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Abstract

In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and
establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the
plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates
are considered.
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1. Introduction and preliminaries

Let I ⊆ R be a real interval. A function f : I → R, is said to be convex if, for every x, y ∈ I and
t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Let f : I → R be a convex function and a, b ∈ I with a < b then, we have the following inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

This remarkable result is well known in the literature as Hermite-Hadamard inequality. Both in-
equalities hold in the reversed direction if f is concave. We note that Hermite-Hadamard inequality
may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s
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inequality. There have been several works in the literature which are devoted to investigating refine-
ments and generalizations of the Hermite-Hadamard inequality for convex functions, see for example
[1, 2, 3, 5, 7, 8, 9, 11, 12, 14, 15, 16] and references therein. In [4], S.S. Dragomir defined convex
functions on the co-ordinates (or co-ordinated convex functions) on the set ∆ := [a, b]× [c, d] in R2

with a < b and c < d as follows:

Definition 1.1. A function f : ∆ → R is said to be convex on the co-ordinates on ∆ if for every
y ∈ [c, d] and x ∈ [a, b], the partial mappings,

fy : [a, b]→ R, fy(u) = f(u, y),

and
fx : [c, d]→ R, fx(v) = f(x, v),

are convex. This means that for every (x, y), (z, w) ∈ ∆ and t, s ∈ [0, 1],

f(tx+ (1− t)z, sy + (1− s)w)

≤ tsf(x, y) + s(1− t)f(z, y) + t(1− s)f(x,w) + (1− t)(1− s)f(z, w).

Clearly, every convex function is co-ordinated convex. Furthermore, there exist co-ordinated
convex functions which are not convex. The following Hermit-Hadamard type inequality for co-
ordinated convex functions was also proved in [4].

Theorem 1.2. Suppose that f : ∆→ R is convex on co-ordinates on ∆. Then,

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a

f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c

f

(
a+ b

2
, y

)
dy

]
≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f(x, y)dydx

≤ 1

4

[
1

b− a

∫ b

a

f(x, c)dx+
1

b− a

∫ b

a

f(x, d)dx

+
1

d− c

∫ d

c

f(a, y)dy +
1

d− c

∫ d

c

f(a, y)dy

]
≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
.

The above inequalities are sharp.

Since then several important generalizations introduced on this category, see [11, 13, 18, 19, 20, 21]
and references therein. Recall that a function f : I ⊆ R → R, is said to be quasiconvex if for every
x, y ∈ I and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.

In [15], M.E. Özdemir et al. introduced the notion of co-ordinated quasiconvex functions which
generalize the notion of co-ordinated convex functions as follows:
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Definition 1.3. A function f : ∆ = [a, b]× [c, d]→ R is said to be quasiconvex on the co-ordinates
on ∆ if for every y ∈ [c, d] and x ∈ [a, b], the partial mapping,

fy : [a, b]→ R, fy(u) = f(u, y),

and
fx : [c, d]→ R, fx(v) = f(x, v),

are quasiconvex. This means that for every (x, y), (z, w) ∈ ∆ and s, t ∈ [0, 1],

f(tx+ (1− t)z, sy + (1− s)w) ≤ max{f(x, y), f(x,w), f(z, y), f(z, w)}.

Since then several important generalizations on this category introduced in [11, 14]. On the
other hand the notion of geometrically quasiconvex functions is introduced by İ. İşcan in [7] and F.
Qi and B.A. Xi in [18] as follows:

Definition 1.4. A function f : I ⊆ R0 := [0,∞)→ R0, is said to be geometrically quasiconvex on
I if for every x, y ∈ I and t ∈ [0, 1],

f(xty1−t) ≤ max{f(x), f(y)}.

Note that if f decreasing and geometrically quasiconvex then, it is quasiconvex. If f increasing
and quasiconvex then, it is geometrically quasiconvex. We recall some results introduced in [18].

Lemma 1.5. Let f : I ⊆ R+ := (0,∞) → R, be a differentiable function on I◦ and a, b ∈ I◦ with
a < b. If f ′ ∈ L([a, b]) then,

(ln b)f(b)− (ln a)f(a)

ln b− ln a
− 1

ln b− ln a

∫ b

a

f(x)

x
dx

=

∫ 1

0

a1−tbt ln(a1−tbt)f ′(a1−tbt)dt.

(1.1)

Theorem 1.6. Let f : I ⊆ R+ → R be a differentiable function on I◦ and f ′ ∈ L([a, b]) for a, b ∈ I◦
with a < b. If |f ′| is geometrically quasiconvex on [a, b] then,∣∣∣∣(ln b)f(b)− (ln a)f(a)

ln b− ln a
− 1

ln b− ln a

∫ b

a

f(x)

x
dx

∣∣∣∣
≤ N(a, b) sup {|f ′(a)|, |f ′(b)|} ,

(1.2)

where N(a, b) :=
∫ 1

0
a1−tbt| ln(a1−tbt)|dt.

Theorem 1.7. Let f : I ⊆ R+ → R be a differentiable function on I◦ and f ′ ∈ L([a, b]) for a, b ∈ I◦
with a < b. If |f ′|q is geometrically quasiconvex on [a, b] for q > 1 then,∣∣∣∣(ln b)f(b)− (ln a)f(a)

ln b− ln a
− 1

ln b− ln a

∫ b

a

f(x)

x
dx

∣∣∣∣
≤ [M(a, b)]

1
q

[
q − 1

q
N(aq/q−1, bq/q−1)

]1−1/q
×
[

sup {|f ′(a)|q, |f ′(b)|q}
] 1

q ,

(1.3)

where M(a, b) :=
∫ 1

0
| ln(a1−tbt)|dt.
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Theorem 1.8. Let f : I ⊆ R+ → R be a differentiable function on I◦ and f ′ ∈ L([a, b]) for a, b ∈ I◦
with a < b. If |f ′|q is geometrically quasiconvex on [a, b] for q > 1 and q > r > 0 then,∣∣∣∣(ln b)f(b)− (ln a)f(a)

ln b− ln a
− 1

ln b− ln a

∫ b

a

f(x)

x
dx

∣∣∣∣
≤
(
q − 1

q − r

)1−1/q (
1

r

)1/q

[N(ar, br)]
1
q

×
[
N(a(q−r)/q−1, b(q−r)/q−1)

]1−1/q × [ sup {|f ′(a)|q, |f ′(b)|q}
] 1

q .

(1.4)

Theorem 1.9. Let f : I ⊆ R+ → R0 be a differentiable function on I◦ and f ∈ L([a, b]) for a, b ∈ I◦
with a < b. If f is geometrically quasiconvex on [a, b] then,

f((ab)1/2) ≤ 1

ln b− ln a

∫ b

a

f(x)

x
dx ≤ sup {f(a), f(b)} . (1.5)

In [16], M. E. Özdemir introduced the notion of geometrically convex functions on the co-ordinates
as follows:

Definition 1.10. Let ∆+ := [a, b]× [c, d] be a rectangle in R+
2 with a < b and c < d. A function

f : ∆+ → R is said to be geometrically convex on the co-ordinates if for every y ∈ [c, d] and x ∈ [a, b]
the partial mappings,

fy : [a, b]→ R, fy(u) = f(u, y),

and
fx : [c, d]→ R, fx(v) = f(x, v),

are geometrically convex function. This means that for every (x, y), (z, w) ∈ ∆+ and t, s ∈ [0, 1],

f(xtz1−t, ysw1−s)

≤ tsf(x, y) + s(1− t)f(z, y) + t(1− s)f(x,w) + (1− t)(1− s)f(z, w).

The main purpose of this paper is to establish some new results connected to the Hermite-
Hadamard type inequality for geometrically quasiconvex functions on the co-ordinates.

2. The main results

In this section we introduce the notion of ”geometrically quasiconvex functions on the co-ordinates”
for functions defined on rectangles in R2

+, which is a generalization of the notion ” geometrically
convex functions on the co-ordinates” given in definition 1.10. Then, we establish some Hermite-
Hadamard type inequalities for this class of functions.

Definition 2.1. Let ∆+ := [a, b] × [c, d] be a subset of R+
2 with a < b and c < d. A function

f : ∆+ → R is said to be geometrically quasiconvex on the co-ordinates on ∆+ ⊆ R2
+ if for every

y ∈ [c, d] and x ∈ [a, b] the partial mappings

fy : [a, b]→ R, fy(u) = f(u, y),

and
fx : [c, d]→ R, fx(v) = f(x, v),

are geometrically quasiconvex. This means that for every (x, y), (z, w) ∈ ∆+ and s, t ∈ [0, 1],

f(xtz1−t, ysw1−s) ≤ max{f(x, y), f(x,w), f(z, y), f(z, w)}.
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Note that every geometrically convex function on co-ordinates is geometrically quasiconvex on co-
ordinates, but the converse is not holds. In the following example we give a geometrically quasiconvex
function on co-ordinates which is not geometrically convex function on the co-ordinates.

Example 2.2. Let ∆+ := [1, 4]× [4, 9] and consider the function f : ∆+ → R defined by

f(x, y) := x2 − y2.

It is easy to see that the functions

fy(x) = x2 − y2, x ∈ [1, 4],

and
fx(y) = x2 − y2, y ∈ [4, 9],

are geometrically quasiconvex. Hence, f is geometrically quasiconvex on co-ordinates on ∆+. This
function is not geometrically convex on co-ordinates on ∆+. Indeed, if we choose two points, (x, y) =
(1, 4), (z, w) = (4, 9) and s = t = 1

2
, then

f(xtz1−t, ysw1−s) = f(2, 6) = −32,

and
tsf(x, y) + s(1− t)f(z, y) + t(1− s)f(x,w) + (1− t)(1− s)f(z, w)

=
1

4
{f(x, y), f(x,w), f(z, w), f(z, y)} = −40

< f(xtz1−t, ysw1−s).

To reach our goal we introduce the following lemma which plays a crucial role in this paper.

Lemma 2.3. Let ∆+ := [a, b] × [c, d] be a subset of R+
2 with a < b and c < d. Suppose that

f : ∆+ → R is a partial differentiable function on int(∆+). If ∂2f
∂t∂s
∈ L(∆+), then

1

(ln b− ln a)(ln d− ln c)

×
(
C +D +

∫ b

a

[
(ln c)

f(x, c)

x
− (ln d)

f(x, d)

x

]
dx

+

∫ d

c

[
(ln a)

f(a, y)

y
− (ln b)

f(b, y)

y

]
dy +

∫ b

a

∫ d

c

f(x, y)

yx
dydx

)
=

∫ 1

0

∫ 1

0

a1−tbtc1−sds ln(a1−tbt) ln(c1−sds)
∂2f

∂t∂s
(a1−tbt, c1−sds)dtds,

(2.1)

where
C := (ln d)[(ln b)f(b, d)− (ln a)f(a, d)],

and
D := (ln c)[(ln a)f(a, c)− (ln b)f(b, c)].



52 Barani, Malmir

Proof . If we denote the right hand side of (2.1) by I and integrating by parts on ∆+ then, we have

(ln b− ln a)(ln d− ln c)I

= (ln b− ln a)(ln d− ln c)

∫ 1

0

∫ 1

0

a1−tbtc1−sds

× ln(a1−tbt) ln(c1−sds)
∂2f

∂t∂s
(a1−tbt, c1−sds)dtds

=(ln b− ln a)(ln d− ln c)

∫ 1

0

c1−sds ln(c1−sds)

×
[ ∫ 1

0

a1−tbt ln(a1−tbt)
∂2f

∂t∂s
(a1−tbt, c1−sds)dt

]
ds

= (ln b− ln a)(ln d− ln c)

×
(∫ 1

0

c1−sds ln(c1−sds)
[ ln(a1−tbt)

(ln b)− (ln a)

∂f

∂s
(a1−tbt, c1−sds)

∣∣∣1
0

−
∫ 1

0

∂f

∂s
(a1−tbt, c1−sds)dt

]
ds

)
(2.2)

= (ln b− ln a)(ln d− ln c)

×
(∫ 1

0

c1−sds ln(c1−sds)
[ ln b

ln b− ln a

∂f

∂s
(b, c1−sds)

− ln a

ln b− ln a

∂f

∂s
(a, c1−sds)−

∫ 1

0

∂f

∂s
(a1−tbt, c1−sds)dt

]
ds
)

= (ln d− ln c)(ln b)

∫ 1

0

c1−sds ln(c1−sds)
∂f

∂s
(b, c1−sds)ds

− (ln d− ln c)(ln a)

∫ 1

0

c1−sds ln(c1−sds)
∂f

∂s
(a, c1−sds)ds

− (ln b− ln a)(ln d− ln c)

×
(∫ 1

0

[ ∫ 1

0

c1−sds ln(c1−sds)
∂f

∂s
(a1−tbt, c1−sds)ds

]
dt
)
.

Similarly integrating by parts in the right hand side of (2.2) deduce that

(ln b− ln a)(ln d− ln c)I

= (ln b)

(
ln(c1−sds)f(b, c1−sds)

∣∣∣∣1
0

− (ln d− ln c)

∫ 1

0

f(b, c1−sds)ds

)
− (ln a)

(
ln(c1−sds)f(a, c1−sds)

∣∣∣∣1
0

− (ln d− ln c)

∫ 1

0

f(a, c1−sds)ds

)
− (ln b− ln a)

∫ 1

0

(
ln(c1−sds)f(a1−tbt, c1−sds)

∣∣∣∣1
0

)
dt

+ (ln b− ln a)(ln d− ln c)

∫ 1

0

∫ 1

0

f(a1−tbt, c1−sds)dtds

= (ln b)

(
[(ln d)f(b, d)− (ln c)f(b, c)]
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− (ln d− ln c)

∫ 1

0

f(b, c1−sds)ds

)
− (ln a)

(
[(ln d)f(a, d)− (ln c)f(a, c)]

− (ln d− ln c)

∫ 1

0

f(a, c1−sds)ds

)
− (ln b− ln a)

(
(ln d)

∫ 1

0

f(a1−tbt, d)dt− (ln c)

∫ 1

0

f(a1−tbt, c)dt

)
+ (ln b− ln a)(ln d− ln c)

∫ 1

0

∫ 1

0

f(a1−tbt, c1−sds)dtds.

If we using the change of variables x = a1−tbt and y = c1−sds for t, s ∈ [0, 1], we obtain

(ln b− ln a)(ln d− ln c)I

= (ln b)

(
[(ln d)f(b, d)− (ln c)f(b, c)]−

∫ d

c

f(b, y)

y
dy

)
− (ln a)

(
[(ln d)f(a, d)− (ln c)f(a, c)]−

∫ d

c

f(a, y)

y
dy

)
− (ln d)

∫ b

a

f(x, d)

x
+ (ln c)

∫ b

a

f(x, c)

x
dx+

∫ b

a

∫ d

c

f(x, y)

yx
dydx.

(2.3)

Dividing both sides of (2.3) by (ln b− ln a)(ln d− ln c) implies that the equation (2.1) holds and proof
is completed. �

Theorem 2.4. Let ∆+ := [a, b] × [c, d] be a subset of R2
+ with a < b and c < d. Suppose that f :

∆+ → R is a partial differentiable function on int(∆+) and ∂2f
∂t∂s
∈ L(∆+). If

∣∣∣ ∂2f
∂t∂s

∣∣∣ is a geometrically

quasiconvex function on the co-ordinates on ∆+ then the following inequality holds:∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤ N(a, b) N(c, d)

×max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣, ∣∣∣ ∂2f
∂t∂s

(a, d)
∣∣∣, ∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣, ∣∣∣ ∂2f
∂t∂s

(b, d)
∣∣∣},

(2.4)

where, C,D are defined in Lemma 2.3.

B :=
1

(ln b− ln a)(ln d− ln c)
×
(∫ b

a

[
(ln d)

f(x, d)

x
− (ln c)

f(x, c)

x

]
dx

+

∫ d

c

[
(ln b)

f(b, y)

y
− (ln a)

f(a, y)

y

]
dy

)
.

Proof . From Lemma 2.3, it follows that∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤
∫ 1

0

∫ 1

0

a1−tbtc1−sds| ln(a1−tbt) ln(c1−sds)|

×
∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣dtds.
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Since
∣∣∣ ∂2f
∂t∂s

∣∣∣ is geometrically quasiconvex on the co-ordinates we have

∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣

≤ max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣, ∣∣∣ ∂2f
∂t∂s

(a, d)
∣∣∣, ∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣, ∣∣∣ ∂2f
∂t∂s

(b, d)
∣∣∣},

where t, s ∈ [0, 1]. From this inequality and Lemma 1.5, it follows that∫ 1

0

∫ 1

0

a1−tbtc1−sds| ln(a1−tbt) ln(c1−sds)|
∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣dtds

≤ max

{∣∣∣∂2f(a, c)

∂t∂s

∣∣∣, ∣∣∣∂2f(a, d)

∂t∂s

∣∣∣, ∣∣∣∂2f(b, c)

∂t∂s

∣∣∣, ∣∣∣∂2f(b, d)

∂t∂s

∣∣∣}
×
∫ 1

0

∫ 1

0

a1−tbtc1−sds| ln(a1−tbt) ln(c1−sds)|dtds

= N(a, b) N(c, d)

×max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣, ∣∣∣ ∂2f
∂t∂s

(a, d)
∣∣∣, ∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣, ∣∣∣ ∂2f
∂t∂s

(b, d)
∣∣∣} ,

which is the required inequality (2.4). Note that∫ 1

0

∫ 1

0

a(1−t)btc(1−s)ds| ln(a1−tbt) ln(c1−sds)|dtds

=

(∫ 1

0

a(1−t)bt| ln(a1−tbt)|dt
)(∫ 1

0

c(1−s)ds| ln(c1−sds)|ds
)

= N(a, b) N(c, d).

The proof of theorem is completed. �

The following corollary is an immediate consequence of theorem 2.4.

Corollary 2.5. Suppose that the conditions of the theorem 2.4 are satisfied. Additionally, if

(1)
∣∣∣ ∂2f
∂t∂s

∣∣∣ is increasing on the co-ordinates on ∆+, then

∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤ N(a, b) N(c, d)

∣∣∣ ∂2
∂t∂s

f(b, d)
∣∣∣. (2.5)

(2)
∣∣∣ ∂2f
∂t∂s

∣∣∣ is decreasing on the co-ordinates on ∆+, then

∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤ N(a, b) N(c, d)

∣∣∣ ∂2
∂t∂s

f(a, c)
∣∣∣, (2.6)
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where, C, D and B are defined, respectively in Lemma 2.3 and Theorem 2.4.

Theorem 2.6. Let ∆+ := [a, b] × [c, d] be a subset of R2
+ with a < b and c < d. Suppose that

f : ∆+ → R is a partial differentiable function on int(∆+) and ∂2f
∂t∂s

∈ L(∆+). If
∣∣∣ ∂2f
∂t∂s

∣∣∣q is a

geometrically quasiconvex function on the co-ordinates on ∆+ and p, q > 1, 1
p

+ 1
q

= 1, then the
following inequality holds:∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤
[
N(ap, bp) N(cp, dp)

] 1
p ×

[
max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣q,
∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣q}]1/q,
(2.7)

where, C, D and B are defined, respectively in Lemma 2.3 and Theorem 2.4.

Proof . Suppose that p > 1. From Lemma 2.3 and well-known Hölder inequality for double
integrals, we obtain∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤
∫ 1

0

∫ 1

0

a1−tbtc1−sds| ln(a1−tbt) ln(c1−sds)|
∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣dtds

≤
(∫ 1

0

∫ 1

0

ap(1−t)bptcp(1−s)dps| ln(a1−tbt) ln(c1−sds)|pdtds
) 1

p

×
(∫ 1

0

∫ 1

0

∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣qdtds) 1

q

.

(2.8)

Since
∣∣∣ ∂2f
∂t∂s

∣∣∣q is geometrically quasiconvex on the co-ordinates on ∆+, we obtain∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣q

≤ max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣q, ∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣q}. (2.9)

Note that ∫ 1

0

∫ 1

0

ap(1−t)bptcp(1−s)dps| ln(a1−tbt) ln(c1−sds)|pdtds

=

(∫ 1

0

ap(1−t)bpt| ln(a1−tbt)|pdt
)(∫ 1

0

cp(1−s)dps| ln(c1−sds)|pds
)

= N(ap, bp) N(cp, dp).

(2.10)

Combination of (2.8), (2.9) and (2.10), gives the desired inequality (2.7). Hence the proof of the
theorem is completed. �

The following corollary is an immediate consequence of theorem 2.6.
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Corollary 2.7. Suppose that the conditions of the Theorem 2.6 are satisfied. Additionally, if

(1)
∣∣∣ ∂2f
∂t∂s

∣∣∣q is increasing on the co-ordinates on ∆+, then

∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤

[
N(ap, bp) N(cp, dp)

] 1
p

∣∣∣ ∂2
∂t∂s

f(b, d)
∣∣∣. (2.11)

(2)
∣∣∣ ∂2f
∂t∂s

∣∣∣q is decreasing on the co-ordinates on ∆+, then

∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤

[
N(ap, bp) N(cp, dp)

] 1
p

∣∣∣ ∂2
∂t∂s

f(a, c)
∣∣∣. (2.12)

Theorem 2.8. Let ∆+ := [a, b] × [c, d] be a subset of R2
+ with a < b and c < d. Suppose that

f : ∆+ → R is a partial differentiable function on int(∆+) and ∂2f
∂t∂s

∈ L(∆+). If
∣∣∣ ∂2f
∂t∂s

∣∣∣q is a

geometrically quasiconvex function on the co-ordinates on ∆+ for q > 1, then the following inequality
holds: ∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤ [M(a, b) M(c, d)]1/q

×

[(
q − 1

q

)2

N
(
aq/(q−1), bq/(q−1)

)
N
(
cq/(q−1), dq/(q−1)

)]1−1/q

×

[
max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣q, ∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣q}] 1
q

,

(2.13)

where, C, D and B are defined, respectively in Lemma 2.3 and Theorem 2.4.

Proof . By Lemma 2.3, Hölder’s inequality, and the geometrically quasiconvexity of
∣∣∣ ∂2f
∂t∂s

∣∣∣q on 4+,

we have ∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤
∫ 1

0

∫ 1

0

a1−tbtc1−sds| ln(a1−tbt) ln(c1−sds)|
∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣dtds

≤
[ ∫ 1

0

∫ 1

0

aq(1−t)/(q−1)bqt/(q−1)cq(1−s)/(q−1)dqs/(q−1)

× | ln(a1−tbt) ln(c1−sds)|dtds
]1−1/q

×
[∫ 1

0

∫ 1

0

| ln(a1−tbt) ln(c1−sds)|
∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣qdtds]1/q
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≤
[ ∫ 1

0

∫ 1

0

aq(1−t)/(q−1)bqt/(q−1)cq(1−s)/(q−1)dqs/(q−1)

× | ln(a1−tbt) ln(c1−sds)|dtds
]1−1/q

×
[ ∫ 1

0

∫ 1

0

| ln(a1−tbt) ln(c1−sds)|dtds
]1/q

×

[
max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣q, ∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣q}] 1
q

.

Note that by Lemma 1.5 it follows that,∫ 1

0

∫ 1

0

aq(1−t)/(q−1)bqt/(q−1)cq(1−s)/(q−1)dqs/(q−1)

× | ln(a1−tbt) ln(c1−sds)|dtds

=

(∫ 1

0

aq(1−t)/(q−1)bqt/(q−1)| ln(a1−tbt)|dt
)

×
(∫ 1

0

cq(1−s)/(q−1)dqs/(q−1)| ln(c1−sds)|ds
)

=
(q − 1)2

q2
N
(
aq/(q−1), bq/(q−1)

)
N
(
cq/(q−1), dq/(q−1)

)
.

It is easy to see that ∫ 1

0

∫ 1

0

| ln(a1−tbt) ln(c1−sds)|dtds = M(a, b) M(c, d),

and proof is completed. �

Theorem 2.9. Let ∆+ := [a, b] × [c, d] be a subset of R2
+ with a < b and c < d. Suppose that

f : ∆+ → R is a partial differentiable function on int(∆+) and ∂2f
∂t∂s

∈ L(∆+). If
∣∣∣ ∂2f
∂t∂s

∣∣∣q is a

geometrically quasiconvex function on the co-ordinates on ∆+ and q > ` > 0, then∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤
(
q − 1

q − `

)2(1−1/q)(
1

`

)2/q [
N
(
a`, b`

)
N
(
c`, d`

)]1/q
×
[
N
(
a(q−`)/(q−1), b(q−`)/(q−1)

)
N
(
c(q−`)/(q−1), d(q−`)/(q−1)

)](1−1/q)
×

[
max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣q, ∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣q}] 1
q

,

(2.14)

where, C, D and B are defined, respectively in Lemma 2.3 and Theorem 2.4.



58 Barani, Malmir

Proof . From Lemma 2.3, Hölder’s inequality, and the geometrically quasiconvexity of
∣∣∣ ∂2f
∂t∂s

∣∣∣q on

the co-ordinates on ∆+ we get∣∣∣∣ C +D

(ln b− ln a)(ln d− ln c)
+

∫ b

a

∫ d

c
f(x,y)
yx

dydx

(ln b− ln a)(ln d− ln c)
−B

∣∣∣∣
≤
∫ 1

0

∫ 1

0

a1−tbtc1−sds| ln(a1−tbt) ln(c1−sds)|

×
∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣dtds

≤
[ ∫ 1

0

∫ 1

0

a(q−`)(1−t)/(q−1)b(q−`)t/(q−1)c(q−`)(1−s)/(q−1)

× d(q−`)s/(q−1) × | ln(a1−tbt) ln(c1−sds)|dtds
]1−1/q

×
[ ∫ 1

0

∫ 1

0

| ln(a`(1−t)b`t) ln(c`(1−s)d`s)|

×
∣∣∣ ∂2f
∂t∂s

(a1−tbt, c1−sds)
∣∣∣qdtds]1/q

≤
[ ∫ 1

0

∫ 1

0

a(q−`)(1−t)/(q−1)b(q−`)t/(q−1)c(q−`)(1−s)/(q−1)

× d(q−`)s/(q−1) × | ln(a1−tbt) ln(c1−sds)|dtds
]1−1/q

×
[ ∫ 1

0

∫ 1

0

|a`(1−t)b`tc`(1−s)d`s ln(a1−tbt) ln(c1−sds)|dtds
]1/q

×

[
max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣q, ∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣q}] 1
q

=
(q − 1

q − `

)2(1−1/q)[
N
(
a(q−`)/(q−1), b(q−`)/(q−1)

)
×N

(
c(q−`)/(q−1), d(q−`)/(q−1)

)]1−1/q
×
(

1

`

)2/q [
N
(
a`, b`

)
N
(
c`, d`

)]1/q
×

[
max

{∣∣∣ ∂2f
∂t∂s

(a, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(a, d)

∣∣∣q, ∣∣∣ ∂2f
∂t∂s

(b, c)
∣∣∣q, ∣∣∣ ∂2f

∂t∂s
(b, d)

∣∣∣q}] 1
q

.

The proof of theorem is completed. �

Theorem 2.10. Let ∆+ := [a, b] × [c, d] be a subset of R2
+ with a < b and c < d. Suppose that

f : ∆+ → R is a geometrically quasiconvex function on the co-ordinates on ∆+. If f ∈ L(∆+), then

f
(
(ab)1/2, (cd)1/2

)
≤ 1

(ln b− ln a)(ln d− ln c)

∫ b

a

∫ d

c

f(x, y)

yx
dydx

≤ max{f(a, c), f(a, d), f(b, c), f(b, d)}.
(2.15)
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Proof . By geometrically quasiconvexity of f on co-ordinates on ∆+, for every t ∈ [0, 1] we have

f
(
(ab)1/2, (cd)1/2

)
≤ max{f(a1−tbt, c1−sds), f(atb1−t, csd1−s)}
≤ max{f(a, c), f(a, d), f(b, c), f(b, d)}.

(2.16)

Since ∫ 1

0

∫ 1

0

f(a1−tbt, c1−sds)dtds =

∫ 1

0

∫ 1

0

f(atb1−t, csd1−s)dtds

=
1

(ln b− ln a)(ln d− ln c)

∫ b

a

∫ d

c

f(x, y)

yx
dydx,

by integrating in (2.16) we get

f
(
(ab)1/2, (cd)1/2

)
≤max

{∫ 1

0

∫ 1

0

f(a1−tbt, c1−sds)dtds,

∫ 1

0

∫ 1

0

f(atb1−t, csd1−s)dtds

}
=

1

(ln b− ln a)(ln d− ln c)

∫ b

a

∫ d

c

f(x, y)

yx
dydx

≤max{f(a, c), f(a, d), f(b, c), f(b, d)}.

and proof is completed. �

Theorem 2.11. Let ∆+ := [a, b] × [c, d] be a subset of R2
+ with a < b and c < d. Suppose that

f, g : ∆+ → R are geometrically quasiconvex functions on the co-ordinates on ∆+. If fg ∈ L(∆+).
Then,

1

(ln b− ln a)(ln d− ln c)

∫ b

a

∫ d

c

f(x, y)

yx
g(x, y)dydx

≤ max
{
f(u, v) g(w, z)

∣∣ u,w ∈ {a, b}, v, z ∈ {c, d}}.
Proof . Let x = a1−tbt, y = a1−sbs, s, t ∈ [0, 1]. By using the geometrically quasiconvexity of f, g on
∆+ we have

1

(ln b− ln a)(ln d− ln c)

∫ b

a

∫ d

c

f(x, y)

yx
g(x, y)dydx

=

∫ 1

0

∫ 1

0

f(a1−tbt, c1−sds) g(a1−tbt, c1−sds)dtds

≤ max{f(a, c), f(a, d), f(b, c), f(b, d)}
×max{g(a, c), g(a, d), g(b, c), g(b, d)},

and proof is completed. �
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