Mechanics of Advanced Composite Structures 4 (2017) 47-58

Mechanics of w

Advanced

Composite Structures

Mechanics of Advanced Composite Structures

Semnan University

journal homepage: http://MACS.journals.semnan.ac.ir

p——

On the Buckling th

e Behavior of a Multiphase Smart Plate based
on a Higher-order Theory

S. Razavi

Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran

PAPER INFO

ABSTRACT

Paper history:
Received 2016-09-09
Revised 2016-10-18
Accepted 2016-10-29

Keywords:

Analytical solution

Buckling load

Higher-order plate theory
Magneto-electro-elastic coupling
Smart plate

DOI: 10.22075/MACS.2016.485

Magneto-electro-elastic materials are multiphase smart materials that exhibit coupling among
electrical, magnetic and mechanical energy fields. Due to this ability, they have been the topic of
numerous research in the past decade. In this paper, buckling behavior of a multiphase magne-
to-electro-elastic rectangular plate with simply supported boundary conditions is investigated,
based on Reddy’s higher-order shear deformation theory. Gauss’s laws for electrostatics and
magnetostatics are used to model the electric and magnetic behaviors of the plate. The partial
differential equations of motion are reduced to ordinary differential equations by using the
Galerkin method. Then, the closed-form expression for the critical buckling load of the plate
considered is obtained. Some examples are presented to validate the study and to investigate the
effects of some parameters on the critical buckling loads of the multiphase magneto-electro-
elastic rectangular plates. It is found that the buckling behavior of the magneto-electro-elastic
plate is dominated by the elastic properties of the plate, and magneto-electric coefficients slight-
ly increase the critical buckling load of the plate.

© 2017 Published by Semnan University Press. All rights reserved.

1. Introduction

investigated the dynamic buckling of imperfect rec-

Magneto-electro-elastic (MEE) materials are a
type of smart materials that exhibit coupling among
mechanical, electric and magnetic fields, which
makes them suitable to be used in sensors and actu-
ators, to control vibrations and to harvest energy,
etc.

Various researchers have extensively studied the
buckling of isotropic and composite plates. Brunelle
[1] studied the buckling of transversely isotropic
rectangular plates based on Mindlin’s plate theory.
Mizusawa [2] and Dawe and Wang [3] used spline
strip methods to study the buckling behavior of rec-
tangular plates. Various researchers have used the
differential quadrature (DQ) method to investigate
the buckling of rectangular plates [4-7]. Wang et al.
[8] analyzed the buckling of a thin rectangular plate
with nonlinearly distributed loadings along two op-
posite edges by using the DQ method. Cui et al. [9]
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tangular plates subjected to impact loads. Xiang and
Wang [10] determined the exact buckling loads and
vibration frequencies of stepped plates by using the
classical plate theory (CPT) and the Levy method.
Chen and Liew [11] and Wang and Peng [12] used
mesh-free approaches to analyze the buckling be-
havior of functionally graded (FG) and thin isotropic
rectangular plates, respectively. Javaheri and Eslami
[13] and Matsunaga [14] studied the thermal buck-
ling of FG plates based on the higher-order shear
deformation theory (HSDT). Some authors have
used finite element models (FEMs) to study the
buckling of various plates. Selim and Akbarov [15]
studied the buckling instability of a clamped viscoe-
lastic plate by using a three-dimensional (3D) FEM.
Ghorbanpour Arani et al. [16] used the FEM and
analytical method to analyze the buckling of compo-
site plates reinforced by single-walled carbon nano-
tubes. Many authors have used analytical methods
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with different plate theories to investigate the buck-
ling behavior of plates. Mohammadi et al. [17] used
CPT and the Levy method to analyze the buckling of
FG rectangular plates. Kim et al. [18] and Thai and
Kim [19] used a two-variable refined theory with
the Navier and Levy methods, respectively, to study
the buckling of isotropic and orthotropic plates. Bo-
daghi and Saidi [20] presented an analytical model
for analyzing the buckling of FG rectangular plates
based on the HSDT and Levy methods. Sinusoidal
[21], inverse trigonometric [22], hyperbolic [23],
inverse hyperbolic [24], and exponential [25] shear
deformation theories have also been used to model
the buckling behavior of composite and FG plates.
Fares and Zenkour [26] used various theories to
study the buckling and free vibration of laminated
rectangular plates. They concluded that the CPT is
not suitable even for thin laminates. In addition,
they found that the first-order shear deformation
theory (FSDT) gives acceptable results for properly
chosen shear correction factors. Zenkour [27] inves-
tigated the buckling behavior of fiber-reinforced
viscoelastic composite plates based on CPT, FSDT,
HSDT and the sinusoidal shear deformation theory
and then compared the results. He showed that de-
spite the CPT-based results, the results of the FSDT
and sinusoidal shear deformation theory agree well
with those of the HSDT. Ranjbaran et al. [28] and
Cetkovic [29] used layerwise theory to study the
buckling of sandwich and laminated plates, respec-
tively. Some authors have also investigated the
buckling of piezoelectric structures [30, 31].

Pan [32] studied the static response of the MEE
plate for the first time. Since then, many researchers
have investigated the static and dynamic responses
of these smart structures. Free vibration [33], large
deflection [34], nonlinear vibration [35] and vibra-
tion control [36] of MEE plates have been studied.
Xu et al. [37] studied the surface effects on the bend-
ing, buckling and free vibration of MEE beams. Li et
al. [38] investigated the buckling and free vibration
of the MEE nanobeam, based on the nonlocal theory
and the Timoshenko beam theory. Li [39] studied
the buckling of the MEE plate resting on a Pasternak
foundation by using Mindlin’s plate theory. Kumar-
avel et al. [40] and Lang and Xuewu [41] studied the
buckling and free vibration of MEE cylindrical shells.
Ansari et al. [42] developed a shear deformable non-
local model for nonlinear forced vibration analysis
of MEE nanobeams. Ebrahimi and Barati [43] pre-
sented a size-dependent beam model to study the
buckling behavior of curved MEE nanobeams.
Jamalpoor et al. [44] investigated the free vibration
and buckling of MEE microplates based on modified
strain gradient and Kirchhoff plate theories. Faraj-
pour et al. [45] developed a nonlocal model for non-
linear free vibration of MEE nanoplates based on the

Kirchhoff plate theory. Xu et al. [46] investigated the
bending, buckling and free vibration of MEE beams
based on the Euler-Bernoulli beam theory. The FEM
[47] and third-order shear deformation theory
(TSDT) [48] have also been used to analyze the stat-
ic and dynamic response of MEE plates. Wenjun et
al. [49] introduced a two-dimensional linear theory
to analyze the response of MEE plates.

In this paper, the buckling loads of a multiphase
MEE rectangular plate with simply supported
boundary conditions is investigated based on Red-
dy’s HSDT. Gauss’s laws for electrostatics and mag-
netostatics are used to model the electric and mag-
netic behaviors of the plate. Then, the closed- form
expression for the critical buckling load of the plate
considered is obtained. Some examples are present-
ed to study the effects of some parameters on the
critical buckling load of these smart plates.

2. Problem Modeling
2.1. Basic relations

Consider a multiphase MEE plate with the di-
mensions of axbxh that is subjected to biaxial in-
plane loads along its edges, as it is shown in Fig. 1
(-1< ¢ <+1). The plate is a composite smart plate
made of piezoelectric material as the inclusions and
magnetostrictive material as the matrix. Based on
Reddy’s HSDT, the displacement field of this plate is
as shown below [50]:

u(x,y,z,t)=us(x,y,t)+z6 (x,yt)-
42°(6, +w,, )/3n*

v(x,y,z,t)=vo(x,y,t)+z0,(x,y,t)-
4z°(6, +w,, )/3h2

W (x,y,z,t)=w,(x,y,t) (3)
where uo, vo and wo are the displacements of the
midplane along the x, y and z directions, respective-
ly, and 6x and 6y are the rotations of a transverse
normal about the y and x directions, respectively.
The constitutive equations of a transversely iso-

tropic MEE plate can be expressed as shown below
[32]:

{o}=[Cl{e}-[e{E}-[a]{H} (4)
{D}=[e] {e}+[nl{E}+[d]{H} 5)
{(B}=[a] {&}+[d {E}+[u]{H} (6)

where {0} is the stress vector, {¢} is the strain vec-
tor, {D} and {B} are the electric displacement and
magnetic flux vectors, respectively. [C], [n] and [u]
are the elastic, dielectric and magnetic permeability
coefficient matrices, respectively, and [e], [q] and [d]
are the piezoelectric, piezomagnetic and magnetoe-
lectric coefficient matrices, respectively.

(1)

(2)
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Figure 1. Schematic of the MEE plate subjected to in-plane loads.

Based on the HSDT and when transversely iso-
tropic MEE plates with electric and magnetic fields
are applied along the z-direction, these vectors and
matrices are expressed in the following form [32,
50]:

Cll C12 0 0
C12 C22 0 0
[c]=| 0 0 Cyx O
0 0 0 C,
0 0 0 0 C,

0 O 2
0 0 e, 7, 0 O
[e]=| 0 e, O] ][0 /5 O:l
e, 0 O 0 0 7
10 0 O
[0 0 gy (7
0 0 qg ;0 0
[Q]= 0 a, 0} [y]: 0 mp 0
O O 0 0 0
10 0 O
[d, O 0
[d]=| 0 d, o
0 0 dg

(E}=—{0 0 4. (H}=—{0 0 v,
gx uO,x gxx
&y Voy 9y y
Ve =96, +Wo, r+2 0 -
V2 0, +w,, 0
yxy uO,y +V0x Hx,y +g¥vx 8
0 gx,x +W0,XX ( )
4 0 4 gyvy +W0‘yy
FZZ 0, +w ~3n? 8 0
6, +w,, 0
0 Oy +0, +2W,

where ¢ and i are the electric and magnetic poten-
tials, respectively.

2.2. Equations of motion

Based on Reddy’s HSDT, the equations of the
static motion of the MEE plate are expressed by
[50]:
N,,+N,, ,=0 9)

N,y +N,, =0 (10)
— — 4
Q. x +nyy +3h_z(Px'” +2ny,xy +P, )+ (11
NW,, +Nw, =0
Mx,x+Mxy,y _Qx =0 (12)
N_Ixy,x +N_Iy,y _Q_y =O’ (13)
where
— — 4
Mx =Mx —3h—2PX,My =My —3h—2Py,
— 4
Mxy :Mxy _3h_szy’ (14‘)
— 4 — 4
Qx :Qx _?Rxl Qy :Qy _FR
And the resultants are determined by:
h/2 3
Ny M, P,i= ,h/zaaﬂ{l z 2°dz,
(15)

{Qa Rﬂ}:jz};%Z {1 zz}dz, (a.B=x.Y)

To obtain the resultants of Eq. (15) and then the
parameters of Eq. (14), @- and 2, which are intro-
duced in Eq. (7), must be determined first. To do
this, Gauss’s laws for electrostatics and magneto-
statics, with the magneto-electric (ME) boundary
condition on bottom and upper surfaces of the MEE
plate, are used here. Thus, using
D,,+D,,+D,, =0

B« +Byyy +B,, =0 (16)

one obtains the following expressions for @, and i,

¢z :%(/’LlA?. +/12A1)23 +(/11A4 +/12A2)Z +¢0

1 (17)
= g(ﬂiAl +/13A3)Z : +(ﬂ'1A2 +13A4)Z 'H//O
where
A =d33/(d323 _7733/133)’ A= _ﬂ33/(d323 _7733ﬂ33)v (18)
A= _7733/(d 323 _7733/133)
Al = ;_?[624 (ex,y W 0,xy )+e31 (Hx X W 0,xx )
€5 (0, +W oy )85 (6, +W,,, )J
A, :em(eva W, )+e15(6 +w0xy)
3,0, x +€3,0, ,
(19)

A |:q24 (9 +W0xy)+q3l<0 +W0xx)+
Q15(0y,x W 0,xy )+q32 9 +W :l

A4 :q24 <9x,y +W 0,xy )+q15( y X Tw 0,xy )+

q319x X +q326y Yy
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In Eq. (17), ¢o and o are the constants of inte-

gration and are obtained by using ME boundary
condition, which is assumed as below:

¢=0, v =0 (z :—h/2)
o=V,, w=Q, (z :h/2)
where Vo is the electric potential and Qo is the mag-
netic potential that are applied to the upper surface
of the MEE plate. Egs. (17) and (20) give ¢o = Vo/h
and 1o = Qo/h.

Thus, Egs. (4), (7), (8), (15) and (17) give the re-
sultants:
N, =h (Cuuo,x +C 0y )+e31V0 +05, —P

(20)

N, =h(Cpl,, +Co¥o, ) eV, +05,Q, — P (21)
N,, =hCg (uo,y +v0vx)

2h h?
Q. =?C55(W0,x +‘9x)’ R, =2_0Qx’

h2
" 20

oh (22)

Q, =?C44(W0vy +€)’)’ R, Q,

h3
M x = E[Cllgx‘x +C120y.y +e31(ﬂ1A4 + ﬂ’ZAZ)+

q31(j’1A2 + /13A4):| +

hr_ 4. (6, +W o )-
80 3h2 11 X, X 0,Xxx (23)

4
WCH(HY’y W, )+

%e3l(j1A3 + /12A1) + %qBI(ﬂlAl + %As):|
h3

M, = E[clzany +C 0, , +e5 (AA, + LA, )+

qzz(ﬂqu +/13A4)+

h® 4

%|:_3hizc12(9x,x +W0,><>< )_ (24)
4
3h?
1 1

ge32 (;llA3 + j?Al) +§q32 (/11A1 + AGAB ):|

h? h?

M Xy ECGS (gx,y +9y,x )_%CGGW 0,xy (25)

C22 (Hy,y TWo,y )+

h5
P :_[Cllex,x +C.,0, , +931(/11A4 +ﬂ.2A2)+

80
G (i + )]+
h’ 4
ESI:_WCM(HX,X +W 0,Xx >_ (26)

A4
3n?

o (A + )+ 30 (4 + )|

Cu(ey,y W, )+

h5
P, =%[cnava +C 0, , +e5 (LA, + LA, +

qSZ(Z'lAZ +13A4)]+

h’ 4

4i48|:_3hizc12(0>< X +W 0,%xX )_ (27)

4
3?022(‘9%3' W,y )+
1 1
gesz (21A3 + /12A1) + éqsz (ﬂ’lAl + ﬂsAs):|
h® h®
ny = ECGG (ex,y +Hy,x )_ﬁcﬁﬁw 0,xy (28)

where the in-plane boundary loads have been in-
cluded in the in-plane force resultants of Eq. (21).

Substituting Eqs. (14) and (21) - (28) into Egs.
(9) - (13) gives the equations of motion in terms of
the displacements and rotations of the midplane of
the plate:

Clluo,xx +Cseuo,yy +(C12 +Co )V oxy — 0 (29)
CoVoux +CoV 0.y +(C12 +Cy )uo,xy =0 (30)
LW oy +LW o, +L,6, +Ls0, , + L0 o +
L6, 1y * Lal g Lo (B sy +W g 000 )+ LigW g0y
+L11(9y,xxx FW g iy )+ L1249nyyy + L13‘9y,yyy + (31)
LW oy LW oy + L0y t L1760, 4y =0
L18W oo T L19W oxyy T L20W oy T
Loy (Wo, +6,)+Ly0, ,y +Lys0, ,, + (32)
L2ib, yy Lo, +L3%0, 5, =0

L27W oy T Lzsw oy t L29W oy T

Ly (Wo, +6, )+ Ly, ,, +L30, ,, + (33)

LssO, yy L0,y +L240, 5, =0

where L; (i=1,2,...,34) are the constant coefficients
and are given in Appendix A.

2.3. Determining the critical buckling load
It can be seen that Egs. (29) and (30) are decou-
pled from Egs. (31) - (33). Therefore, to study the
buckling behavior of the plate, it is sufficient to con-
sider only Egs. (31) - (33). For the simply supported
boundary condition, the following relations hold:
w,=w,, =6, =0 at (x =0,a)
=60, =0 at (y=0b)

Therefore, the transverse displacement and the
rotations can be determined by:

W, =hW sin(mzx/a)sin(nzy /b)

0,xx
(34)
W, =W 0.yy

6, =X cos(mzx/a)sin(nzy /b) (35)
6, =Y sin(mzx /a)cos(nzy /b)

where W, X, and Y are the amplitudes of the trans-
verse displacement and rotations, and (m,n) denotes
the mode of the plate.
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Substituting Eq. (35) into Egs. (31) to (33) and
then using the orthogonality of the trigonometric
functions, one obtains the following set of ordinary
differential equations:

nove vs|W |0
Vo Vs Ve |9X =40 (36)
i v Ve ]lY 0
where the components of the coefficient matrix are
given in Appendix B. To have a nontrivial solution

for Eq. (36), the determinant of the coefficient ma-
trix must equal zero. That is,

i V2 V3
Ys Vs 76|=0 (37)
Y Vs Vo

Solving Eq. (37) gives the critical buckling load of
the multiphase MEE plate.

3. Examples and Discussion

In this section, numerical examples are present-
ed to validate the proposed model and to investigate
the effects of some parameters on the critical buck-
ling load of the multiphase MEE plate. As the first
comparison, an isotropic square plate is considered
and its dimensionless critical buckling loads are de-
termined for different length-to-thickness (a/h) ra-
tios in the uniaxial ({ = 0) and biaxial ({ = +1) com-
pressions. The results are shown in Table 1, with the
results based on various plate theories, where RPT
denotes the refined plate theory. The dimensionless
critical buckling loads of orthotropic plates with
different a/h and b/a ratios and different degrees of
orthotropy (E1/E2) are also determined, and the
results are shown in Tables 2 and 3. The results are
compared with those based on the FSDT, HSDT and
exponential shear deformation theory (ESDT),
where the error is obtained by using,
error (%) = (Present — HSDT) x 100/HSDT.

The dimensionless critical buckling loads in Ta-
bles 1 to 3 are determined by using P* = Pca?/Ezh3.
The material properties of the orthotropic plate are:
E1/E2 = open, G12 = G13 = 0.5, E2, G23 = 0.2 E2 and v12 =
0.25. It is seen that the present model accurately
predicts the critical buckling loads of isotropic and
orthotropic plates. As the last comparison, the di-
mensionless critical buckling loads of a square MEE
plate are determined and compared with those by Li
[39], which are based on Mindlin’s plate theory.

The material properties of the multiphase MEE
plate are [39, 51]: C11 = 226 GPa, C12 = 124 GPa, C22 =
216 GPa, C44 = Cs5 = 44 GPa, Ces = 51 GPa, e31 = e32 =
-2.2C/m? e15 = e24 = 0, g31 = q32 = 290.2 N/Am, q15 =
qz4 = 0, d33 = 2737.5x10-12 Ns/VC, n33 = 6.35x10-°
C2/Nm? and uss = 83.5x10-¢ Ns2/C2 The critical
buckling loads of the MEE plate are normalized by

using P* = Pera?/h3C11 and are shown in Table 4. The
discrepancy between the results of the present ap-
proach and Li’s [39] results are computed by,
discrepancy (%) = (Present — Li [39]) x 100/Li [39].

Table 1. Comparison of the dimensionless critical buckling load of a

square isotropic plate (v = 0.3).
a/h

¢ Method 5 10 50 100

RPT [18] 2.9512 3.4224 3.6071  3.6132
FSDT* 2.9498 3.4222 3.6071  3.6132

0 CPT” - - - 3.6152
Present 2.9512 3.4224 3.6071  3.6132
RPT [18] 1.4756 1.7112 1.8036  1.8066
+1 FSDT* 1.4749 1.7111 1.8036  1.8066

CPT* - - - 1.8076
Present 14756 1.7112 1.8036 1.8066

" reported by Kim etal. [18]

Table 2. Comparison of the dimensionless critical buckling load of

square orthotropic plates ({= 0).
E1/E;

a/h Method 3 10 20 30

FSDT" 39386 61804 7.7450 8.5848

HSDT* 39434 6.2072 7.8292 8.7422

5 ESDT [25] 3.9650 6.3014 8.0946 9.2166
Present 3.9435 6.2071 7.8293 8.7422

Error (%) +0.003 -0.002  +0.001 0.000

FSDT" 52994 10.620 17.662 24.102

HSDT* 52994 10.621 17.664 24.108

20 ESDT[25] 5.3004 10.625 17.681 24.146
Present 52995 10.620 17.664 24.108

Error (%) +0.002  -0.009 0.000 0.000

FSDT* 54206 11.142 19309 27.448

HSDT* 54192 11139 19307 27.446

100 ESDT[25] 54196 11400 19308 27.447
Present 54197 11.140 19308 27.446

Error (%) +0.009 +0.009  +0.005 0.000

* reported by Sayyad and Ghugal [25]

Table 3. Comparison of the dimensionless critical buckling load of
rectangular orthotropic plates ({=0, E1/E2 = 40, a/h = 5).

Method b/a

1.0 1.5 2.0 3.0 4.0

FSDT* 9.1084 83237 81178 7.9958 7.9585
HSDT*  9.3472 85541 8.3455 82217 8.1837
Present 9.3472 85541 8.3455 82217 8.1837

“reported by Sayyad and Ghugal [25]

Table 4. Comparison of the dimensionless critical buckling load of a
square MEE plate.

a/h
¢ Method 5 10 20 1000
0 Li[(39] 23264 29747 31975 32794
Present 23384 29786 3.1985 3.2793
Discrepancy(%)  +0.516 +0131 +0.031 —0.003
105 Li[39] 15509 19831 21317 2.1862
Present 15590 19858 21324 2.1862
Discrepancy(%)  +0.522 +0.136 +0.033  0.000
205 Li[39] 46527 59494 63950 65587
Present 46769 59573 63971 65586

Discrepancy(%)  +0.520 +0.133  +0.033  -0.002
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It is seen in Tables 1 to 3 that the FSDT cannot
accurately predict the critical buckling loads for
thick plates (a/h = 5) compared with the present
HSDT-based formulation. Moreover, to obtain accu-
rate results from the FSDT, a proper shear correc-
tion factor must be chosen [26], which is still an un-
resolved issue for composite structures [50].

In Table 5, the dimensionless critical buckling
loads of rectangular MEE plates are presented for
uniaxial and biaxial compression cases. Table 5
shows that for higher aspect ratios, the dimension-
less critical buckling load increases. Moreover, in
biaxial compression, the dimensionless critical
buckling load is smaller.

Fig. 2 shows the dimensionless critical buckling
curves for piezoelectric BaTiO3 (barium titanate),
magnetostrictive CoFe204 (cobalt ferrite) and MEE
square plates. The material properties of BaTiO3 are
[52]: C11 = 166 GPa, C12 = 77 GPa, C22 = 166 GPa, Cas
= (Css = 43 GPa, Ces = 44.5 GPa, e31 = e32 = —4.4 C/m?,
es =e24=11.6 C/m? n33=12.6x10-° C2/Nm? and us33
= 10x10-¢ Ns2/CZ% and for CoFe204, the material
properties are: C11 = 286 GPa, C12 = 173 GPa, (22
286 GPa, Cas = Cs5 = 45.3 GPa, Ces = 56.5 GPa, g31
q32 = 580.3 N/Am, qis = q24 = 550 N/Am, 733
0.093x10-2 C2/Nm? and u33 = 157x10-6 Ns2/C2. It is
seen that BaTiOs has the smallest stiffness coeffi-
cient among these smart plates, which is why its
dimensionless critical buckling load is smaller for a
fixed value of a/h ratio. The dimensionless critical
buckling curves of the MEE plate and its equivalent
non-magneto-electric (non-MEE) plate are shown in
Fig 3. In this figure, non-MEE denotes the MEE plate
with e31 = es2 = q31 = g32 = d33 = 1133 = u33 = 0. It is
seen that the ME coefficients slightly increase the
dimensionless critical buckling load. In addition, the
buckling behavior of the MEE plate is dominated by
the elastic properties of the plate. Figs 4 and 5 show
the effects of the electric and magnetic potentials on
the dimensionless critical buckling loads of MEE
plates. It is seen that using negative electric poten-
tials or positive magnetic potentials leads to higher
dimensionless critical buckling loads for MEE rec-
tangular plates.

Table 5. The dimensionless critical buckling load of a rectangu-
lar MEE plate (a/h = 5).

a/b

¢ 0.5 1.0 1.5 2.0

0 1.0308 2.3384 5.2095 10.164

+1 0.8247 1.1692 1.6029 2.0327

Figure 2. The dimensionless critical buckling load curves for
different smart square plates ({ = 0).

a/h

Figure 3. The dimensionless critical buckling load curves of an
MEE and its equivalent non-ME square plates ({ = 0).

In the last example, an MEE square plate with a
fixed a/h ratio is considered with a nonzero magne-
to-electric boundary condition.

Fig 6 shows the result and shows that for MEE
plates with smaller thicknesses, the electric and
magnetic potentials have considerable effect on the
dimensionless critical buckling load. However, as
the plate becomes thicker, the effect of the poten-
tials on dimensionless critical buckling decreases
dramatically.
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=10,¢=0).
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Figure 6. The effect of the thickness value on the dimensionless
critical buckling load of an MEE square plate when: (a) an electric
potential and (b) a magnetic potential are applied to the top sur-
face of the plate (a/h =10, { = 0).

3. Conclusions

The buckling behavior of a multiphase MEE rec-
tangular plate with simply supported boundary
conditions was investigated analytically, based on
Reddy’s higher-order shear deformation theory,
Gauss’s laws for electrostatics and magnetostatics,
and the Galerkin method. Numerical examples were
presented and it was found that: (a) in biaxial com-
pression, the dimensionless critical buckling load of
the MEE plate was smaller, (b) for a fixed value of
the a/h ratio, the piezoelectric BaTiO3 had a smaller
dimensionless critical buckling load compared with
that of an MEE plate due to its smaller stiffness coef-
ficients, (c) the ME properties of the MEE plate in-
creased the dimensionless critical buckling load of
the plate, because the ME effects increased the effec-
tive stiffnesses of the MEE plate, and (d) for a fixed
value of the a/h ratio, the dimensionless critical
buckling loads of MEE plates with smaller thickness
values changed considerably with the change in
electric or magnetic potentials.

Nomenclature

a b, h Length, width and thickness of the plate

Cnu Elastic, dielectric and magnetic permea-
bility coefficient matrices

D,B Electric displacement and magnetic flux
vectors

E, H Electric field and magnetic field vectors

eqd Piezoelectric, piezomagnetic and magne-
toelectric coefficient matrices

M, P Moment resultants vectors

N In-plane force resultants vector

P In-plane load applied to edge of plate

Per Critical buckling load

p* Dimensionless critical buckling load

QR Transverse force resultants vectors

uo, vo, wo  Displacements of the midplane along x, y
and z directions

Vo, Qo Electric and magnetic potentials

WXY Amplitudes of transverse displacement
and rotations

Ox, 6y Rotations of a transverse normal about
the y and x directions
o, € Stress and strain vectors
by Electric and magnetic potentials
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