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electrical, magnetic and mechanical energy fields. Due to this ability, they have been the topic of 

numerous research in the past decade. In this paper, buckling behavior of a multiphase magne-

to-electro-elastic rectangular plate with simply supported boundary conditions is investigated, 

based on Reddy’s higher-order shear deformation theory. Gauss’s laws for electrostatics and 

magnetostatics are used to model the electric and magnetic behaviors of the plate. The partial 

differential equations of motion are reduced to ordinary differential equations by using the 

Galerkin method. Then, the closed-form expression for the critical buckling load of the plate 

considered is obtained. Some examples are presented to validate the study and to investigate the 

effects of some parameters on the critical buckling loads of the multiphase magneto-electro-

elastic rectangular plates. It is found that the buckling behavior of the magneto-electro-elastic 

plate is dominated by the elastic properties of the plate, and magneto-electric coefficients slight-

ly increase the critical buckling load of the plate. 
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1. Introduction  
   

Magneto-electro-elastic (MEE) materials are a 
type of smart materials that exhibit coupling among 
mechanical, electric and magnetic fields, which 
makes them suitable to be used in sensors and actu-
ators, to control vibrations and to harvest energy, 
etc. 

Various researchers have extensively studied the 
buckling of isotropic and composite plates. Brunelle 
[1] studied the buckling of transversely isotropic 
rectangular plates based on Mindlin’s plate theory. 
Mizusawa [2] and Dawe and Wang [3] used spline 
strip methods to study the buckling behavior of rec-
tangular plates. Various researchers have used the 
differential quadrature (DQ) method to investigate 
the buckling of rectangular plates [4-7]. Wang et al. 
[8] analyzed the buckling of a thin rectangular plate 
with nonlinearly distributed loadings along two op-
posite edges by using the DQ method. Cui et al. [9] 

investigated the dynamic buckling of imperfect rec-
tangular plates subjected to impact loads. Xiang and 
Wang [10] determined the exact buckling loads and 
vibration frequencies of stepped plates by using the 
classical plate theory (CPT) and the Levy method. 
Chen and Liew [11] and Wang and Peng [12] used 
mesh-free approaches to analyze the buckling be-
havior of functionally graded (FG) and thin isotropic 
rectangular plates, respectively. Javaheri and Eslami 
[13] and Matsunaga [14] studied the thermal buck-
ling of FG plates based on the higher-order shear 
deformation theory (HSDT). Some authors have 
used finite element models (FEMs) to study the 
buckling of various plates. Selim and Akbarov [15] 
studied the buckling instability of a clamped viscoe-
lastic plate by using a three-dimensional (3D) FEM. 
Ghorbanpour Arani et al. [16] used the FEM and 
analytical method to analyze the buckling of compo-
site plates reinforced by single-walled carbon nano-
tubes. Many authors have used analytical methods 
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with different plate theories to investigate the buck-
ling behavior of plates. Mohammadi et al. [17] used 
CPT and the Levy method to analyze the buckling of 
FG rectangular plates. Kim et al. [18] and Thai and 
Kim [19] used a two-variable refined theory with 
the Navier and Levy methods, respectively, to study 
the buckling of isotropic and orthotropic plates. Bo-
daghi and Saidi [20] presented an analytical model 
for analyzing the buckling of FG rectangular plates 
based on the HSDT and Levy methods. Sinusoidal 
[21], inverse trigonometric [22], hyperbolic [23], 
inverse hyperbolic [24], and exponential [25] shear 
deformation theories have also been used to model 
the buckling behavior of composite and FG plates. 
Fares and Zenkour [26] used various theories to 
study the buckling and free vibration of laminated 
rectangular plates. They concluded that the CPT is 
not suitable even for thin laminates. In addition, 
they found that the first-order shear deformation 
theory (FSDT) gives acceptable results for properly 
chosen shear correction factors. Zenkour [27] inves-
tigated the buckling behavior of fiber-reinforced 
viscoelastic composite plates based on CPT, FSDT, 
HSDT and the sinusoidal shear deformation theory 
and then compared the results. He showed that de-
spite the CPT-based results, the results of the FSDT 
and sinusoidal shear deformation theory agree well 
with those of the HSDT. Ranjbaran et al. [28] and 
Cetkovic [29] used layerwise theory to study the 
buckling of sandwich and laminated plates, respec-
tively. Some authors have also investigated the 
buckling of piezoelectric structures [30, 31]. 

Pan [32] studied the static response of the MEE 
plate for the first time. Since then, many researchers 
have investigated the static and dynamic responses 
of these smart structures. Free vibration [33], large 
deflection [34], nonlinear vibration [35] and vibra-
tion control [36] of MEE plates have been studied. 
Xu et al. [37] studied the surface effects on the bend-
ing, buckling and free vibration of MEE beams. Li et 
al. [38] investigated the buckling and free vibration 
of the MEE nanobeam, based on the nonlocal theory 
and the Timoshenko beam theory. Li [39] studied 
the buckling of the MEE plate resting on a Pasternak 
foundation by using Mindlin’s plate theory. Kumar-
avel et al. [40] and Lang and Xuewu [41] studied the 
buckling and free vibration of MEE cylindrical shells. 
Ansari et al. [42] developed a shear deformable non-
local model for nonlinear forced vibration analysis 
of MEE nanobeams. Ebrahimi and Barati [43] pre-
sented a size-dependent beam model to study the 
buckling behavior of curved MEE nanobeams. 
Jamalpoor et al. [44] investigated the free vibration 
and buckling of MEE microplates based on modified 
strain gradient and Kirchhoff plate theories. Faraj-
pour et al. [45] developed a nonlocal model for non-
linear free vibration of MEE nanoplates based on the 

Kirchhoff plate theory. Xu et al. [46] investigated the 
bending, buckling and free vibration of MEE beams 
based on the Euler-Bernoulli beam theory. The FEM 
[47] and third-order shear deformation theory 
(TSDT) [48] have also been used to analyze the stat-
ic and dynamic response of MEE plates. Wenjun et 
al. [49] introduced a two-dimensional linear theory 
to analyze the response of MEE plates. 

In this paper, the buckling loads of a multiphase 
MEE rectangular plate with simply supported 
boundary conditions is investigated based on Red-
dy’s HSDT. Gauss’s laws for electrostatics and mag-
netostatics are used to model the electric and mag-
netic behaviors of the plate. Then, the closed- form 
expression for the critical buckling load of the plate 
considered is obtained. Some examples are present-
ed to study the effects of some parameters on the 
critical buckling load of these smart plates. 

 

2. Problem Modeling 
2.1. Basic relations 

Consider a multiphase MEE plate with the di-
mensions of a×b×h that is subjected to biaxial in-
plane loads along its edges, as it is shown in Fig. 1 
(−1≤ ζ ≤+1). The plate is a composite smart plate 
made of piezoelectric material as the inclusions and 
magnetostrictive material as the matrix. Based on 
Reddy’s HSDT, the displacement field of this plate is 
as shown below [50]: 
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   0, , , , ,w x y z t w x y t  (3) 

where u0, v0 and w0 are the displacements of the 
midplane along the x, y and z directions, respective-
ly, and θx and θy are the rotations of a transverse 
normal about the y and x directions, respectively. 

The constitutive equations of a transversely iso-
tropic MEE plate can be expressed as shown below 
[32]: 

          C e E q H     (4) 

           
T

D e E d H     (5) 

           
T

B q d E H     (6) 

where {σ} is the stress vector, {ε} is the strain vec-
tor, {D} and {B} are the electric displacement and 
magnetic flux vectors, respectively. [C], [η] and [μ] 
are the elastic, dielectric and magnetic permeability 
coefficient matrices, respectively, and [e], [q] and [d] 
are the piezoelectric, piezomagnetic and magnetoe-
lectric coefficient matrices, respectively. 
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Figure 1. Schematic of the MEE plate subjected to in-plane loads.  

 
Based on the HSDT and when transversely iso-

tropic MEE plates with electric and magnetic fields 
are applied along the z-direction, these vectors and 
matrices are expressed in the following form [32, 
50]: 
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where ϕ and ψ are the electric and magnetic poten-

tials, respectively. 
 
2.2. Equations of motion 

Based on Reddy’s HSDT, the equations of the 
static motion of the MEE plate are expressed by 
[50]: 
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And the resultants are determined by: 
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To obtain the resultants of Eq. (15) and then the 

parameters of Eq. (14), ϕ,z and ψ,z, which are intro-

duced in Eq. (7), must be determined first. To do 
this, Gauss’s laws for electrostatics and magneto-
statics, with the magneto-electric (ME) boundary 
condition on bottom and upper surfaces of the MEE 
plate, are used here. Thus, using 
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one obtains the following expressions for ϕ,z and ψ,z: 
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In Eq. (17), ϕ0 and ψ0 are the constants of inte-

gration and are obtained by using ME boundary 
condition, which is assumed as below: 
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where V0 is the electric potential and Ω0 is the mag-
netic potential that are applied to the upper surface 

of the MEE plate. Eqs. (17) and (20) give ϕ0 = V0/h 

and ψ0 = Ω0/h. 
Thus, Eqs. (4), (7), (8), (15) and (17) give the re-

sultants: 
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where the in-plane boundary loads have been in-
cluded in the in-plane force resultants of Eq. (21). 

Substituting Eqs. (14) and (21) – (28) into Eqs. 
(9) – (13) gives the equations of motion in terms of 
the displacements and rotations of the midplane of 
the plate: 
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xx yy x x y y x xxx

y xxy xxxx x xxy xxxy xxyy

y xxx xxxy x xyy y yyy

yyyy xyyy x yyy y xyy

Lw L w L L L

L L w L w L w

L w L L

L w L w L L

  

 

  

 

    

   

    

   

 (31) 

 
18 0, 19 0, 20 0,

21 0, 22 , 23 ,

24 , 25 , 26 , 0

xxx xyy xxy

x x x xy y xx

x yy x xx y xy

L w L w L w

L w L L

L L L

  

  

  

   

  

 (32) 

 
27 0, 28 0, 29 0,

30 0, 31 , 32 ,

33 , 34 , 24 , 0

xxy yyy xyy

y y x xy y yy

x yy y xy y xx

L w L w L w

L w L L

L L L

  

  

  

   

  

 (33) 

where Li (i=1,2,…,34) are the constant coefficients 
and are given in Appendix A. 
 
2.3. Determining the critical buckling load 

It can be seen that Eqs. (29) and (30) are decou-
pled from Eqs. (31) – (33). Therefore, to study the 
buckling behavior of the plate, it is sufficient to con-
sider only Eqs. (31) – (33). For the simply supported 
boundary condition, the following relations hold: 

 

 

0 0,

0 0,

0 at 0,

0 at 0,

xx y

yy x

w w x a

w w y b





   

   
 (34) 

Therefore, the transverse displacement and the 
rotations can be determined by: 

   

   

   

0 sin sin

cos sin

sin cos

x

y

w hW m x a n y b

X m x a n y b

Y m x a n y b

 

  

  







 (35) 

where W, X, and Y are the amplitudes of the trans-
verse displacement and rotations, and (m,n) denotes 
the mode of the plate. 



 

S. Razavi / Mechanics of Advanced Composite Structures 4 (2017) 47-58  51 

 

 

Substituting Eq. (35) into Eqs. (31) to (33) and 
then using the orthogonality of the trigonometric 
functions, one obtains the following set of ordinary 
differential equations: 

1 2 3

4 5 6

7 8 9

0

0

0

W

X

Y

  

  

  

     
    

    
         

 (36) 

where the components of the coefficient matrix are 
given in Appendix B. To have a nontrivial solution 
for Eq. (36), the determinant of the coefficient ma-
trix must equal zero. That is, 

1 2 3

4 5 6

7 8 9

0

  

  

  



 

(37) 

Solving Eq. (37) gives the critical buckling load of 
the multiphase MEE plate. 
 

3. Examples and Discussion 
 
In this section, numerical examples are present-

ed to validate the proposed model and to investigate 
the effects of some parameters on the critical buck-
ling load of the multiphase MEE plate. As the first 
comparison, an isotropic square plate is considered 
and its dimensionless critical buckling loads are de-
termined for different length-to-thickness (a/h) ra-
tios in the uniaxial (ζ = 0) and biaxial (ζ = +1) com-
pressions. The results are shown in Table 1, with the 
results based on various plate theories, where RPT 
denotes the refined plate theory. The dimensionless 
critical buckling loads of orthotropic plates with 
different a/h and b/a ratios and different degrees of 
orthotropy (E1/E2) are also determined, and the 
results are shown in Tables 2 and 3. The results are 
compared with those based on the FSDT, HSDT and 
exponential shear deformation theory (ESDT), 
where the error is obtained by using, 
𝑒𝑟𝑟𝑜𝑟 (%) = (𝑃𝑟𝑒𝑠𝑒𝑛𝑡 − 𝐻𝑆𝐷𝑇) ×  100 𝐻𝑆𝐷𝑇⁄ . 

The dimensionless critical buckling loads in Ta-
bles 1 to 3 are determined by using P* = Pcra2/E2h3. 
The material properties of the orthotropic plate are: 
E1/E2 = open, G12 = G13 = 0.5, E2, G23 = 0.2 E2 and ν12 = 
0.25. It is seen that the present model accurately 
predicts the critical buckling loads of isotropic and 
orthotropic plates. As the last comparison, the di-
mensionless critical buckling loads of a square MEE 
plate are determined and compared with those by Li 
[39], which are based on Mindlin’s plate theory.  

The material properties of the multiphase MEE 
plate are [39, 51]: C11 = 226 GPa, C12 = 124 GPa, C22 = 
216 GPa, C44 = C55 = 44 GPa, C66 = 51 GPa, e31 = e32 = 
−2.2 C/m2, e15 = e24 = 0, q31 = q32 = 290.2 N/Am, q15 = 
q24 = 0, d33 = 2737.5×10−12 Ns/VC, η33 = 6.35×10−9 
C2/Nm2 and μ33 = 83.5×10−6 Ns2/C2. The critical 
buckling loads of the MEE plate are normalized by 

using P* = Pcra2/h3C11 and are shown in Table 4. The 
discrepancy between the results of the present ap-
proach and Li’s [39] results are computed by, 
𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 (%) = (𝑃𝑟𝑒𝑠𝑒𝑛𝑡 − 𝐿𝑖 [39]) × 100 𝐿𝑖 [39]⁄ . 

 
Table 1. Comparison of the dimensionless critical buckling load of a 
square isotropic plate (ν = 0.3). 

ζ Method 
a/h 

5 10 50 100 

0 

RPT [18] 
FSDT* 
CPT* 

Present 

2.9512 
2.9498 

- 
2.9512 

3.4224 
3.4222 

- 
3.4224 

3.6071 
3.6071 

- 
3.6071 

3.6132 
3.6132 
3.6152 
3.6132 

+1 

RPT [18] 
FSDT* 
CPT* 

Present 

1.4756 
1.4749 

- 
1.4756 

1.7112 
1.7111 

- 
1.7112 

1.8036 
1.8036 

- 
1.8036 

1.8066 
1.8066 
1.8076 
1.8066 

* reported by Kim et al. [18] 
 
Table 2. Comparison of the dimensionless critical buckling load of 
square orthotropic plates (ζ = 0). 

a/h Method 
E1/E2 

3 10 20 30 

5 

FSDT* 
HSDT* 

ESDT [25] 
Present 

Error (%) 

3.9386 
3.9434 
3.9650 
3.9435 
+0.003 

6.1804 
6.2072 
6.3014 
6.2071 
−0.002 

7.7450 
7.8292 
8.0946 
7.8293 
+0.001 

8.5848 
8.7422 
9.2166 
8.7422 
0.000 

20 

FSDT* 
HSDT* 

ESDT [25] 
Present 

Error (%) 

5.2994 
5.2994 
5.3004 
5.2995 
+0.002 

10.620 
10.621 
10.625 
10.620 
−0.009 

17.662 
17.664 
17.681 
17.664 
0.000 

24.102 
24.108 
24.146 
24.108 
0.000 

100 

FSDT* 
HSDT* 

ESDT [25] 
Present 

Error (%) 

5.4206 
5.4192 
5.4196 
5.4197 
+0.009 

11.142 
11.139 
11.400 
11.140 
+0.009 

19.309 
19.307 
19.308 
19.308 
+0.005 

27.448 
27.446 
27.447 
27.446 
0.000 

* reported by Sayyad and Ghugal [25] 
 
Table 3. Comparison of the dimensionless critical buckling load of 
rectangular orthotropic plates (ζ = 0, E1/E2 = 40, a/h = 5). 

Method 
b/a 

1.0 1.5 2.0 3.0 4.0 
FSDT* 
HSDT* 

Present 

9.1084 
9.3472 
9.3472 

8.3237 
8.5541 
8.5541 

8.1178 
8.3455 
8.3455 

7.9958 
8.2217 
8.2217 

7.9585 
8.1837 
8.1837 

* reported by Sayyad and Ghugal [25] 
 
Table 4. Comparison of the dimensionless critical buckling load of a 
square MEE plate. 

ζ Method 
a/h 

5 10 20 1000 
0 Li [39] 

Present 
Discrepancy(%) 

2.3264 
2.3384 
+0.516 

2.9747 
2.9786 
+0.131 

3.1975 
3.1985 
+0.031 

3.2794 
3.2793 
−0.003 

+0.5 Li [39] 
Present 
Discrepancy(%) 

1.5509 
1.5590 
+0.522 

1.9831 
1.9858 
+0.136 

2.1317 
2.1324 
+0.033 

2.1862 
2.1862 
0.000 

−0.5 Li [39] 
Present 
Discrepancy(%) 

4.6527 
4.6769 
+0.520 

5.9494 
5.9573 
+0.133 

6.3950 
6.3971 
+0.033 

6.5587 
6.5586 
−0.002 
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It is seen in Tables 1 to 3 that the FSDT cannot 

accurately predict the critical buckling loads for 
thick plates (a/h = 5) compared with the present 
HSDT-based formulation. Moreover, to obtain accu-
rate results from the FSDT, a proper shear correc-
tion factor must be chosen [26], which is still an un-
resolved issue for composite structures [50].  

In Table 5, the dimensionless critical buckling 
loads of rectangular MEE plates are presented for 
uniaxial and biaxial compression cases. Table 5 
shows that for higher aspect ratios, the dimension-
less critical buckling load increases. Moreover, in 
biaxial compression, the dimensionless critical 
buckling load is smaller. 

Fig. 2 shows the dimensionless critical buckling 
curves for piezoelectric BaTiO3 (barium titanate), 
magnetostrictive CoFe2O4 (cobalt ferrite) and MEE 
square plates. The material properties of BaTiO3 are 
[52]: C11 = 166 GPa, C12 = 77 GPa, C22 = 166 GPa, C44 
= C55 = 43 GPa, C66 = 44.5 GPa, e31 = e32 = −4.4 C/m2, 
e15 = e24 = 11.6 C/m2, η33 = 12.6×10−9 C2/Nm2 and μ33 
= 10×10−6 Ns2/C2; and for CoFe2O4, the material 
properties are: C11 = 286 GPa, C12 = 173 GPa, C22 = 
286 GPa, C44 = C55 = 45.3 GPa, C66 = 56.5 GPa, q31 = 
q32 = 580.3 N/Am, q15 = q24 = 550 N/Am, η33 = 
0.093×10−9 C2/Nm2 and μ33 = 157×10−6 Ns2/C2. It is 
seen that BaTiO3 has the smallest stiffness coeffi-
cient among these smart plates, which is why its 
dimensionless critical buckling load is smaller for a 
fixed value of a/h ratio. The dimensionless critical 
buckling curves of the MEE plate and its equivalent 
non-magneto-electric (non-MEE) plate are shown in 
Fig 3. In this figure, non-MEE denotes the MEE plate 
with e31 = e32 = q31 = q32 = d33 = η33 = μ33 = 0. It is 
seen that the ME coefficients slightly increase the 
dimensionless critical buckling load. In addition, the 
buckling behavior of the MEE plate is dominated by 
the elastic properties of the plate. Figs 4 and 5 show 
the effects of the electric and magnetic potentials on 
the dimensionless critical buckling loads of MEE 
plates. It is seen that using negative electric poten-
tials or positive magnetic potentials leads to higher 
dimensionless critical buckling loads for MEE rec-
tangular plates.  
 
Table 5.  The dimensionless critical buckling load of a rectangu-
lar MEE plate (a/h = 5). 

ζ 
a/b 

0.5 1.0 1.5 2.0 
0 1.0308 2.3384 5.2095 10.164 

+1 0.8247 1.1692 1.6029 2.0327 

 

 
Figure 2. The dimensionless critical buckling load curves for 
different smart square plates (ζ = 0). 

 

 
Figure 3. The dimensionless critical buckling load curves of an 
MEE and its equivalent non-ME square plates (ζ = 0). 

 
In the last example, an MEE square plate with a 

fixed a/h ratio is considered with a nonzero magne-
to-electric boundary condition.  

Fig 6 shows the result and shows that for MEE 
plates with smaller thicknesses, the electric and 
magnetic potentials have considerable effect on the 
dimensionless critical buckling load. However, as 
the plate becomes thicker, the effect of the poten-
tials on dimensionless critical buckling decreases 
dramatically. 
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Figure 4. The effect of electric potential on the dimensionless 
critical buckling load of MEE and BaTiO3 square plates (a/h = 10, 
ζ = 0). 

 
Figure 5. The effect of the magnetic potential on the dimension-
less critical buckling load of MEE and CoFe2O4 square plates (a/h 
= 10, ζ = 0). 
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Figure 6. The effect of the thickness value on the dimensionless 
critical buckling load of an MEE square plate when: (a) an electric 
potential and (b) a magnetic potential are applied to the top sur-
face of the plate (a/h = 10, ζ = 0). 

 

3. Conclusions 
 

The buckling behavior of a multiphase MEE rec-
tangular plate with simply supported boundary 
conditions was investigated analytically, based on 
Reddy’s higher-order shear deformation theory, 
Gauss’s laws for electrostatics and magnetostatics, 
and the Galerkin method. Numerical examples were 
presented and it was found that: (a) in biaxial com-
pression, the dimensionless critical buckling load of 
the MEE plate was smaller, (b) for a fixed value of 
the a/h ratio, the piezoelectric BaTiO3 had a smaller 
dimensionless critical buckling load compared with 
that of an MEE plate due to its smaller stiffness coef-
ficients, (c) the ME properties of the MEE plate in-
creased the dimensionless critical buckling load of 
the plate, because the ME effects increased the effec-
tive stiffnesses of the MEE plate, and (d) for a fixed 
value of the a/h ratio, the dimensionless critical 
buckling loads of MEE plates with smaller thickness 
values changed considerably with the change in 
electric or magnetic potentials. 

 
 
 
 

Nomenclature 
 

a, b, h Length, width and thickness of the plate 
C, η, μ Elastic, dielectric and magnetic permea-

bility coefficient matrices 
D, B Electric displacement and magnetic flux 

vectors 
E, H Electric field and magnetic field vectors 
e, q, d Piezoelectric, piezomagnetic and magne-

toelectric coefficient matrices 

M, P Moment resultants vectors 
N In-plane force resultants vector 
P In-plane load applied to edge of plate  
Pcr Critical buckling load 
P* Dimensionless critical buckling load 
Q, R Transverse force resultants vectors 
u0, v0, w0 Displacements of the midplane along x, y 

and z directions 

V0, Ω0 Electric and magnetic potentials  
W, X, Y Amplitudes of transverse displacement 

and rotations 
θx, θy Rotations of a transverse normal about 

the y and x directions 
σ, ε Stress and strain vectors 

ϕ, ψ Electric and magnetic potentials 
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