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Abstract

Let (X, d) be a compact metric space and let K be a nonempty compact subset of X. Let α ∈ (0, 1]
and let Lip(X,K, dα) denote the Banach algebra of all continuous complex-valued functions f on X
for which

p(K,dα)(f) = sup{|f(x)− f(y)|
dα(x, y)

: x, y ∈ K, x 6= y} <∞

when it is equipped with the algebra norm ||f ||Lip(X,K,dα) = ||f ||X + p(K,dα)(f), where ||f ||X =
sup{|f(x)| : x ∈ X}. In this paper we first study the structure of certain ideals of Lip(X,K, dα).
Next we show that if K is infinite and int(K) contains a limit point of K then Lip(X,K, dα) has at
least a nonzero continuous point derivation and applying this fact we prove that Lip(X,K, dα) is not
weakly amenable and amenable.
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1. Introduction and preliminaries

Let A be a complex algebra and let ϕ be a multiplicative linear functional on A. A linear functional
D on A is called a point derivation on A at ϕ if

D(fg) = ϕ(f)Dg + ϕ(g)Df,

for all f, g ∈ A. We say that ϕ is a character on A if ϕ(f) 6= 0 for some f ∈ A. We denote by ∆(A)
the set of all characters on A which is called the character space of A. For each ϕ ∈ ∆(A), we denote
by ker(ϕ) the set of all f ∈ A for which ϕ(f) = 0. Clearly, ker(ϕ) is a proper ideal of A.

Let (A, ‖ · ‖) be a commutative unital complex Banach algebra. We know that ϕ is continuous
and ‖ϕ‖ = 1 for all ϕ ∈ ∆(A). Moreover, ∆(A) is nonempty and it is a compact Hausdorff space
with the Gelfand topology. We know that ker(ϕ) is a maximal ideal of A for all ϕ ∈ ∆(A) and every
maximal ideal space of A has the form ker(ψ) for some ψ ∈ ∆(A). We denote by Dϕ the set of all
continuous point derivations of A at ϕ ∈ ∆(A). Clearly, Dϕ is a complex linear subspace of A∗, the
dual space of A. For a subset S of ∆(A), we define ker(S) = A when S = ∅ and ker(S) =

⋂
ϕ∈S

ker(ϕ)

when S 6= ∅. For a nonempty subset S of ∆(A) we define

IA(S) = {f ∈ A : there is an open set V in ∆(A) with S ⊆ V such that ϕ(f) = 0 for all ϕ ∈ V },

and JA(S) = IA(S), the closure of IA(S) in (A, ‖ · ‖). Clearly, IA(S) is an ideal of A and so JA(S) is
a closed ideal of A. For an ideal I of A, the hull of I is the set of all ϕ ∈ ∆(A) for which ϕ(f) = 0
for all f ∈ I. We denote by hull(I) the hull of I. Clearly, S is contained in hull(JA(S)) for each
nonempty subset S of ∆(A).

Let (A, ‖ · ‖) be a commutative unital complex Banach algebra. Then A is called regular if for
every proper closed subset S of ∆(A) and each ϕ ∈ ∆(A) \ S, there exists an f in A such that
f̂(ϕ) = 1 and f̂(S) = {0}, where f̂ is the Gelfand transform of f .

The following theorem is due to Šilov. For a proof see [13] or [8].

Theorem 1.1. Let (A, ‖ · ‖) be a regular commutative unital complex Banach algebra and S be a
nonempty closed subset of ∆(A). Then hull(JA(S)) = S.

Let (A, ‖ · ‖) be a commutative unital complex Banach algebra and I be a proper ideal of A. We
say that A is primary if it is contained in exactly one maximal ideal of A. If ϕ ∈ ∆(A) and I is
a primary ideal of A such that hull(I) = {ϕ}, then I is called primary at ϕ. If A is regular then a
closed ideal I of A is primary at ϕ ∈ ∆(A) if and only if JA({ϕ}) ⊆ I ⊆ ker(ϕ).

Let A be a complex algebra and X be an A-module with respect to module operations (a, x) →
x · a : A × X → X and (a, x) → a · x : A × X → X. We say that X is symmetric or commutative if
a · x = x · a for all a ∈ A and x ∈ X. A complex linear map D : A→ X is called an X-derivation on
A if D(ab) = Da · b+ a ·Db for all a, b ∈ A. For each x ∈ X, the map δx : A→ X defined by

δx(a) = a · x− x · a (a ∈ A),

is an X-derivation on A. An X-derivation D on A is called inner X-derivation on A if D = δx for
some x ∈ X.

Let (A, ‖ · ‖) be a complex Banach algebra and (X, ‖ · ‖) be an A-module. We say that X is a
Banach A-module if there exists a constant k such that

‖a · x‖ ≤ k‖a‖‖x‖, ‖x · a‖ ≤ k‖a‖‖x‖,
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for all a ∈ A and x ∈ X.
If X is a Banach A-module then X∗, the dual space of X, is a Banach A-module with the natural

module operations

(a · λ)(x) = λ(x · a), (λ · a)(x) = λ(a · x) (a ∈ A, λ ∈ X∗, x ∈ X).

Let A be a complex Banach algebra and X be a Banach A-module. The set of all contin-
uous X-derivations on A is a complex linear space, denoted by Z1(A,X). The set of all inner
X-derivations on A is a complex linear subspace of Z1(A,X), denoted by B1(A,X). The quotient
space Z1(A,X)/B1(A,X) is denoted by H1(A,X) and called the first cohomology group of A with
coefficients in X.

Definition 1.2. Let A be a complex Banach algebra. We say that A is amenable ifH1(A,X∗) = {0}
for every Banach A-module X.

The notion of amenability of complex Banach algebras was first given by Johnson in [6].

Definition 1.3. Let A be a complex Banach algebra. We say that A is weakly amenable if
H1(A,A∗) = {0}, that is, every continuous A∗-derivation on A is inner.

The notion of weak amenability was first defined for commutative complex Banach algebras by
Bade, Curtis and Dales in [4] as the following:

A commutative complex Banach algebra A is called weakly amenable if Z1(A,X) = {0} for every
symmetric Banach A-module X.

Later Johnson extended the definition of weak amenability to any complex Banach algebra (not
necessarily commutative) as introduced in Definition 1.3. Of course, these definitions are equivalent
when A is commutative (See [4, Theorem 1.5] and [7, Theorem 3.2]).

Let X be a compact Hausdorff space. We denote by C(X) the commutative unital complex
Banach algebra consisting of all complex-valued continuous functions on X under the uniform norm
on X which is defined by

‖f‖X = sup{|f(x)| : x ∈ X} (f ∈ C(X)).

A complex Banach function algebra on X is a complex subalgebra A of C(X) such that A separates
the points of X, contains 1X (the constant function on X with value 1) and it is a unital Banach
algebra under an algebra norm ‖ · ‖. Since C(X) separates the points of X by Urysohn’s lemma [11,
Theorem 2.12], 1X ∈ C(X) and (C(X), ‖ · ‖X) is a unital complex Banach algebra, we deduce that
(C(X), ‖ · ‖X) is a complex Banach function algebra on X.

Let (A, ‖ · ‖) be a complex Banach function algebra on X. For each x ∈ X, the map ex : A→ C,
defined by ex(f) = f(x) (f ∈ A), is an element of ∆(A) which is called the evaluation character
on A at x. It follows that A is semisimple and ‖f‖X ≤ ‖f̂‖∆(A) for all f ∈ A. Moreover, the map
EX : X → ∆(A) defined by EX(x) = ex is injective and continuous. If EX is surjective, then we
say that A is natural. In this case, EX is a homeomorphism from X onto ∆(A). It is known that if
(A, ‖ · ‖) is a self-adjoint inverse-closed Banach function algebra on X then A is natural. Therefore,
(C(X), ‖ · ‖X) is natural.

Let A be a complex Banach function algebra on a compact Hausdorff X. If A is regular, then
for each proper closed subset E of X and each x ∈ X \ E there exists a function f in A such that
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f(x) = 1 and f(E) = {0}. Moreover, the converse of the above statement holds whenever A is
natural.

Let (X, d) be a metric space and Y be a nonempty subset of X. A complex-valued function
f on Y is called a Lipschitz function on (Y, d) if there exists a positive constant M such that
|f(x)− f(y)| ≤Md(x, y) for all x, y ∈ Y .

The following lemma is a version of Urysohn’s lemma for Lipschitz functions.

Lemma 1.4. Let (X, d) be a metric space, H be a compact subset of X and L be a closed subset
of X such that H ∩ L = ∅. Then there exists a real-valued Lipschitz function h on (X, d) satisfying
0 ≤ h(x) ≤ 1 for all x ∈ X, h(x) = 1 for all x ∈ H and h(x) = 0 for all x ∈ L.

Proof . It is sufficient to define f = 0 when H = ∅. Let H 6= ∅ and let x ∈ H. Since H ⊆ X \ L
and X \ L is an open set in (X, d), then there exists a positive number rx such that

{y ∈ X : d(y, x) < rx} ⊆ X \ L.

Let 0 < δx < rx. Then H ⊆
⋃
x∈H
{y ∈ X : d(y, x) < δx}. Since H is compact in (X, d), there exist

x1, . . . , xn ∈ H such that

H ⊆
n⋃
j=1

{y ∈ X : d(y, xj) < δxj}.

Let j ∈ {1, . . . , n}. We define gj : X → C by

gj(x) =


1 d(x, xj) < δxj ,
rxj−d(x,xj)

rxj−δxj
δxj ≤ d(x, xj) < rxj ,

0 rxj ≤ d(x, xj).

Clearly, 0 ≤ gj(x) ≤ 1 for all x ∈ X. By simple calculations, we can show that

|gj(x)− gj(y)| ≤ 1

rxj − δxj
d(x, y),

for all x, y ∈ X. Therefore, gj is a bounded real-valued Lipschitz function on (X, d).
Let h1 = g1, h2 = (1 − g1)g2, . . . , hn = (1 − g1) . . . (1 − gn−1)gn. If j ∈ {1, . . . , n} then hj is a

bounded Lipschitz function on (X, d). Set h = h1 + . . .+hn. Then h is a bounded Lipschitz function
on (X, d) and h = 1 − (1 − g1) . . . (1 − gn). Moreover, 0 ≤ h(x) ≤ 1 for all x ∈ X, h(x) = 1 for all
x ∈ H and h(x) = 0 for all x ∈ L. �

Let (X, d) be a metric space. For α ∈ (0, 1] we define the map dα : X ×X → R, by dα(x, y) =
(d(x, y))α (x, y ∈ X). Then dα is a metric on X and the induced topology on X by dα coincides with
the induced topology on X by d.

Let (X, d) be a compact metric space and α ∈ (0, 1]. We denote by Lip(X, dα) the set of all
complex-valued Lipschitz function on (X, dα). Then Lip(X, dα) is a complex subalgebra of C(X)
and 1X ∈ Lip(X, dα). Moreover, Lip(X, dα) separates the points of X. For a nonempty subset K of
X and a complex-valued function f on K, we set

p(K,dα)(f) = sup{|f(x)− f(y)|
dα(x, y)

: x, y ∈ K, x 6= y}.
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Clearly, f ∈ Lip(X, dα) if and only if p(X,dα)(f) < ∞. The dα-Lipschitz norm ‖ · ‖Lip(X,dα) on
Lip(X, dα) is defined by

‖f‖Lip(X,dα) = ‖f‖X + p(X,dα)(f) (f ∈ Lip(X, dα)).

Then (Lip(X, dα), ‖ · ‖Lip(X,dα)) is a commutative unital complex Banach algebra.
Lipschitz algebras were first studied by Sherbert in [11]. The structure of ideals and point

derivations of Lipschitz algebras studied by Sherbert in [12].
Let (X, d) be a compact metric space, K be a nonempty compact subset of X and α ∈ (0, 1]. We

denote by Lip(X,K, dα) the set of f ∈ C(X) for which p(K,dα)(f) <∞. In fact,

Lip(X,K, dα) = {f ∈ C(X) : f |K ∈ Lip(K, dα)}.

Clearly, Lip(X, dα) ⊆ Lip(X,K, dα) and Lip(X,K, dα) = Lip(X, dα) if and only if X \ K is finite.
Moreover, Lip(X,K, dα) is a self-adjoint inverse-closed complex subalgebra of C(X). It is easy to see
that Lip(X,K, dα) is a complex subalgebra of C(X) and a unital Banach algebra under the algebra
norm ‖ · ‖Lip(X,K,dα) defined by

‖f‖Lip(X,K,dα) = ‖f‖X + p(K,dα)(f) (f ∈ Lip(X,K, dα)).

Therefore, (Lip(X,K, dα), ‖ · ‖Lip(X,K,dα)) is a natural Banach function algebra on X. This alge-
bra is called extended Lipschitz algebra of order α on (X, d) with respect to K. It is clear that
Lip(X,K, dα) = C(X) if and only if K is finite.

Extended Lipschitz algebras were first introduced in [5]. Some properties of these algebras have
been studied in [1, 2, 3]. It is shown [3, Proposition 2.1] that Lip(X,K, dα) is regular.

Let (X, d) be a metric space, f be a real-valued function on X and k > 0. The real-valued
function Tkf on X defined by

(Tkf)(x) =


−k f(x) < −k,
f(x) −k 6 f(x) 6 k,
k f(x) > k,

(x ∈ X)

is called the truncation of f at k.
The following result is useful in the sequel and its proof is straightforward.

Theorem 1.5. Let (X, d) be a compact metric space, K be a nonempty compact subset of X and
α ∈ (0, 1]. Suppose that f is a real-valued function in Lip(X,K, dα) and k > 0. Then Tkf is on
element of Lip(X,K, dα).

In Section 2, we determine the structure of certain ideals of extended Lipschitz algebras. In Section
3, we show that certain extended Lipschitz algebras have a nonzero continuous point derivation. In
Section 4, we show that certain extended Lipschitz algebras are not weakly amenable and amenable.

2. Certain ideals of extended Lipschitz algebras

Throughout this section we always assume that (X, d) is a compact metric space, K is a nonempty
compact subset of X and α ∈ (0, 1].
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For an ideal I of a commutative complex algebra A, we define

I2 = {
n∑
i=1

figi : n ∈ N, fi, gi ∈ I (i ∈ {1, 2, . . . , n})}.

Clearly, I2 is an ideal of A and I2 ⊆ I.
We denote the interior of K in (X, d) by int(K). When int(K) 6= ∅, for a nonempty compact

subset H of int(K), we determine the structure of JA(EX(H)) and show that

JA(EX(H)) = (ker(EX(H)))2 =
⋂
x∈H

JA({ex}),

where A = Lip(X,K, dα). We also characterize closed primary ideals of Lip(X,K, dα) at interior
points of K.

Lemma 2.1. Let A = Lip(X,K, dα) and H be a nonempty compact subset of K. Let B be the set
of all f ∈ A satisfying:

(i) f(H)={0},
(ii) for each ε > 0 there exists an open set U in (X, d) with H ⊆ U such that |f(x)−f(y)|

dα(x,y)
< ε for all

x, y ∈ U ∩K with x 6= y.

Then B is a closed complex linear subspace of A.

Proof . Clearly, B is a complex linear subspace of A. Let f ∈ B, the closure ofB in (A, ‖·‖Lip(X,K,dα)).
Then there exists a sequence {fn}∞n=1 in B such that

lim
n→∞

‖fn − f‖Lip(X,K,dα) = 0. (2.1)

Let x ∈ H. Then lim
n→∞

fn(x) = f(x) by (2.1) and fn(x) = 0 for each n ∈ N by (i). Hence, f(x) = 0

and so f satisfies in (i).
Let ε > 0 be given. Then there exists a function g ∈ B such that

‖f − g‖Lip(X,K,dα) <
ε

2
. (2.2)

Since g ∈ B, there exists an open set U in (X, d) with H ⊆ U such that for all x, y ∈ U ∩K with
x 6= y we have

|g(x)− g(y)|
dα(x, y)

<
ε

2
. (2.3)

Let x, y ∈ U ∩K with x 6= y. Applying (2.2) and (2.3) we have

|f(x)−f(y)|
dα(x,y)

6 |(f−g)(x)−(f−g)(y)|
dα(x,y)

+ |g(x)−g(y)|
dα(x,y)

6 p(K,dα)(f − g) + ε
2

6 ‖f − g‖Lip(X,K,dα) + ε
2

< ε
2

+ ε
2

= ε.

Hence, f satisfies in (ii). Therefore, f ∈ B and so B is closed in (A, ‖ · ‖lip(X,K,dα)). �

The following lemma was first given by Šhilov in [13].
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Lemma 2.2. Let (A, ‖ · ‖) be a regular commutative unital complex Banach algebra and L be a
nonempty compact subset of ∆(A). An element f ∈ A belongs to JA(L) if and only if there is a
sequence {fn}∞n=1 in A satisfying:

(a) for each n ∈ N there exists an open set V in ∆(A) with L ⊆ Un such that fn|Un = f |Un ,

(b) lim
n→∞

‖fn‖ = 0.

Theorem 2.3. Suppose that int(K) 6= ∅ and A = Lip(X,K, dα). Let H be a nonempty compact
subset of int(K). Then JA(EX(H)) is the set of all f ∈ A satisfying:

(i) f(H)={0},
(ii) for each ε > 0 there exists an open set U in X with H ⊆ U such that |f(x)−f(y)|

dα(x,y)
< ε for all

x, y ∈ U ∩K with x 6= y.

Proof . Let B be the set of all f ∈ A satisfying (i) and (ii). It is enough to show that

JA(EX(H)) = B. (2.4)

Let f ∈ IA(EX(H)). Then there exists an open set V in ∆(A) with EX(H) ⊆ V such that

f̂(V ) = {0}. Set U = E−1
X (V ). Since (A, ‖ · ‖Lip(X,K,dα)) is a natural Banach function algebra on X,

the map EX : X → ∆(A) is a homeomorphism from X onto ∆(A). Hence, U is an open set in (X, d)
with H ⊆ U and f(U) = {0} and so f(H) = {0}. Thus f satisfies in (i).

Let ε > 0 be given. Suppose that x, y ∈ U ∩K with x 6= y. Then

|f(x)− f(y)|
dα(x, y)

= 0 < ε.

Hence, f satisfies in (ii). Therefore, f ∈ B. So

IA(EX(H)) ⊆ B. (2.5)

On the other hand, B is closed in (A, ‖ · ‖Lip(X,K,dα)) by Lemma 2.1. Hence, by (2.5) we have

JA(EX(H)) ⊆ B. (2.6)

Let f ∈ B such that f(x) ≥ 0 for all x ∈ X. Since (A, ‖ · ‖Lip(X,K,dα)) is a regular commutative
unital complex Banach algebra and EX(H) is a nonempty compact subset of ∆(A), to prove f ∈
JA(EX(H)), by Lemma 2.2, it is enough to show that there exists a sequence {fn}∞n=1 in A satisfying:

(a) for each n ∈ N there is an open set Un in X with H ⊆ Un such that fn|Un = f |Un .

(b) lim
n→∞

fn = 0 in (A, ‖ · ‖Lip(X,K,dα)).

Let n ∈ N. We define Sn = {x ∈ X : dist(x,H) < ( 1
n
)

1
α}, En = {x ∈ X : f(x) < 1

n3} and
Ωn = Sn ∩ En, where dist(x,H) = inf{d(x, y) : y ∈ H}. Then Ωn is an open set in (X, d), H ⊆ Ωn,
Ωn+1 ⊆ Ωn and f(Ωn) ⊆ [0, 1

n3 ). Set S0 = X and Vn = K ∩ (Ωn∪ (X \Sn−1)). We define the function
hn : Vn → R by

hn(x) =

{
f(x) (x ∈ K ∩ Ωn),
0 (x ∈ K ∩ (X \ Sn−1)).

Set Un = int(K) ∩ Ωn. Then Un is an open set in (X, d), H ⊆ Un and hn|Un = f |Un .
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We claim that for each n ∈ N we have ‖hn‖Vn ≤ 1
n3 and

sup{|hn(x)− hn(y)|
dα(x, y)

: x, y ∈ Vn, x 6= y} ≤ sup{|f(x)− f(y)|
dα(x, y)

: x, y ∈ K ∩ Ωn}+
1

n
.

Since h1 = f on K ∩ Ω1, V1 = K ∩ Ω1 and f(Ω1) ⊆ [0, 1), our claim is justified when n = 1.
Let n ∈ N with n ≥ 2. If x, y ∈ Vn, then

|hn(x)− hn(y)| =


|f(x)− f(y)| (x, y ∈ K ∩ Ωn),
f(x) (x ∈ K ∩ Ωn, y ∈ K ∩ (X \ Sn−1)),
f(y) (x ∈ K ∩ (X \ Sn−1), y ∈ K ∩ Ωn),
0 (x, y ∈ K ∩ (X \ Sn−1)).

Let x ∈ K ∩ Ωn and y ∈ K ∩ (X \ Sn−1). Since H is a nonempty compact set in (X, d), there exists
z0 ∈ H such that dist(x,H) = d(x, z0). So we have

dα(x, y) ≥ dα(y, z0)− dα(x, z0)
≥ 1

n−1
− (dist(x,H))α

> 1
n−1
− 1

n

= 1
n(n−1)

.

Moreover, f(x) ≤ 1
n3 . Therefore,

|hn(x)− hn(y)| = f(x)
dα(x,y)

dα(x, y)

≤ n(n−1)
n3 dα(x, y)

≤ 1
n
dα(x, y).

The same inequality holds if x ∈ K ∩ (X \ Sn−1) and y ∈ K ∩ Ωn. Therefore,

sup{|hn(x)− hn(y)|
dα(x, y)

: x, y ∈ Vn, x 6= y} ≤ sup{|f(x)− f(y)|
dα(x, y)

: x, y ∈ K ∩ Ωn, x 6= y}+
1

n
.

Moreover, ‖hn‖Vn ≤ ‖f‖Ωn ≤ 1
n3 . Hence, our claim is justified when n ∈ N with n ≥ 2.

Let n ∈ N. By Sherbert’s extension theorem [12, Proposition 1.4], there exists a function gn :
K → R such that gn|Vn = hn, ‖gn‖K = ‖hn‖Vn and

sup{|gn(x)− gn(y)|
dα(x, y)

: x, y ∈ K, x 6= y} = sup{|hn(x)− hn(y)|
dα(x, y)

: x, y ∈ Vn, x 6= y}.

By Tietze’s extension theorem [10, Theorem 20.4], there exists a function fn ∈ C(X) such that
fn|K = gn and ‖fn‖X = ‖gn‖K . Therefore, fn ∈ Lip(X,K, dα) and fn|Un = f |Un . So (a) holds.
Moreover, ‖fn‖X < 1

n3 and

p(K,dα)(fn) ≤ sup{|f(x)− f(y)|
dα(x, y)

: x, y ∈ K ∩ Ωn, x 6= y}+
1

n
.

Let ε > 0 be given. Since f satisfies in (ii), there exists an open set U in (X, d) with H ⊆ U such

that |f(x)−f(y)|
dα(x,y)

< ε
3

for all x, y ∈ U ∩K with x 6= y. It is easy to see that H =
∞⋂
n=1

Ωn. Since X \U is
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a compact set in (X, d), X \Ωn is an open set in (X, d) for each n ∈ N and Ωn+1 ⊆ Ωn for all n ∈ N,
we deduce that there exists N ∈ N with 1

N
< ε

3
and ΩN ⊆ U . So for all n ∈ N with n ≥ N we have

‖fn‖Lip(X,K,dα) = ‖fn‖X + p(K,dα)(fn)

≤ 1
n3 + sup{ |f(x)−f(y)|

dα(x,y)
: x, y ∈ K ∩ Ωn, x 6= y}+ 1

n

≤ 1
n

+ ε
3

+ 1
n

< ε
3

+ ε
3

+ ε
3

= ε.

Hence, lim
n→∞

‖fn‖Lip(X,K,dα) = 0 and so (b) holds.

It is clear that B is a self-adjoint complex subspace of Lip(X,K, dα). Hence, Re f, Im f ∈ B. On
the other hand, |g| ∈ B whenever g ∈ B. Therefore, g+, g− ∈ B if g ∈ B and g is real-valued where
g+ = 1

2
(|g|+ g) and g− = 1

2
(|g| − g).

Let f ∈ B. Set f1 = (Re f)+, f2 = (Re f)−, f3 = (Im f)+ and f4 = (Im f)−. Then fj ∈ B
and fj ≥ 0 for all j ∈ {1, 2, 3, 4}. By above argument, fj ∈ JA(EX(H)) for all j ∈ {1, 2, 3, 4}.
Since, JA(EX(H)) is a complex linear subspace of A and f = (f1 − f2) + i(f3 − f4), we deduce that
f ∈ JA(EX(H)). So

B ⊆ JA(EX(H)). (2.7)

From (2.6) and (2.7) we have JA(EX(H)) = B. Hence, the proof is complete. �

Theorem 2.4. Suppose that int(K) 6= ∅ and A = Lip(X,K, dα). Let H be a nonempty compact
subset of int(K). Then

JA(EX(H)) = (ker(EX(H)))2.

Proof . Let g be a real-valued function in ker(EX(H)) and let f = g2. Let n ∈ N. We define
gn = T 1√

n
g, fn = T 1

n
f and

Un = {x ∈ X : |f(x)| < 1

n
}.

Then gn, fn ∈ A by Theorem 1.5, ‖gn‖X ≤ 1√
n
, p(K,dα)(gn) ≤ p(K,dα)(g), fn = (gn)2, ‖fn‖X ≤ 1

n
, Un is

an open set in (X, d) with H ⊆ Un and fn|Un = f |Un . Moreover, for all x, y ∈ K with x 6= y we have

|fn(x)−fn(y)|
dα(x,y)

= |(gn(x))2−(gn(y))2|
dα(x,y

≤ ||gn(x)|−|gn(y)||
dα(x,y)

(|gn(x)|+ |gn(y)|)
≤ 2‖gn‖Xp(K,dα)(gn)
≤ 2√

n
p(K,dα)(gn)

≤ 2√
n
p(K,dα)(g).

Hence,

p(K,dα)(fn) ≤ 2√
n
p(K,dα)(g). (2.8)

Since ‖fn‖X ≤ 1
n

and (2.8) holds for all n ∈ N, we deduce that

lim
n→∞

‖fn‖Lip(X,K,dα) = 0.

Therefore, f ∈ JA(EX(H)) by regularity of A and Lemma 2.2.
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Let f ,g be real-valued functions in ker(EX(H)). Then f + g, f − g ∈ ker(EX(H)). By the above
argument (f + g)2, (f − g)2 ∈ JA(EX(H)). So fg ∈ JA(EX(H)) since fg = 1

4
((f + g)2 − (f − g)2)

and JA(EX(H)) is a complex linear subspace of A.
Since A is a natural Banach function algebra on X, we deduce that ker(EX(H)) is self-adjoint.

This implies that Re f, Im f ∈ ker(EX(H)) if f ∈ ker(EX(H)).
Let f, g ∈ ker(EX(H)). We define f1 = Re f , f2 = Im f , g1 = Re g and g2 = Im g. Then f1, f2,

g1 and g2 are real-valued functions in ker(EX(H)) and so f1g1, f2g2, f1g2, f2g1 ∈ JA(EX(H)). Hence,
fg ∈ JA(EX(H)). This implies that

(ker(EX(H)))2 ⊆ JA(EX(H)). (2.9)

Since JA(EX(H)) is closed in (A, ‖ · ‖Lip(X,K,dα)), from (2.9) we conclude that

(ker(EX(H)))2 ⊆ JA(EX(H)). (2.10)

Let f ∈ IA(EX(H)). Then there exists an open set U in (X, d) with H ⊆ U such that ex(f) = 0
for all x ∈ U . Since H is a compact subset of X, X \U is a closed subset of X and H ∩ (X \U) = ∅,
by Lemma 1.4, there exists a bounded Lipschitz function h on (X, d) such that h(x) = 1 for all x ∈ H
and h(x) = 0 for all x ∈ X \ U . Let g = 1− h. Then g ∈ A, g(x) = 0 for all x ∈ H and g(x) = 1 for
all x ∈ X \ U . Moreover, g2 ∈ (ker(EX(H)))2 and g2(x) = 1 for all x ∈ X \ U . So f = fg2. Since
ker(EX(H)) is an ideal of A, we deduce that f ∈ (ker(EX(H)))2. Therefore,

IA(EX(H)) ⊆ (ker(EX(H)))2.

Since JA(EX(H)) = IA(EX(H)), we deduce that

JA(EX(H)) ⊆ (ker(EX(H)))2. (2.11)

From (2.10) and (2.11) we have

JA(EX(H)) = (ker(EX(H)))2,

and so the proof is complete. �

We now determine the set of all closed primary ideals of A at ex as following, where x ∈ int(K).

Theorem 2.5. Suppose that int(K) 6= ∅ and A = Lip(X,K, dα). Let x ∈ int(K) and let I be a closed
linear subspace of A. Then I is a closed primary ideal of A at ex if and only if JA({ex}) ⊆ I ⊆ ker(ex).

Proof . Let I be a closed primary ideal of A at ex. Since A is a regular commutative complex unital
Banach algebra, we have

JA({ex}) ⊆ I ⊆ ker(ex).

Let I be a closed complex linear subspace of A such that

JA({ex}) ⊆ I ⊆ ker(ex). (2.12)

Let g ∈ I and f ∈ A. Since f − f(x)1X ∈ ker(ex), we have (f − f(x)1X)g ∈ (ker(ex))
2. Hence,

(f − f(x)1X)g ∈ JA({ex}) by Theorem 2.4 and so (f − f(x)1X)g ∈ I by (2.12). This implies that
fg ∈ I since I is a complex linear subspace of A. Hence, I is an ideal of A. Since I ⊆ ker(ex), we
deduce that

{ex} ⊆ hull(I). (2.13)
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From (2.12) we have
hull(I) ⊆ hull(JA({ex})). (2.14)

Since {ex} is a closed subset of ∆(A) and (A, ‖ · ‖Lip(X,K,dα)) is a regular complex Banach algebra,
by Theorem 1.1, we deduce that

hull(JA({ex})) = {ex}. (2.15)

From (2.13), (2.14) and (2.15) we have

hull(I) = {ex}.

Therefore, I is primary at ex. �

Theorem 2.6. Suppose that int(K) 6= ∅ and A = Lip(X,K, dα). Let H be a nonempty compact
subset of int(K). Then

JA(EX(H)) =
⋂
x∈H

JA({ex}).

Proof . Let f ∈ IA(EX(H)) and let x ∈ H. Then there exists an open set V in ∆(A) with

EX(H) ⊆ V such that f̂(V ) = {0}. Since {ex} ⊆ EX(H), we have {ex} ⊆ V . Hence, f ∈ IA({ex})
and so f ∈ JA({ex}). Thus

IA(EX(H)) ⊆ IA({ex}) ⊆ JA({ex}). (2.16)

Since (2.16) holds for all x ∈ H, we deduce that

IA(EX(H)) ⊆
⋂
x∈H

JA({ex}).

This implies that

JA(EX(H)) ⊆
⋂
x∈H

JA({ex}), (2.17)

since JA(EX(H)) = IA(EX(H)) and
⋂
x∈H

JA({ex}) is closed in (A, ‖ · ‖Lip(X,K,dα)).

Let f ∈ A \ JA(EX(H)). If f(H) 6= {0}, then ex0(f) = f(x0) 6= 0 for some x0 ∈ H. Since
ex0 : A→ C is continuous at f and ex0(f) 6= 0, there exists a positive number δ such that ex0(g) 6= 0
whenever g ∈ A and ‖g − f‖Lip(X,K,dα) < δ. This implies that

{g ∈ A : ‖g − f‖Lip(X,K,dα) < δ} ∩ IA({ex0}) = ∅,

and so f ∈ A \ JA({ex0}).
Let f(H) = {0}. By Theorem 2.3, there exists ε > 0 such that for each open set U in (X, d) with

H ⊆ U we have
|f(x)− f(y)|
dα(x, y)

≥ ε,

for some x, y ∈ U ∩K with x 6= y. Let n ∈ N. We define

Un = {x ∈ X : dist(x,H) < (
1

n
)

1
α}.

Then Un is an open set in (X, d) with H ⊆ Un. Thus there exist xn, yn ∈ Un ∩K with xn 6= yn such
that

|f(xn)− f(yn)|
dα(xn, yn)

≥ ε.
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Since xn, yn ∈ Un, we deduce that there exist zn, wn ∈ H such that d(zn, xn) < ( 1
n
)

1
α and d(wn, yn) <

( 1
n
)

1
α . Since H is a compact set in (X, d) and {zn}∞n=1 is a sequence in H, there is a strictly increasing

function γ : N→ N and an element z of H such that

lim
n→∞

d(zγ(n), z) = 0.

Since H is a compact set in (X, d) and {wγ(n)}∞n=1 is a sequence in H, there exists a strictly increasing
function η : N→ N and an element w of H such that

lim
n→∞

d(wη(γ(n)), w) = 0.

Let nk = η(γ(k)) for all k ∈ N. Then {nk}∞k=1 is a strictly increasing sequence in N, {znk}∞k=1 is a sub-
sequence of {zn}∞n=1, {wnk}∞k=1 is a subsequence of {wn}∞n=1, lim

k→∞
d(znk , z) = 0 and lim

k→∞
d(wnk , w) = 0.

Since d(znk , xnk) < ( 1
nk

)
1
α and d(wnk , ynk) < ( 1

nk
)

1
α , we conclude that lim

k→∞
dα(xnk , z) = 0 and

lim
k→∞

dα(ynk , w) = 0. So lim
k→∞

dα(xnk , ynk) = dα(z, w). We claim that z = w. If z 6= w, then

dα(z, w) 6= 0 and so

lim
k→∞

|f(xnk)− f(ynk)|
dα(xnk , ynk)

=
|f(z)− f(w)|
dα(z, w)

. (2.18)

Since
|f(xnk )−f(ynk )|
dα(xnk ,ynk )

≥ ε for all k ∈ N, we deduce that |f(z)−f(w)|
dα(z,w)

≥ ε by (2.18). But |f(z)−f(w)|
dα(z,w)

= 0

since z, w ∈ H. Therefore, our claim is justified by this contradiction. From z = w, we have
lim
k→∞

d(ynk , z) = 0. Let U be an open set in (X, d) with z ∈ U . Then there exists k ∈ N such that

xnk , ynK ∈ U . Therefore, there exists xnk , ynK ∈ U ∩K such that

|f(xnk)− f(ynk)|
dα(xnk , ynk)

≥ ε.

Hence, f /∈ JA({ez}) by Theorem 2.3. So f /∈
⋂
x∈H

JA({ex}). Therefore,

⋂
x∈H

JA({ex}) ⊆ JA(EX(H)). (2.19)

From (2.17) and (2.19), we have JA(EX(H)) =
⋂
x∈H

JA({ex}). �

3. Point derivations of extended Lipschitz algebras

Throughout this section we assume that (X, d) is a compact metric space, K is an infinite compact
subset of X, α ∈ (0, 1],

W (K) = {(x, y) ∈ K ×K : x 6= y},

and
Wx = {{(xn, yn)}∞n=1 : (xn, yn) ∈ W (K) (n ∈ N), lim

n→∞
xn = lim

n→∞
yn = x},

where x is a nonisolated point of K in (X, d).
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Lemma 3.1. Let A = Lip(X,K, dα), x be a nonisolated point of K in (X, d) and {(xn, yn)}∞n=1 be
an element of Wx. Let n ∈ N and define the map φn : A→ C by

φn(f) =
f(xn)− f(yn)

dα(xn, yn)
(f ∈ A). (3.1)

Then φn ∈ A∗ and ‖φn‖ ≤ 1.

Proof . It is obvious that φn is a complex linear functional on A. Since

|φn(f)| = |f(xn)− f(yn)|
dα(xn, yn)

≤ p(K,dα)(f) ≤ ‖f‖Lip(X,K,dα)

for all f ∈ A, we conclude that φn ∈ A∗ and ‖φn‖ ≤ 1. �

Let A = Lip(X,K, dα) and B∗ denote the closed unit ball of A∗. Since B∗ is weak∗ compact, every
net in B∗ has a subnet that it converges in A∗ with the weak∗ topology. Let x be a nonisolated point
of K in (X, d). We denote by Ωx the set of all sequences {φn}∞n=1 defined by (3.1) as {(xn, yn)}∞n=1

varries over Wx. We denote by Φx the set of all Λ ∈ A∗ for which there exists a sequence {φn}∞n=1 in
Ωx and a subnet {φnγ}γ of {φn}∞n=1 such that lim

γ
φnγ = Λ in A∗ with the weak∗ topology.

Theorem 3.2. Let A = Lip(X,K, dα) and x be a nonisolated point of K in (X, d). Then

(i) Φx is a nonempty subset of B∗.
(ii) Φx ⊆ Dex.

Proof . (i). Let {φn}∞n=1 be an element of Ωx. Then φn ∈ B∗ for all n ∈ N by Lemma 3.1. Since B∗

is weak∗ compact subset of A∗, there exists a subnet {φnγ}γ of {φn}∞n=1 and an element D ∈ B∗ such
that lim

γ
φnγ = D in A∗ with the weak∗ topology. This implies that D ∈ Φx and so Φx is nonempty.

Let Λ ∈ Φx. Then there exists an element {φn}∞n=1 of Wx and a subnet {φnγ}γ of {φn}∞n=1 such
that lim

γ
φnγ = Λ in A∗ with the weak∗ topology. This implies that lim

γ
φnγ (f) = Λ(f) for all f ∈ A.

Let f ∈ A. Then lim
γ
|φnγ (f)| = |Λ(f)|. By Lemma 3.1, we have ‖φnγ‖ ≤ 1 for each γ. Hence,

|φnγ (f)| ≤ ‖f‖Lip(X,K,dα) for each γ. This implies that |Λ(f)| ≤ ‖f‖. Therefore, ‖Λ‖ ≤ 1 and so
Λ ∈ B∗. Thus (i) holds.

(ii). Let D ∈ Φx. Then there exists an element {φn}∞n=1 of Wx and a subnet {φnγ}γ of {φn}∞n=1

such that lim
γ
φnγ = D in A∗ with the weak∗ topology. Since {φn}∞n=1 ∈ Wx, there exists an element

{(xn, yn)}∞n=1 of Wx such that for all n ∈ N we have

φn(f) =
f(xn)− f(yn)

dα(xn, yn)
(f ∈ A).

Let f, g ∈ A. Then

D(fg) = lim
γ
φnγ (fg)

= lim
γ

(fg)(xnγ )−(fg)(ynγ )

dα(xnγ ,ynγ )

= lim
γ

f(xnγ )[g(xnγ )−g(ynγ )]+g(ynγ )[f(xnγ )−f(ynγ )]

dα(xnγ ,ynγ )

= lim
γ

[f(xnγ )
g(xnγ )−g(ynγ )

dα(xnγ ,ynγ )
+ g(ynγ )

f(xnγ )−f(ynγ )

dα(xnγ ,ynγ )
]

= lim
γ

[f(xnγ )φnγ (g) + g(ynγ )φnγ (f)]

= f(x)Dg + g(x)Df
= ex(f)Dg + ex(g)Df.
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This implies that D is a continuous point derivation at ex and so D ∈ Dex . Thus Φx ⊆ Dex and so
(ii) holds. �

Theorem 3.3. Let A = Lip(X,K, dα), x ∈ int(K) and x be a nonisolated point of K. Then A has
a nonzero point derivation at ex.

Proof . Since x is a nonisolated point of K, there exists a sequence {xn}∞n=1 in K \ {x} such that

lim
n→∞

d(xn, x) = 0.

We define the sequence {yn}∞n=1 in K with yn = x for all n ∈ N. Then {(xn, yn)}∞n=1 is an element
of Wx. Let the sequence {φn}∞n=1 given by (3.1) in terms of the sequence {(xn, yn)}∞n=1. We define
the function gx : X → C by gx(t) = (d(x, t))α, t ∈ X. Since dα is a metric on X, we conclude that
gx ∈ Lip(X, dα) and so gx ∈ A. Moreover, φn(gx) = 1 for all n ∈ N. Since B∗ is weak∗ compact and
{ϕn}∞n=1 is a sequence in B∗, we deduce that there exists a subnet {ϕnγ}γ of {ϕn}∞n=1 and an element
D of B∗ such that lim

γ
ϕnγ = D in A∗ with the weak∗ topology. Clearly, D ∈ Φx and Dgx = 1. Hence,

D 6= 0 and by part (ii) of Theorem 3.2 we have D ∈ Dex . Therefore, Dex \ {0} is nonempty and so
A has a nonzero continuous point derivation at ex. �

Let X be a complex Banach space, M be a nonempty subset of X and N be a nonemty subset
of X∗, the dual space of X. Recall that M⊥ and ⊥N denote {Λ ∈ X∗ : Λf = 0 (f ∈ M)} and
{f ∈ X : Λf = 0 (Λ ∈ N)}, respectively. We know [8, Theorem 4.7] that if M is a complex linear
subspace of X then ⊥(M⊥) is a closed complex linear subspace of X and ⊥(M⊥) = M , the closure of
M in (X, ‖ · ‖).

Theorem 3.4. Let int(K) 6= ∅, A = Lip(X,K, dα), x be a nonisolated point of K and x ∈ int(K).
Suppose that sp(Φx) denotes the weak∗ closure of the complex linear subspace of A spanned by Φx.
Then Dex = sp(Φx).

Proof . By Theorem 3.2, Φx is a nonempty subset of Dex . Since (A, ‖ · ‖Lip(X,K,dα)) is a semisimple
commutative unital Banach algebra, we conclude that Dex is a weak∗ closed complex linear subspace
of A∗ by [12, Proposition 8.2]. So

sp(Φx) ⊆ Dex . (3.2)

Now we show that
⊥(sp(Φx)) ⊆⊥ Dex . (3.3)

Since (ker(ex))2 ⊕C.1 is a closed complex linear subspace of (A, ‖ · ‖Lip(X,K,dα)) and [12, Proposition

8.4] implies that Dex = ((ker(ex))2 ⊕ C.1)⊥, we deduce that

⊥Dex = (ker(ex))2 ⊕ C.1, (3.4)

by [9, Theorem 4.7(a)]. On the other hand, by Theorem 2.4, we have

(ker(ex))2 = JA({ex}). (3.5)

From (3.4) and (3.5) we get
⊥Dex = JA({ex})⊕ C1X . (3.6)

Let f ∈ A \⊥ Dex . Then f /∈ JA({ex}). We define g = f − f(x)1X . Then g ∈ A, g(x) = 0
and f = g + f(x)1X . According to (3.6) and f ∈ A \⊥ Dex , we deduce that g /∈ JA({ex}). Since
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x ∈ int(K) and EX({x}) = {ex}, by Theorem 2.3, there exists ε > 0 such that for each open set

U in (X, d) with x ∈ U we have |g(z)−g(w)|
dα(z,w)

≥ ε for some z, w ∈ U ∩ K with z 6= w. Let n ∈ N
and set Un = {y ∈ X : d(y, x) < 1

n
}. Then there exist zn, wn ∈ Un ∩ K with zn 6= wn such that

|g(zn)−g(wn)|
dα(zn,wn)

≥ ε. Clearly, lim
n→∞

d(zn, x) = lim
n→∞

d(wn, x) = 0. So {(zn, wn)}∞n=1 is an element of Wx.

Let {φn}∞n=1 given by (3.1) in terms of the sequence {(zn, wn)}∞n=1. Clearly, |φn(g)| ≥ ε for all n ∈ N.
Since {φn}∞n=1 is an element of Ωx, by given argument in the proof of part (i) of Theorem 3.2, there
exists a subnet {φnγ}γ of {φn}∞n=1 and an element D ∈ A∗ such that D = lim

γ
φnγ in A∗ with the

weak∗ topology. Such D is an element of Φx and so D ∈ sp(Φx). Since |Dg| = lim
γ
|φnγ (g)| and

|φnγ (g)| ≥ ε for all γ, we deduce that |Dg| ≥ ε and so Dg 6= 0. Since D ∈ Φx and Φx ⊆ Dex by part
(ii) of Theorem 3.2, we conclude that D ∈ Dex and so D1X = 0. Now we have

Df = D(g + f(x)1X) = Dg + f(x)D1X = Dg.

Therefore, Df 6= 0 and so f ∈ A \⊥ (sp(Φx)). Hence,

A \⊥ Dex ⊆ A \⊥ (sp(Φx)).

This implies (3.3) holds. From (3.3) we get(⊥Dex

)⊥ ⊆ (⊥ (sp(Φx))
)⊥
. (3.7)

Since Dex and sp(Φx) are closed in A∗ with the weak∗ topology, we deduce that

Dex ⊆ sp(Φx), (3.8)

by (3.7) and [9, Theorem 4.7(b)]. From (3.2) and (3.8), we get Dex = sp(Φx). �

4. Amenability and weak amenability of extended Lipschitz algebras

Let A be a commutative unital complex Banach algebra. It is known [4] that if A is weakly amenable,
then every continuous point derivation of A is zero. Considering this fact, we obtain the following
result.

Theorem 4.1. Let (X, d) be a compact metric space, α ∈ (0, 1] and K be an infinite compact subset
of X with int(K) 6= ∅ and int(K) contains a limit point of K in (X, d). Then

(i) Lip(X,K, dα) is not weakly amenable.
(ii) Lip(X,K, dα) is not amenable.

Proof . (i). Let x ∈ int(K) and x be a limit point of K. Then x is a nonisolated point of K in
(X, d). Since x ∈ int(K), we deduce that Lip(X,K, dα) has a nonzero continuous derivation at ex by
Theorem 3.3. Therefore, Lip(X,K, dα) is not weakly amenable.

(ii). It is obvious by (i). �

Let X be an infinite set and (X, d) be a compact metric space. Then int(X) = X in (X, d) and
so int(X) has a limit point of X in (X, d). Since Lip(X,X, dα) = Lip(X, dα), we immediately get
the following result as a consequence of Theorem 4.1.

Corollary 4.2. Let X be an infinite set, (X, d) be a compact metric space and α ∈ (0, 1]. Then

(i) Lip(X, dα) is not weakly amenable,
(ii) Lip(X, dα) is not amenable.
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