Int. J. Nonlinear Anal. Appl. 8 (2017) No. 1, 47-60 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2016.483

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

Ali Barani*, Fatemeh Malmir

Department of Mathematics, Lorestan University, P. O. Box 465, Khoramabad, Iran

(Communicated by A. Ebadian)

Abstract

In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.

 $\label{eq:Keywords: Hermite-Hadamard inequality; convex functions on co-ordinates; geometrically quasiconvex functions.$

2010 MSC: Primary 26A51; Secondary 26D15.

1. Introduction and preliminaries

Let $I \subseteq \mathbb{R}$ be a real interval. A function $f: I \to \mathbb{R}$, is said to be convex if, for every $x, y \in I$ and $t \in [0, 1]$,

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y).$$

Let $f: I \to \mathbb{R}$ be a convex function and $a, b \in I$ with a < b then, we have the following inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le \frac{f(a)+f(b)}{2}.$$

This remarkable result is well known in the literature as Hermite-Hadamard inequality. Both inequalities hold in the reversed direction if f is concave. We note that Hermite-Hadamard inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen's

*Corresponding author

Email addresses: barani.a@lu.ac.ir (Ali Barani), malmir.fateme@ymail.com (Fatemeh Malmir)

inequality. There have been several works in the literature which are devoted to investigating refinements and generalizations of the Hermite-Hadamard inequality for convex functions, see for example [1, 2, 3, 5, 7, 8, 9, 11, 12, 14, 15, 16] and references therein. In [4], S.S. Dragomir defined convex functions on the co-ordinates (or co-ordinated convex functions) on the set $\Delta := [a, b] \times [c, d]$ in \mathbb{R}^2 with a < b and c < d as follows:

Definition 1.1. A function $f : \Delta \to \mathbb{R}$ is said to be convex on the co-ordinates on Δ if for every $y \in [c, d]$ and $x \in [a, b]$, the partial mappings,

$$f_y: [a,b] \to \mathbb{R}, \qquad f_y(u) = f(u,y),$$

and

$$f_x : [c,d] \to \mathbb{R}, \qquad f_x(v) = f(x,v),$$

are convex. This means that for every $(x, y), (z, w) \in \Delta$ and $t, s \in [0, 1]$,

$$f(tx + (1 - t)z, sy + (1 - s)w) \le tsf(x, y) + s(1 - t)f(z, y) + t(1 - s)f(x, w) + (1 - t)(1 - s)f(z, w).$$

Clearly, every convex function is co-ordinated convex. Furthermore, there exist co-ordinated convex functions which are not convex. The following Hermit-Hadamard type inequality for co-ordinated convex functions was also proved in [4].

Theorem 1.2. Suppose that $f : \Delta \to \mathbb{R}$ is convex on co-ordinates on Δ . Then,

$$\begin{aligned} &f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\ &\leq \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy \right] \\ &\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx \\ &\leq \frac{1}{4} \left[\frac{1}{b-a} \int_{a}^{b} f(x, c) dx + \frac{1}{b-a} \int_{a}^{b} f(x, d) dx \\ &+ \frac{1}{d-c} \int_{c}^{d} f(a, y) dy + \frac{1}{d-c} \int_{c}^{d} f(a, y) dy \right] \\ &\leq \frac{f(a,c) + f(a,d) + f(b,c) + f(b,d)}{4}. \end{aligned}$$

The above inequalities are sharp.

Since then several important generalizations introduced on this category, see [11, 13, 18, 19, 20, 21] and references therein. Recall that a function $f: I \subseteq \mathbb{R} \to \mathbb{R}$, is said to be quasiconvex if for every $x, y \in I$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}.$$

In [15], M.E. Özdemir et al. introduced the notion of co-ordinated quasiconvex functions which generalize the notion of co-ordinated convex functions as follows:

Definition 1.3. A function $f : \Delta = [a, b] \times [c, d] \to \mathbb{R}$ is said to be quasiconvex on the co-ordinates on Δ if for every $y \in [c, d]$ and $x \in [a, b]$, the partial mapping,

$$f_y: [a,b] \to \mathbb{R}, \qquad f_y(u) = f(u,y),$$

and

$$f_x : [c,d] \to \mathbb{R}, \qquad f_x(v) = f(x,v),$$

are quasiconvex. This means that for every $(x, y), (z, w) \in \Delta$ and $s, t \in [0, 1]$,

 $f(tx + (1 - t)z, sy + (1 - s)w) \le \max\{f(x, y), f(x, w), f(z, y), f(z, w)\}.$

Since then several important generalizations on this category introduced in [11, 14]. On the other hand the notion of geometrically quasiconvex functions is introduced by \dot{I} . İşcan in [7] and F. Qi and B.A. Xi in [18] as follows:

Definition 1.4. A function $f : I \subseteq \mathbb{R}_0 := [0, \infty) \to \mathbb{R}_0$, is said to be geometrically quasiconvex on I if for every $x, y \in I$ and $t \in [0, 1]$,

$$f(x^{t}y^{1-t}) \le \max\{f(x), f(y)\}\$$

Note that if f decreasing and geometrically quasiconvex then, it is quasiconvex. If f increasing and quasiconvex then, it is geometrically quasiconvex. We recall some results introduced in [18].

Lemma 1.5. Let $f : I \subseteq \mathbb{R}_+ := (0, \infty) \to \mathbb{R}$, be a differentiable function on I° and $a, b \in I^\circ$ with a < b. If $f' \in L([a, b])$ then,

$$\frac{(\ln b)f(b) - (\ln a)f(a)}{\ln b - \ln a} - \frac{1}{\ln b - \ln a} \int_{a}^{b} \frac{f(x)}{x} dx$$

$$= \int_{0}^{1} a^{1-t}b^{t} \ln(a^{1-t}b^{t})f'(a^{1-t}b^{t})dt.$$
(1.1)

Theorem 1.6. Let $f : I \subseteq \mathbb{R}_+ \to \mathbb{R}$ be a differentiable function on I° and $f' \in L([a, b])$ for $a, b \in I^\circ$ with a < b. If |f'| is geometrically quasiconvex on [a, b] then,

$$\left| \frac{(\ln b)f(b) - (\ln a)f(a)}{\ln b - \ln a} - \frac{1}{\ln b - \ln a} \int_{a}^{b} \frac{f(x)}{x} dx \right|$$

$$\leq N(a,b) \sup \left\{ |f'(a)|, |f'(b)| \right\},$$
(1.2)

where $N(a, b) := \int_0^1 a^{1-t} b^t |\ln(a^{1-t}b^t)| dt$.

Theorem 1.7. Let $f : I \subseteq \mathbb{R}_+ \to \mathbb{R}$ be a differentiable function on I° and $f' \in L([a, b])$ for $a, b \in I^\circ$ with a < b. If $|f'|^q$ is geometrically quasiconvex on [a, b] for q > 1 then,

$$\left| \frac{(\ln b)f(b) - (\ln a)f(a)}{\ln b - \ln a} - \frac{1}{\ln b - \ln a} \int_{a}^{b} \frac{f(x)}{x} dx \right| \\
\leq [M(a,b)]^{\frac{1}{q}} \left[\frac{q-1}{q} N(a^{q/q-1}, b^{q/q-1}) \right]^{1-1/q} \times \left[\sup \left\{ |f'(a)|^{q}, |f'(b)|^{q} \right\} \right]^{\frac{1}{q}},$$
(1.3)

where $M(a, b) := \int_0^1 |\ln(a^{1-t}b^t)| dt$.

Theorem 1.8. Let $f : I \subseteq \mathbb{R}_+ \to \mathbb{R}$ be a differentiable function on I° and $f' \in L([a, b])$ for $a, b \in I^\circ$ with a < b. If $|f'|^q$ is geometrically quasiconvex on [a, b] for q > 1 and q > r > 0 then,

$$\left| \frac{(\ln b)f(b) - (\ln a)f(a)}{\ln b - \ln a} - \frac{1}{\ln b - \ln a} \int_{a}^{b} \frac{f(x)}{x} dx \right| \\
\leq \left(\frac{q-1}{q-r} \right)^{1-1/q} \left(\frac{1}{r} \right)^{1/q} [N(a^{r}, b^{r})]^{\frac{1}{q}} \\
\times \left[N(a^{(q-r)/q-1}, b^{(q-r)/q-1}) \right]^{1-1/q} \times \left[\sup\left\{ |f'(a)|^{q}, |f'(b)|^{q} \right\} \right]^{\frac{1}{q}}.$$
(1.4)

Theorem 1.9. Let $f : I \subseteq \mathbb{R}_+ \to \mathbb{R}_0$ be a differentiable function on I° and $f \in L([a, b])$ for $a, b \in I^\circ$ with a < b. If f is geometrically quasiconvex on [a, b] then,

$$f((ab)^{1/2}) \le \frac{1}{\ln b - \ln a} \int_{a}^{b} \frac{f(x)}{x} dx \le \sup \left\{ f(a), f(b) \right\}.$$
 (1.5)

In [16], M. E. Ozdemir introduced the notion of geometrically convex functions on the co-ordinates as follows:

Definition 1.10. Let $\Delta_+ := [a, b] \times [c, d]$ be a rectangle in \mathbb{R}_+^2 with a < b and c < d. A function $f : \Delta_+ \to \mathbb{R}$ is said to be geometrically convex on the co-ordinates if for every $y \in [c, d]$ and $x \in [a, b]$ the partial mappings,

$$f_y: [a,b] \to \mathbb{R}, \qquad f_y(u) = f(u,y),$$

and

$$f_x: [c,d] \to \mathbb{R}, \qquad f_x(v) = f(x,v),$$

are geometrically convex function. This means that for every $(x, y), (z, w) \in \Delta_+$ and $t, s \in [0, 1]$,

$$f(x^{t}z^{1-t}, y^{s}w^{1-s}) \le tsf(x, y) + s(1-t)f(z, y) + t(1-s)f(x, w) + (1-t)(1-s)f(z, w).$$

The main purpose of this paper is to establish some new results connected to the Hermite-Hadamard type inequality for geometrically quasiconvex functions on the co-ordinates.

2. The main results

In this section we introduce the notion of "geometrically quasiconvex functions on the co-ordinates" for functions defined on rectangles in \mathbb{R}^2_+ , which is a generalization of the notion "geometrically convex functions on the co-ordinates" given in definition 1.10. Then, we establish some Hermite-Hadamard type inequalities for this class of functions.

Definition 2.1. Let $\Delta_+ := [a, b] \times [c, d]$ be a subset of \mathbb{R}_+^2 with a < b and c < d. A function $f : \Delta_+ \to \mathbb{R}$ is said to be geometrically quasiconvex on the co-ordinates on $\Delta_+ \subseteq \mathbb{R}^2_+$ if for every $y \in [c, d]$ and $x \in [a, b]$ the partial mappings

$$f_y: [a,b] \to \mathbb{R}, \qquad f_y(u) = f(u,y),$$

and

$$f_x: [c,d] \to \mathbb{R}, \qquad f_x(v) = f(x,v),$$

are geometrically quasiconvex. This means that for every $(x, y), (z, w) \in \Delta_+$ and $s, t \in [0, 1]$,

$$f(x^{t}z^{1-t}, y^{s}w^{1-s}) \le \max\{f(x, y), f(x, w), f(z, y), f(z, w)\}$$

Note that every geometrically convex function on co-ordinates is geometrically quasiconvex on coordinates, but the converse is not holds. In the following example we give a geometrically quasiconvex function on co-ordinates which is not geometrically convex function on the co-ordinates.

Example 2.2. Let $\Delta_+ := [1,4] \times [4,9]$ and consider the function $f : \Delta_+ \to \mathbb{R}$ defined by

$$f(x,y) := x^2 - y^2$$

It is easy to see that the functions

$$f_y(x) = x^2 - y^2, \ x \in [1, 4]$$

and

$$f_x(y) = x^2 - y^2, y \in [4, 9]$$

are geometrically quasiconvex. Hence, f is geometrically quasiconvex on co-ordinates on Δ_+ . This function is not geometrically convex on co-ordinates on Δ_+ . Indeed, if we choose two points, (x, y) = (1, 4), (z, w) = (4, 9) and $s = t = \frac{1}{2}$, then

$$f(x^t z^{1-t}, y^s w^{1-s}) = f(2, 6) = -32,$$

and

$$\begin{split} tsf(x,y) + s(1-t)f(z,y) + t(1-s)f(x,w) + (1-t)(1-s)f(z,w) \\ &= \frac{1}{4}\{f(x,y), f(x,w), f(z,w), f(z,y)\} = -40 \\ &< f(x^tz^{1-t}, y^sw^{1-s}). \end{split}$$

To reach our goal we introduce the following lemma which plays a crucial role in this paper.

Lemma 2.3. Let $\Delta_+ := [a,b] \times [c,d]$ be a subset of \mathbb{R}_+^2 with a < b and c < d. Suppose that $f : \Delta_+ \to \mathbb{R}$ is a partial differentiable function on $int(\Delta_+)$. If $\frac{\partial^2 f}{\partial t \partial s} \in L(\Delta_+)$, then

$$\frac{1}{(\ln b - \ln a)(\ln d - \ln c)} \times \left(C + D + \int_{a}^{b} \left[(\ln c)\frac{f(x,c)}{x} - (\ln d)\frac{f(x,d)}{x}\right]dx + \int_{c}^{d} \left[(\ln a)\frac{f(a,y)}{y} - (\ln b)\frac{f(b,y)}{y}\right]dy + \int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx}dydx\right) = \int_{0}^{1} \int_{0}^{1} a^{1-t}b^{t}c^{1-s}d^{s}\ln(a^{1-t}b^{t})\ln(c^{1-s}d^{s})\frac{\partial^{2}f}{\partial t\partial s}(a^{1-t}b^{t},c^{1-s}d^{s})dtds,$$
(2.1)

where

$$C := (\ln d)[(\ln b)f(b,d) - (\ln a)f(a,d)],$$

and

$$D := (\ln c) [(\ln a) f(a, c) - (\ln b) f(b, c)].$$

Proof. If we denote the right hand side of (2.1) by *I* and integrating by parts on Δ_+ then, we have $(\ln b - \ln a)(\ln d - \ln c)I$

$$(\ln b - \ln a)(\ln d - \ln c)I$$

$$= (\ln b - \ln a)(\ln d - \ln c) \int_0^1 \int_0^1 a^{1-t} b^t c^{1-s} d^s$$

$$\times \ln(a^{1-t}b^t) \ln(c^{1-s}d^s) \frac{\partial^2 f}{\partial t \partial s} (a^{1-t}b^t, c^{1-s}d^s) dt ds$$

$$= (\ln b - \ln a)(\ln d - \ln c) \int_{0}^{1} c^{1-s} d^{s} \ln(c^{1-s} d^{s}) \\ \times \left[\int_{0}^{1} a^{1-t} b^{t} \ln(a^{1-t} b^{t}) \frac{\partial^{2} f}{\partial t \partial s} (a^{1-t} b^{t}, c^{1-s} d^{s}) dt \right] ds \\ = (\ln b - \ln a)(\ln d - \ln c)$$

$$\times \left(\int_{0}^{1} c^{1-s} d^{s} \ln(c^{1-s} d^{s}) \left[\frac{\ln(a^{1-t} b^{t})}{(\ln b) - (\ln a)} \frac{\partial f}{\partial s} (a^{1-t} b^{t}, c^{1-s} d^{s}) \right]_{0}^{1} \\ - \int_{0}^{1} \frac{\partial f}{\partial s} (a^{1-t} b^{t}, c^{1-s} d^{s}) dt ds \right)$$

$$= (\ln b - \ln a)(\ln d - \ln c)$$

$$(2.2)$$

$$\times \Big(\int_0^1 c^{1-s} d^s \ln(c^{1-s} d^s) \Big[\frac{\ln b}{\ln b - \ln a} \frac{\partial f}{\partial s}(b, c^{1-s} d^s) \\ - \frac{\ln a}{\ln b - \ln a} \frac{\partial f}{\partial s}(a, c^{1-s} d^s) - \int_0^1 \frac{\partial f}{\partial s}(a^{1-t} b^t, c^{1-s} d^s) dt \Big] ds \Big)$$

$$= (\ln d - \ln c)(\ln b) \int_0^1 c^{1-s} d^s \ln(c^{1-s} d^s) \frac{\partial f}{\partial s}(b, c^{1-s} d^s) ds \\ - (\ln d - \ln c)(\ln a) \int_0^1 c^{1-s} d^s \ln(c^{1-s} d^s) \frac{\partial f}{\partial s}(a, c^{1-s} d^s) ds \\ - (\ln b - \ln a)(\ln d - \ln c) \\ \times \Big(\int_0^1 \Big[\int_0^1 c^{1-s} d^s \ln(c^{1-s} d^s) \frac{\partial f}{\partial s}(a^{1-t} b^t, c^{1-s} d^s) ds \Big] dt \Big).$$

Similarly integrating by parts in the right hand side of (2.2) deduce that

$$\begin{aligned} (\ln b - \ln a)(\ln d - \ln c)I \\ &= (\ln b) \left(\ln(c^{1-s}d^s)f(b,c^{1-s}d^s) \Big|_0^1 - (\ln d - \ln c) \int_0^1 f(b,c^{1-s}d^s)ds \right) \\ &- (\ln a) \left(\ln(c^{1-s}d^s)f(a,c^{1-s}d^s) \Big|_0^1 - (\ln d - \ln c) \int_0^1 f(a,c^{1-s}d^s)ds \right) \\ &- (\ln b - \ln a) \int_0^1 \left(\ln(c^{1-s}d^s)f(a^{1-t}b^t,c^{1-s}d^s) \Big|_0^1 \right) dt \\ &+ (\ln b - \ln a)(\ln d - \ln c) \int_0^1 \int_0^1 f(a^{1-t}b^t,c^{1-s}d^s)dt ds \\ &= (\ln b) \left([(\ln d)f(b,d) - (\ln c)f(b,c)] \right) \end{aligned}$$

$$-(\ln d - \ln c) \int_{0}^{1} f(b, c^{1-s}d^{s})ds \right)$$
$$-(\ln a) \left([(\ln d)f(a, d) - (\ln c)f(a, c)] - (\ln d - \ln c) \int_{0}^{1} f(a, c^{1-s}d^{s})ds \right)$$
$$-(\ln b - \ln a) \left((\ln d) \int_{0}^{1} f(a^{1-t}b^{t}, d)dt - (\ln c) \int_{0}^{1} f(a^{1-t}b^{t}, c)dt \right)$$
$$+ (\ln b - \ln a) (\ln d - \ln c) \int_{0}^{1} \int_{0}^{1} f(a^{1-t}b^{t}, c^{1-s}d^{s})dtds.$$

If we using the change of variables $x = a^{1-t}b^t$ and $y = c^{1-s}d^s$ for $t, s \in [0, 1]$, we obtain $(\ln b - \ln a)(\ln d - \ln c)I$

$$= (\ln b) \left([(\ln d)f(b,d) - (\ln c)f(b,c)] - \int_{c}^{d} \frac{f(b,y)}{y} dy \right) - (\ln a) \left([(\ln d)f(a,d) - (\ln c)f(a,c)] - \int_{c}^{d} \frac{f(a,y)}{y} dy \right) - (\ln d) \int_{a}^{b} \frac{f(x,d)}{x} + (\ln c) \int_{a}^{b} \frac{f(x,c)}{x} dx + \int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx.$$
(2.3)
Here of (2.3) by $(\ln b - \ln a)(\ln d - \ln c)$ implies that the equation (2.1) holds and proof

Dividing both sides of (2.3) by $(\ln b - \ln a)(\ln d - \ln c)$ implies that the equation (2.1) holds and proof is completed. \Box

Theorem 2.4. Let $\Delta_+ := [a,b] \times [c,d]$ be a subset of \mathbb{R}^2_+ with a < b and c < d. Suppose that $f : \Delta_+ \to \mathbb{R}$ is a partial differentiable function on $int(\Delta_+)$ and $\frac{\partial^2 f}{\partial t \partial s} \in L(\Delta_+)$. If $\left| \frac{\partial^2 f}{\partial t \partial s} \right|$ is a geometrically quasiconvex function on the co-ordinates on Δ_+ then the following inequality holds:

$$\left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right| \\
\leq N(a,b) N(c,d) \qquad (2.4) \\
\times \max\left\{ \left| \frac{\partial^{2} f}{\partial t \partial s}(a,c) \right|, \left| \frac{\partial^{2} f}{\partial t \partial s}(a,d) \right|, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,c) \right|, \left| \frac{\partial^{2} f}{\partial t \partial s}(b,d) \right| \right\},$$

where, C, D are defined in Lemma 2.3.

$$B := \frac{1}{(\ln b - \ln a)(\ln d - \ln c)} \times \left(\int_a^b \left[(\ln d) \frac{f(x,d)}{x} - (\ln c) \frac{f(x,c)}{x} \right] dx + \int_c^d \left[(\ln b) \frac{f(b,y)}{y} - (\ln a) \frac{f(a,y)}{y} \right] dy \right).$$

Proof. From Lemma 2.3, it follows that

$$\begin{aligned} \left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_a^b \int_c^d \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right| \\ &\leq \int_0^1 \int_0^1 a^{1-t} b^t c^{1-s} d^s |\ln(a^{1-t}b^t)\ln(c^{1-s}d^s)| \\ &\times \left| \frac{\partial^2 f}{\partial t \partial s}(a^{1-t}b^t, c^{1-s}d^s) \right| dt ds. \end{aligned}$$

Since $\left|\frac{\partial^2 f}{\partial t \partial s}\right|$ is geometrically quasiconvex on the co-ordinates we have

$$\left| \frac{\partial^2 f}{\partial t \partial s} (a^{1-t} b^t, c^{1-s} d^s) \right|$$

$$\leq \max \left\{ \left| \frac{\partial^2 f}{\partial t \partial s} (a, c) \right|, \left| \frac{\partial^2 f}{\partial t \partial s} (a, d) \right|, \left| \frac{\partial^2 f}{\partial t \partial s} (b, c) \right|, \left| \frac{\partial^2 f}{\partial t \partial s} (b, d) \right| \right\},$$

where $t, s \in [0, 1]$. From this inequality and Lemma 1.5, it follows that

$$\begin{split} &\int_{0}^{1} \int_{0}^{1} a^{1-t} b^{t} c^{1-s} d^{s} |\ln(a^{1-t}b^{t}) \ln(c^{1-s}d^{s})| \left| \frac{\partial^{2} f}{\partial t \partial s} (a^{1-t}b^{t}, c^{1-s}d^{s}) \right| dt ds \\ &\leq \max \left\{ \left| \frac{\partial^{2} f(a,c)}{\partial t \partial s} \right|, \left| \frac{\partial^{2} f(a,d)}{\partial t \partial s} \right|, \left| \frac{\partial^{2} f(b,c)}{\partial t \partial s} \right|, \left| \frac{\partial^{2} f(b,d)}{\partial t \partial s} \right| \right\} \\ &\times \int_{0}^{1} \int_{0}^{1} a^{1-t} b^{t} c^{1-s} d^{s} |\ln(a^{1-t}b^{t}) \ln(c^{1-s}d^{s})| dt ds \\ &= N(a,b) \ N(c,d) \\ &\times \max \left\{ \left| \frac{\partial^{2} f}{\partial t \partial s} (a,c) \right|, \left| \frac{\partial^{2} f}{\partial t \partial s} (a,d) \right|, \left| \frac{\partial^{2} f}{\partial t \partial s} (b,c) \right|, \left| \frac{\partial^{2} f}{\partial t \partial s} (b,d) \right| \right\}, \end{split}$$

which is the required inequality (2.4). Note that

$$\begin{split} &\int_0^1 \int_0^1 a^{(1-t)} b^t c^{(1-s)} d^s |\ln(a^{1-t}b^t) \ln(c^{1-s}d^s)| dt ds \\ &= \left(\int_0^1 a^{(1-t)} b^t |\ln(a^{1-t}b^t)| dt \right) \left(\int_0^1 c^{(1-s)} d^s |\ln(c^{1-s}d^s)| ds \right) \\ &= N(a,b) \ N(c,d). \end{split}$$

The proof of theorem is completed. \Box

The following corollary is an immediate consequence of theorem 2.4.

Corollary 2.5. Suppose that the conditions of the theorem 2.4 are satisfied. Additionally, if

(1) $\left|\frac{\partial^2 f}{\partial t \partial s}\right|$ is increasing on the co-ordinates on Δ_+ , then

$$\left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right|$$

$$\leq N(a,b) N(c,d) \left| \frac{\partial^{2}}{\partial t \partial s} f(b,d) \right|.$$
(2.5)

(2) $\left|\frac{\partial^2 f}{\partial t \partial s}\right|$ is decreasing on the co-ordinates on Δ_+ , then

$$\left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right|$$

$$\leq N(a,b) N(c,d) \left| \frac{\partial^{2}}{\partial t \partial s} f(a,c) \right|,$$
(2.6)

where, C, D and B are defined, respectively in Lemma 2.3 and Theorem 2.4.

Theorem 2.6. Let $\Delta_+ := [a, b] \times [c, d]$ be a subset of \mathbb{R}^2_+ with a < b and c < d. Suppose that $f : \Delta_+ \to \mathbb{R}$ is a partial differentiable function on $int(\Delta_+)$ and $\frac{\partial^2 f}{\partial t \partial s} \in L(\Delta_+)$. If $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$ is a geometrically quasiconvex function on the co-ordinates on Δ_+ and p, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$, then the following inequality holds:

$$\left|\frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B\right|$$

$$\leq \left[N(a^{p}, b^{p}) \ N(c^{p}, d^{p})\right]^{\frac{1}{p}} \times \left[\max\left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, c)\right|^{q}, \left|\frac{\partial^{2} f}{\partial t \partial s}(a, d)\right|^{q}, \left(2.7\right)\right]^{\frac{1}{p}} \left(\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right)^{q}, \left|\frac{\partial^{2} f}{\partial t \partial s}(b, c)\right|^{q}, \left|\frac{\partial^{2} f}{\partial t \partial s}(b, d)\right|^{q}\right\}^{\frac{1}{q}},$$

where, C, D and B are defined, respectively in Lemma 2.3 and Theorem 2.4.

Proof . Suppose that p > 1. From Lemma 2.3 and well-known Hölder inequality for double integrals, we obtain

$$\left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right| \\
\leq \int_{0}^{1} \int_{0}^{1} a^{1-t} b^{t} c^{1-s} d^{s} |\ln(a^{1-t}b^{t})\ln(c^{1-s}d^{s})| \left| \frac{\partial^{2}f}{\partial t\partial s}(a^{1-t}b^{t}, c^{1-s}d^{s}) \right| dt ds \\
\leq \left(\int_{0}^{1} \int_{0}^{1} a^{p(1-t)} b^{pt} c^{p(1-s)} d^{ps} |\ln(a^{1-t}b^{t})\ln(c^{1-s}d^{s})|^{p} dt ds \right)^{\frac{1}{p}} \\
\times \left(\int_{0}^{1} \int_{0}^{1} \left| \frac{\partial^{2}f}{\partial t\partial s}(a^{1-t}b^{t}, c^{1-s}d^{s}) \right|^{q} dt ds \right)^{\frac{1}{q}}.$$
(2.8)

Since $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$ is geometrically quasiconvex on the co-ordinates on Δ_+ , we obtain

$$\left|\frac{\partial^2 f}{\partial t \partial s}(a^{1-t}b^t, c^{1-s}d^s)\right|^q \leq \max\left\{\left|\frac{\partial^2 f}{\partial t \partial s}(a, c)\right|^q, \left|\frac{\partial^2 f}{\partial t \partial s}(a, d)\right|^q, \left|\frac{\partial^2 f}{\partial t \partial s}(b, c)\right|^q, \left|\frac{\partial^2 f}{\partial t \partial s}(b, d)\right|^q\right\}.$$
(2.9)

Note that

$$\int_{0}^{1} \int_{0}^{1} a^{p(1-t)} b^{pt} c^{p(1-s)} d^{ps} |\ln(a^{1-t}b^{t}) \ln(c^{1-s}d^{s})|^{p} dt ds$$

$$= \left(\int_{0}^{1} a^{p(1-t)} b^{pt} |\ln(a^{1-t}b^{t})|^{p} dt \right) \left(\int_{0}^{1} c^{p(1-s)} d^{ps} |\ln(c^{1-s}d^{s})|^{p} ds \right)$$

$$= N(a^{p}, b^{p}) N(c^{p}, d^{p}).$$
(2.10)

Combination of (2.8), (2.9) and (2.10), gives the desired inequality (2.7). Hence the proof of the theorem is completed. \Box

The following corollary is an immediate consequence of theorem 2.6.

Corollary 2.7. Suppose that the conditions of the Theorem 2.6 are satisfied. Additionally, if (1) $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$ is increasing on the co-ordinates on Δ_+ , then

$$\left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right|$$

$$\leq \left[N(a^{p}, b^{p}) \ N(c^{p}, d^{p}) \right]^{\frac{1}{p}} \left| \frac{\partial^{2}}{\partial t \partial s} f(b, d) \right|.$$
(2.11)

(2) $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$ is decreasing on the co-ordinates on Δ_+ , then

$$\left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right|$$

$$\leq \left[N(a^{p}, b^{p}) N(c^{p}, d^{p}) \right]^{\frac{1}{p}} \left| \frac{\partial^{2}}{\partial t \partial s} f(a, c) \right|.$$
(2.12)

Theorem 2.8. Let $\Delta_+ := [a,b] \times [c,d]$ be a subset of \mathbb{R}^2_+ with a < b and c < d. Suppose that $f : \Delta_+ \to \mathbb{R}$ is a partial differentiable function on $int(\Delta_+)$ and $\frac{\partial^2 f}{\partial t \partial s} \in L(\Delta_+)$. If $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$ is a geometrically quasiconvex function on the co-ordinates on Δ_+ for q > 1, then the following inequality holds:

$$\left|\frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{a} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B\right|$$

$$\leq [M(a,b) \ M(c,d)]^{1/q}$$

$$\times \left[\left(\frac{q-1}{q}\right)^{2} N\left(a^{q/(q-1)}, b^{q/(q-1)}\right) \ N\left(c^{q/(q-1)}, d^{q/(q-1)}\right)\right]^{1-1/q}$$

$$\times \left[\max\left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a,c)\right|^{q}, \left|\frac{\partial^{2} f}{\partial t \partial s}(a,d)\right|^{q}, \left|\frac{\partial^{2} f}{\partial t \partial s}(b,c)\right|^{q}, \left|\frac{\partial^{2} f}{\partial t \partial s}(b,d)\right|^{q}\right\}\right]^{\frac{1}{q}},$$
(2.13)

where, C, D and B are defined, respectively in Lemma 2.3 and Theorem 2.4.

Proof. By Lemma 2.3, Hölder's inequality, and the geometrically quasiconvexity of $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$ on \triangle_+ , we have

$$\begin{aligned} & \left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right| \\ \leq & \int_{0}^{1} \int_{0}^{1} a^{1-t} b^{t} c^{1-s} d^{s} |\ln(a^{1-t}b^{t})\ln(c^{1-s}d^{s})| \left| \frac{\partial^{2}f}{\partial t \partial s}(a^{1-t}b^{t}, c^{1-s}d^{s}) \right| dt ds \\ \leq & \left[\int_{0}^{1} \int_{0}^{1} a^{q(1-t)/(q-1)} b^{qt/(q-1)} c^{q(1-s)/(q-1)} d^{qs/(q-1)} \right. \\ & \times \left| \ln(a^{1-t}b^{t})\ln(c^{1-s}d^{s}) \right| dt ds \right]^{1-1/q} \\ & \times \left[\int_{0}^{1} \int_{0}^{1} |\ln(a^{1-t}b^{t})\ln(c^{1-s}d^{s})| \left| \frac{\partial^{2}f}{\partial t \partial s}(a^{1-t}b^{t}, c^{1-s}d^{s}) \right|^{q} dt ds \right]^{1/q} \end{aligned}$$

$$\leq \left[\int_{0}^{1}\int_{0}^{1}a^{q(1-t)/(q-1)}b^{qt/(q-1)}c^{q(1-s)/(q-1)}d^{qs/(q-1)}\right]$$
$$\times \left[\ln(a^{1-t}b^{t})\ln(c^{1-s}d^{s})\right]dtds = \left[\int_{0}^{1}\int_{0}^{1}\left|\ln(a^{1-t}b^{t})\ln(c^{1-s}d^{s})\right|dtds\right]^{1/q}$$
$$\times \left[\max\left\{\left|\frac{\partial^{2}f}{\partial t\partial s}(a,c)\right|^{q},\left|\frac{\partial^{2}f}{\partial t\partial s}(a,d)\right|^{q},\left|\frac{\partial^{2}f}{\partial t\partial s}(b,c)\right|^{q},\left|\frac{\partial^{2}f}{\partial t\partial s}(b,d)\right|^{q}\right\}\right]^{\frac{1}{q}}.$$

Note that by Lemma 1.5 it follows that,

$$\begin{split} &\int_{0}^{1} \int_{0}^{1} a^{q(1-t)/(q-1)} b^{qt/(q-1)} c^{q(1-s)/(q-1)} d^{qs/(q-1)} \\ &\times |\ln(a^{1-t}b^{t}) \ln(c^{1-s}d^{s})| dt ds \\ &= \left(\int_{0}^{1} a^{q(1-t)/(q-1)} b^{qt/(q-1)} |\ln(a^{1-t}b^{t})| dt \right) \\ &\times \left(\int_{0}^{1} c^{q(1-s)/(q-1)} d^{qs/(q-1)} |\ln(c^{1-s}d^{s})| ds \right) \\ &= \frac{(q-1)^{2}}{q^{2}} N \left(a^{q/(q-1)}, b^{q/(q-1)} \right) N \left(c^{q/(q-1)}, d^{q/(q-1)} \right). \end{split}$$

It is easy to see that

$$\int_0^1 \int_0^1 |\ln(a^{1-t}b^t) \ln(c^{1-s}d^s)| dt ds = M(a,b) \ M(c,d),$$

and proof is completed. \Box

Theorem 2.9. Let $\Delta_+ := [a,b] \times [c,d]$ be a subset of \mathbb{R}^2_+ with a < b and c < d. Suppose that $f : \Delta_+ \to \mathbb{R}$ is a partial differentiable function on $\operatorname{int}(\Delta_+)$ and $\frac{\partial^2 f}{\partial t \partial s} \in L(\Delta_+)$. If $\left| \frac{\partial^2 f}{\partial t \partial s} \right|^q$ is a geometrically quasiconvex function on the co-ordinates on Δ_+ and $q > \ell > 0$, then

$$\left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right| \\
\leq \left(\frac{q-1}{q-\ell} \right)^{2(1-1/q)} \left(\frac{1}{\ell} \right)^{2/q} \left[N(a^{\ell}, b^{\ell}) \ N(c^{\ell}, d^{\ell}) \right]^{1/q} \\
\times \left[N(a^{(q-\ell)/(q-1)}, b^{(q-\ell)/(q-1)}) \ N(c^{(q-\ell)/(q-1)}, d^{(q-\ell)/(q-1)}) \right]^{(1-1/q)} \\
\times \left[\max\left\{ \left| \frac{\partial^{2} f}{\partial t \partial s}(a, c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(a, d) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b, c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s}(b, d) \right|^{q} \right\} \right]^{\frac{1}{q}},$$
(2.14)

where, C, D and B are defined, respectively in Lemma 2.3 and Theorem 2.4.

Proof. From Lemma 2.3, Hölder's inequality, and the geometrically quasiconvexity of $\left|\frac{\partial^2 f}{\partial t \partial s}\right|^q$ on the co-ordinates on Δ_+ we get

$$\begin{split} & \left| \frac{C+D}{(\ln b - \ln a)(\ln d - \ln c)} + \frac{\int_{a}^{b} \int_{c}^{d} \frac{f(x,y)}{yx} dy dx}{(\ln b - \ln a)(\ln d - \ln c)} - B \right| \\ & \leq \int_{0}^{1} \int_{0}^{1} a^{1-t} b^{t} c^{1-s} d^{s} |\ln(a^{1-t}b^{t}) \ln(c^{1-s}d^{s})| \\ & \times \left| \frac{\partial^{2} f}{\partial t \partial s} (a^{1-t}b^{t}, c^{1-s}d^{s}) \right| dt ds \\ & \leq \left[\int_{0}^{1} \int_{0}^{1} a^{(q-\ell)(1-t)/(q-1)} b^{(q-\ell)t/(q-1)} c^{(q-\ell)(1-s)/(q-1)} \\ & \times d^{(q-\ell)s/(q-1)} \times |\ln(a^{1-t}b^{t}) \ln(c^{1-s}d^{s})| dt ds \right]^{1-1/q} \\ & \times \left[\int_{0}^{1} \int_{0}^{1} |\ln(a^{\ell(1-t)}b^{\ell t}) \ln(c^{\ell(1-s)}d^{\ell s})| \\ & \times \left[\int_{0}^{2} \frac{f^{2}}{\partial t \partial s} (a^{1-t}b^{t}, c^{1-s}d^{s}) \right]^{q} dt ds \right]^{1/q} \\ & \leq \left[\int_{0}^{1} \int_{0}^{1} a^{(q-\ell)(1-t)/(q-1)} b^{(q-\ell)t/(q-1)} c^{(q-\ell)(1-s)/(q-1)} \\ & \times d^{(q-\ell)s/(q-1)} \times |\ln(a^{1-t}b^{t}) \ln(c^{1-s}d^{s})| dt ds \right]^{1-1/q} \\ & \times \left[\int_{0}^{1} \int_{0}^{1} |a^{\ell(1-t)}b^{\ell t}c^{\ell(1-s)}d^{\ell s} \ln(a^{1-t}b^{t}) \ln(c^{1-s}d^{s})| dt ds \right]^{1/q} \\ & \times \left[\int_{0}^{1} \int_{0}^{1} |a^{\ell(1-t)}b^{\ell t}c^{\ell(1-s)}d^{\ell s} \ln(a^{1-t}b^{t}) \ln(c^{1-s}d^{s})| dt ds \right]^{1/q} \\ & \times \left[\max \left\{ \left| \frac{\partial^{2} f}{\partial t \partial s} (a, c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s} (a, d) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s} (b, c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s} (b, d) \right|^{q} \right\} \right]^{\frac{1}{q}} \\ & = \left(\frac{q-1}{q-\ell} \right)^{2(1-1/q)} \left[N \left(a^{(q-\ell)/(q-1)} \right)^{1-1/q} \\ & \times \left(\left[\ln x \left\{ \left| \frac{\partial^{2} f}{\partial t \partial s} (a, c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s} (a, d) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s} (b, c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s} (b, d) \right|^{q} \right\} \right]^{\frac{1}{q}} \\ & \times \left[\max \left\{ \left| \frac{\partial^{2} f}{\partial t \partial s} (a, c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s} (a, d) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s} (b, c) \right|^{q}, \left| \frac{\partial^{2} f}{\partial t \partial s} (b, d) \right|^{q} \right\} \right]^{\frac{1}{q}} . \end{split}$$

The proof of theorem is completed. \Box

Theorem 2.10. Let $\Delta_+ := [a,b] \times [c,d]$ be a subset of \mathbb{R}^2_+ with a < b and c < d. Suppose that $f : \Delta_+ \to \mathbb{R}$ is a geometrically quasiconvex function on the co-ordinates on Δ_+ . If $f \in L(\Delta_+)$, then

$$f((ab)^{1/2}, (cd)^{1/2}) \leq \frac{1}{(\ln b - \ln a)(\ln d - \ln c)} \int_{a}^{b} \int_{c}^{d} \frac{f(x, y)}{yx} dy dx$$

$$\leq \max\{f(a, c), f(a, d), f(b, c), f(b, d)\}.$$
(2.15)

Proof. By geometrically quasiconvexity of f on co-ordinates on Δ_+ , for every $t \in [0,1]$ we have

$$f((ab)^{1/2}, (cd)^{1/2}) \leq \max\{f(a^{1-t}b^{t}, c^{1-s}d^{s}), f(a^{t}b^{1-t}, c^{s}d^{1-s})\}$$

$$\leq \max\{f(a, c), f(a, d), f(b, c), f(b, d)\}.$$
(2.16)

Since

$$\int_0^1 \int_0^1 f(a^{1-t}b^t, c^{1-s}d^s) dt ds = \int_0^1 \int_0^1 f(a^t b^{1-t}, c^s d^{1-s}) dt ds$$
$$= \frac{1}{(\ln b - \ln a)(\ln d - \ln c)} \int_a^b \int_c^d \frac{f(x, y)}{yx} dy dx,$$

by integrating in (2.16) we get

$$\begin{split} & f\left((ab)^{1/2}, (cd)^{1/2}\right) \\ & \leq \max\left\{\int_{0}^{1}\int_{0}^{1}f(a^{1-t}b^{t}, c^{1-s}d^{s})dtds, \int_{0}^{1}\int_{0}^{1}f(a^{t}b^{1-t}, c^{s}d^{1-s})dtds\right\} \\ & = \frac{1}{(\ln b - \ln a)(\ln d - \ln c)}\int_{a}^{b}\int_{c}^{d}\frac{f(x, y)}{yx}dydx \\ & \leq \max\{f(a, c), f(a, d), f(b, c), f(b, d)\}. \end{split}$$

and proof is completed. \Box

Theorem 2.11. Let $\Delta_+ := [a, b] \times [c, d]$ be a subset of \mathbb{R}^2_+ with a < b and c < d. Suppose that $f, g : \Delta_+ \to \mathbb{R}$ are geometrically quasiconvex functions on the co-ordinates on Δ_+ . If $fg \in L(\Delta_+)$. Then,

$$\frac{1}{(\ln b - \ln a)(\ln d - \ln c)} \int_{a}^{b} \int_{c}^{d} \frac{f(x, y)}{yx} g(x, y) dy dx$$

$$\leq \max \{ f(u, v) \ g(w, z) \ | \ u, w \in \{a, b\}, \ v, z \in \{c, d\} \}.$$

Proof. Let $x = a^{1-t}b^t$, $y = a^{1-s}b^s$, $s, t \in [0, 1]$. By using the geometrically quasiconvexity of f, g on Δ_+ we have

$$\frac{1}{(\ln b - \ln a)(\ln d - \ln c)} \int_{a}^{b} \int_{c}^{d} \frac{f(x, y)}{yx} g(x, y) dy dx$$

=
$$\int_{0}^{1} \int_{0}^{1} f(a^{1-t}b^{t}, c^{1-s}d^{s}) g(a^{1-t}b^{t}, c^{1-s}d^{s}) dt ds$$

$$\leq \max\{f(a, c), f(a, d), f(b, c), f(b, d)\}$$

$$\times \max\{g(a, c), g(a, d), g(b, c), g(b, d)\},$$

and proof is completed. \Box

References

- A. Barani and S. Barani, Hermite-Hadamard inequalities for functions when a power of the absolute value of the first derivative is P-convex, Bull. Aust. Math. Soc. 86 (2012) 126–134.
- [2] A. Barani, A.G. Ghazanfari and S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Ineq. appl. 247 (2012) 2012.

- [3] A.G. Ghazanfari and A.Barani, Some Hermite-Hadamard type inequalities for the product of two operator preinvex functions, Banach J. Math. Anal. 9 (2015) 9–20.
- [4] S.S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plan, Taiwan. J. Math. 5 (2001) 775–778.
- [5] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermit-Hadamard type inequalites and applications, RGMIA Monographs, Victoria University, 2000.
- K.C. Hsu, Some Hermite-Hadamard type inequalities for differentiable co-ordinated convex functions and applications, Adv. Pure Math. 4 (2014) 326–340.
- [7] I. Iscan, New general integral inequalities for quasi geometrically convex functions via fractional integrals, J. Ineq. Appl. 491 (2013) 2013.
- [8] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat. 43 (2014) 935–952.
- U.S. Kirmaci, Inequalites for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (2004) 137–146.
- [10] M.A. Latif and S.S. Dragomir Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absolute value are preinvex on the co-ordinates, Facta Universitatis, Series Mathematics and Informatics 28 (2013) 257-247.
- M.A. Latif, S. Hussain and S.S. Dragomir, On Some new inequality for co-ordinated quasi-convex functions, http://ajmaa.org/RGMIA/papers/, 14 (2011) a55.
- [12] M.S. Moslehian, Matrix Hermite-Hadamard type inequalities, Houston J. Math 39 (2013) 177–189.
- [13] M.E. Ozdemir, A.O. Akdemir and Ç. Yıldız, On the co-ordinated convex functions, Applied Mathematics and Information Sciences, 8 (2014) 1085-1091.
- [14] M.E. Özdemir, Ç. Yıldız, and A.O. Akdemir, On some new Hadamard-type inequalities for co-ordinated quasiconvex functions, Hacettepe J. Math. Statis. 41 (2012) 697–707.
- [15] M.E. Özdemir, A.O. Akdemir and Ç. Yıldız, On co-ordinated quasi-convex functions, Czech. Math. J. 62 (2012) 889–900.
- [16] M.E. Ozdemir, On the co-ordinated geometrically convex functions, Abstracts of MMA2013 and AMOE2013, May 27–30, 2013, Tartu, Estonia.
- [17] J. Pečarić, F. Proschan and Y.L. Tong, Convex Function, Partial Orderings and Statistical Applications, Academic Press 1992.
- [18] F. Qi and B.Y. Xi, Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions, Proc. Indian Acad. Sci. 124 (2014) 333–342.
- [19] M.Z. Sarıkaya, S. Erahan, M.E. Ozdemir and S.S. Dragomir, New some Hermit-Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxford J. Inform. Math. Sci. 28 (2012) 137–152.
- [20] D.Y. Wang, K.L. Tseng and G.S. Yang, Some Hadamard's inequality for co-ordinated convex functions in a rectangle from the plane, Taiwanese J. Math. 11 (2007) 63–73.
- [21] B.Y. Xi, J. Hua and F. Qi, Hermit-Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle, J. Appl. Anal. 20 (2014) 29–39.