫ +∞

0

min
t∈[ 1

k
,k]

G1(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥
∫ +∞

0

G1(
1
k
, s)

1 + kα−1
a(s)F

(
s,

u(s)

1 + sα−1

)
ds

≥ 1

1 + kα−1

∫ k

0

G1(
1

k
, s)a(s)F

(
s,

u(s)

1 + sα−1

)
ds

>
l

K

1

1 + kα−1

[∫ 1
k

0

G1(
1

k
, s)a(s)ds+

∫ k

1
k

G1(
1

k
, s)a(s)ds

]

≥ l

K(1 + kα−1)

∫ k

1
k

G1(
1

k
, s)a(s)ds

=
l

K(1 + kα−1)Γ(α)kα−1

∫ k

1
k

a(s)ds

= l.

Thus, (iii) of Theorem 3.9 is satisfied. Therefore, there exist at least two positive solutions u1 and
u2, belonging to P (γ, q), of the boundary value problem (1.1) such that

l < max
t∈[0,k]

u1(t)

1 + tα−1
with max

t∈[ 1
k
,k]

u1(t)

1 + tα−1
< r and r < max

t∈[ 1
k
,k]

u2(t)

1 + tα−1
with min

t∈[ 1
k
,k]

u2(t)

1 + tα−1
< q.

□
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Example 3.11. Consider the following boundary value problem:
D

7
2

0+u(t) + e−tf(t, u(t)) = 0, t ∈ [0,+∞) ,

u(0) = u′(0) = u′′(0) = 0,

D
5
2

0+u(+∞) =
1∑

i=1

ηiI
1
2

0+u(ξi).

(3.9)

where

F (t, u(t)) =



9u+ 740

14800
, 0 ≤ u ≤ 740,

107 − 1

520
(u− 740) +

1

2
, 740 ≤ u ≤ 103,

5.106, 103 ≤ u ≤ 2112.103.

By simple calculations, we have N = 0, 60180, K = 0, 0002166994 and λ(k) = 0, 00047348. If we

choose ℓ = 10−5, r =
1

4
and q = 103, then we get ℓ = 10−5 <

K

N
r = (1, 200026).10−4 <

K

N
λ(k)q =

(1, 705).10−4. It can be easily seen that the conditions (H1)− (H3), (H4)-(H6) are provided. Then
all conditions of Theorem 3.10 hold. Hence, BVP (3.9) has at least two positive solutions u1 and u2
such that

10−5 < max
t∈[0,4]

u1(t)

1 + t
5
2

with max
t∈[ 1

4
,4]

u1(t)

1 + t
5
2

<
1

4
and

1

4
< max

t∈[ 1
4
,4]

u2(t)

1 + t
5
2

with min
t∈[ 1

4
,4]

u2(t)

1 + t
5
2

< 103.

We will apply the following theorem so that (1.1) has at least three positive solutions.

Theorem 3.12. (Ren Fixed Point Theorem)[7] Let P be a cone in a real Banach space E. Let φ, θ
and ψ are increasing, nonnegative continuous functionals on P . There are constants v > 0, M̃ > 0
such that

ψ(u) ≤ θ(u) ≤ φ(u) and ∥u∥ ≤ M̃ψ(u)

for all u ∈ P (ψ, v). Suppose there exist a completely continuous operator T : P (ψ, v) → P and
constants 0 < h < p < v such that
(i) ψ(Tu) < v for ∀u ∈ ∂P (ψ, v);
(ii) θ(Tu) > p for ∀u ∈ ∂P (θ, p);
(iii) P (φ, h) ̸= ∅ and φ(Tu) < h for ∀u ∈ ∂P (φ, h).
Then T has at least three fixed points u1, u2 and u3 belonging to P (ψ, v) such that

0 ≤ φ(u1) < h < φ(u2), θ(u2) < p < θ(u3), ψ(u3) < v.

Let 0 <
1

k
< µ < k and define the nonnegative, increasing, continuous functionals ψ , θ and φ, by

ψ(u) = min
t∈[ 1

k
,k]

u(t)

1 + tα−1
, θ(u) = min

t∈[ 1
k
,µ]

u(t)

1 + tα−1
, φ(u) = max

t∈[0,k]

u(t)

1 + tα−1
. (3.10)

and let P (ψ, v) = {u ∈ P : ψ(u) < v} .
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For convenience, we define

Ω1 =

∫ µ

1
k

a(s)ds

Γ(α)kα−1(1 + kα−1)
, Ω2 = L

∫ +∞

0

a(s)ds (3.11)

where L is defined by Lemma 3.4.
In order to established at least three positive solutions of our boundary value problem, we give

growth conditions on F .

Theorem 3.13. Assume that (H1) − (H3) hold. Suppose there exist positive numbers h < p < v

such that
h

λ(k)
< p <

Ω1

Ω2

v and the function F satisfies the following conditions:

(H7) F (t, u) <
v

Ω2

for ∀(t, u) ∈ [0,+∞)×
[
0,

v

λ(k)

]
,

(H8) F (t, u) >
p

Ω1

for ∀(t, u) ∈
[
1
k
, µ
]
×
[
p,

p

λ(k)

]
,

(H9) F (t, u) <
h

Ω2

for ∀(t, u) ∈ [0,+∞)×
[
0,

h

λ(k)

]
.

where Ω1 and Ω2 are as defined in (3.11). Then the boundary value problem (1.1) has at least three
positive solutions u1, u2 and u3 such that

0 ≤ max
t∈[0,k]

u1(t)

1 + tα−1
< h < max

t∈[0,k]

u2(t)

1 + tα−1
, min

t∈[ 1
k
,µ]

u2(t)

1 + tα−1
< p < min

t∈[ 1
k
,µ]

u3(t)

1 + tα−1
, min

t∈[ 1
k
,k]

u3(t)

1 + tα−1
< v.

Proof . It is clear that for each u ∈ P , ψ(u) ≤ θ(u) ≤ φ(u). Also, from Lemma 3.6, for each u ∈ P

∥u∥ ≤ 1

λ(k)
min
1
k
≤t≤k

u(t)

1 + tα−1
=

1

λ(k)
ψ(u), M̃ =

1

λ(k)
> 0.

The proof of this theorem will proceed in a similar to the proof of Theorem 3.10. By Lemma 3.8, we
know that T : P (ψ, v) → P is completely continuous operator. In order to show that (i) of Theorem

3.12, we choose u ∈ ∂P (ψ, v). Using (H7), for t ∈
[
1

k
, k

]
Tu(t)

1 + tα−1
=

∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≤ L

∫ +∞

0

a(s)F

(
s,

u(s)

1 + sα−1

)
ds

< L
v

Ω2

∫ +∞

0

a(s)ds

= v.
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This yields that ψ(Tu) < v. Hence, condition (i) is satisfied. We now turn to property (ii) of
Theorem 3.12. Choose u ∈ ∂P (ψ, v). Using assumption (H8),

θ(Tu) = min
t∈[ 1k ,µ]

∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥ min
t∈[ 1k ,k]

∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥
∫ +∞

0

min
t∈[ 1k ,k]

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≥
∫ +∞

0

G1(
1
k
, s)

1 + kα−1
a(s)F

(
s,

u(s)

1 + sα−1

)
ds

≥
∫ µ

1
k

G1(
1
k
, s)

1 + kα−1
a(s)F

(
s,

u(s)

1 + sα−1

)
ds

=
1

Γ(α)kα−1(1 + kα−1)

∫ µ

1
k

a(s)F

(
s,

u(s)

1 + sα−1

)
ds

>
p

Ω1Γ(α)kα−1(1 + kα−1)

∫ µ

1
k

a(s)ds

= p.

Thus, the condition (ii) Theorem 3.12 is satisfied. Finally, we turn to (iii) of Theorem 3.12. We

note that u(t) =
h

3
, t ∈ [0, k] is a member of P (φ, h), and so P (φ, h) ̸= ∅. Now, let u ∈ ∂P (φ, h).

Using (H9), for t ∈ [0, k] ,

Tu(t)

1 + tα−1
=

∫ +∞

0

G(t, s)

1 + tα−1
a(s)f(s, u(s))ds

≤ L

∫ +∞

0

a(s)f(s, u(s))ds

= L

∫ +∞

0

a(s)F

(
s,

u(s)

1 + sα−1

)
ds

<
h

λ(k)
L

∫ +∞

0

a(s)ds

= h

This implies that φ(Tu) < h. So, the condition (iii) Theorem 3.12 is satisfied.
As a result, all conditions of Theorem 3.12 are satisfied. Therefore, the boundary value problem
(1.1) has at least three positive solutions u1, u2 and u3, belonging to P (ψ, v), of the boundary value
problem 1.1 such that

0 ≤ max
t∈[0,k]

u1(t)

1 + tα−1
< h < max

t∈[0,k]

u2(t)

1 + tα−1
, min

t∈[ 1
k
,µ]

u2(t)

1 + tα−1
< p < min

t∈[ 1
k
,µ]

u3(t)

1 + tα−1
, min

t∈[ 1
k
,k]

u3(t)

1 + tα−1
< v.
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□

Example 3.14. Consider the following boundary value problem:
D

9
2

0+u(t) + 16−t ln 16f(t, u(t)) = 0, t ∈ [0,+∞) ,

u(0) = u′(0) = u′′(0) = u′′′(0) = 0,

D
7
2

0+u(+∞) =
1∑

i=1

ηiI
1
2

0+u(ξi).

(3.12)

where

F (t, u(t)) =


0, 0 ≤ u ≤ 8256.10−3,
107

1744
(500u− 4128) , 8256.10−3 ≤ u ≤ 10,

5.106, 10 ≤ u ≤ 8256.106.

After some calculations, we obtain Ω1 = (2, 2779).10−6, Ω2 = 0, 1719434922 and λ(k) = (1, 21124).10−4.

If we choose h = 10−3, p = 10 and v = 106, then this inequality
h

λ(k)
=

10−3

(1, 21124).10−4
< p = 10 <

Ω1

Ω2

v = (1, 3247957).10−5106 is satisfied. It is easy to see that the conditions of (H1)− (H3), (H7)-

(H9) are satisfied. So, all conditions of Theorem 3.13 hold. Therefore, BVP (3.12) has at least three
positive solutions u1, u2 and u3 such that

0 ≤ max
t∈[0,4]

u1(t)

1 + t
7
2

< 10−3 < max
t∈[0,4]

u2(t)

1 + t
7
2

, min
t∈[ 1

4
,1]

u2(t)

1 + t
7
2

< 10 < min
t∈[ 1

4
,1]

u3(t)

1 + t
7
2

, min
t∈[ 1

4
,4]

u3(t)

1 + t
7
2

< 106.

4. Conclusions

In this paper, we consider BVP (1.1) on an infinite interval. We theoretically prove using the
double fixed point and Ren’s fixed point theorems the existence of at least two or three positive
solutions. Some appropriate examples that support the theoretical results are provided. In the
future, methods dealing with the existence of positive solutions of boundary value problems can
be developed. Furthermore, the existence of exactly two or three positive solutions can also be
investigated.
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