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In the present study, fracture response of centrally cracked symmetric angle ply laminated 

composite plates subjected to biaxially applied tensile, shear and tensile and shear 

combined stresses by implementing well established extended finite element method 

(XFEM) are studied. Typical numerical results are presented in terms of mixed mode stress 

intensity factors (MSIFs) to examine the effects of, different biaxial load factors, crack 

angles, crack lengths, the eccentricity of the crack in X and or Y directions and fiber angle 

under the action of different types of biaxial stresses. The effect of loadings on the crack 

growth and crack propagation direction and their effects on the MSIFs using global 

tracking crack growth algorithm is also presented. The results of the present investigation 

will be useful for accurate prediction of fracture response of cracked composite structures, 

crack growth and crack propagation behavior which ultimately effects on the structural 

safety and integrity of the composite structures. 

1. Introduction 

In the recent year’s fiber reinforced 
composites (FRC) are being increasingly used in 
the aerospace, space craft, marine, automotive, 
and bio-medical engineering. This is because FRC 
has several advantages such as mass production, 
low fabrication cost, good resistance to impact 
and high ability to meet multi-functional needs 
(wear, corrosion, thermal resistance and 
toughness).  

During manufacturing and fabrications, due to 
improper design of the constituent components, 
imperfection in production and manufacturing 
procedures and inaccurate measurement of 
curing parameters these structures are often 
subjected to different types of internal and 
external discontinuities in the form of cracks, 
inclusions, holes, and voids. Since most of these 
materials exhibit brittle fracture failure with little 
or no ductility as offered by metals, the behavior 
of these structures must be understood, and 
analysis to predict the fracture failure needs to be 
performed so that the structural safety and 

reliability of FRC structures can be increased up 
to a significant level.  

In most of the applications, FRC components 
are often subjected to complex service loading 
conditions which may lead to development of 
cracks in these structures. The complex service 
loading conditions involved in various sensitive 
applications of FRC materials are rarely uniaxial, 
typically involving biaxial or even triaxial states 
of stress. The presence and growth of cracks in 
composite structures may lead to the initiation 
and catastrophic failure of the structures. Hence, 
accurate predictions of fracture parameters like 
stress intensity factors (SIFs) and their effect on 
unstable crack propagation under the action of 
biaxially acting tensile, shear or even the 
combination of both these stresses becomes 
necessary.  

Several numerical methods have been 
suggested in the last decades in order to predict 
and analyze fracture characteristics in 
composites. Due to simplicity and stability in 
handling material heterogeneity, non-linearity 
and complex boundary condition, the finite 
element method (FEM) is used extensively as a 
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numerical tool in this area. However, the 
generation of conforming meshes with the 
evolving discontinuities is an expensive task 
using conventional FEM. Hence, after several 
efforts of many researchers, significant 
improvements in crack modelling using 
conventional FEM are realized with the 
development of a partition of unity-based 
enrichment method. 

In earlier days Melenk and Babuska [1] and 
Duarte and Oden [2] proposed and combined the 
partition of unity method with the conventional 
FEM, which was then implemented in actual 
sense by Mo¨es et al. [3] for modelling and 
evolving cracks. Further, this method is known as 
an extended finite element method (XFEM). In 
XFEM, for modelling the crack, the generalized 
Heaviside step functions are utilized to account 
for crack face discontinuity and the two-
dimensional linear elastic asymptotic crack-tip 
displacement functions are used for the crack tip 
discontinuity.  

Several efforts have been made by many 
researchers in the early days to increase and 
check the accuracies of XFEM [4-6].  Belytschko et 
al. [7] and Sukumar et al. [8] described the state 
of the art for the problems in material science and 
reviewed the extended, generalized, moving least 
squares and meshless methods with an emphasis 
on their applications to various problems in 
damage mechanics.  

To improve the capabilities of XFEM many 
researchers used and modified this approach to 
solve more complicated problems [9-13]. For the 
implementation of the XFEM within the 
commercial FE code ABAQUS, Giner et al. [14] 
presented a procedure based on UEL and 
explained the procedures that interact with 
ABAQUS. Chatzi et al. [15] proposed 
improvements in XFEM–GA algorithm by using a 
weighted average approach.  Abdelaziz and 
Hamouine [16] presented an overview and 
recent progress of the XFEM in the analysis of 
crack growth modelling.   

For use XFEM to carry out fracture analysis of 
orthotropic materials, particular treatments and 
more efficient enrichment functions are required. 
Hattori et al. [17] proposed the new set of 
enrichment functions for the crack-tip by means 
of the Stroh’s formulation for fully anisotropic 
materials. In this direction, the progressive work 
has been carried out by Asadpoure et al. [18-19] 
and Asadpoure and Mohammadi [20], they 
proposed a small change in crack face and crack 
tip enrichment functions. Ebrahimi et al. [21] by 
using meshless based ideas, modified isotropic 
enrichment functions to enable modelling 
orthotropic problems. Further to increase the 
solution accuracy of the XFEM in orthotropic 
materials, Ghorashi et al. [22] adopted 

orthotropic enrichment functions along with sub-
triangle technique and described a new approach 
for modelling discrete cracks in two-dimensional 
orthotropic media by the element free Galerkin 
method. Bhardwaj et al. [23] by modelling crack 
face and crack tip enrichment functions, 
performed XIGA and simulated the through 
thickness cracked FGM and composite plates 
using FSDT under different types of loading and 
boundary conditions.  Chen et al. [24] developed 
adaptive extended (XIGA) based on LR B-splines 
and by enhancing signed-distance and 
orthotropic crack-tip enrichment functions for 
the simulation of arbitrary holes in orthotropic 
materials. Further, this approach and enrichment 
functions are modified by Gu et al. [25-26] and Yu 
et al. [27] for carrying out simulations of through-
cracked Mindlin-Reissner plates and also to 
perform crack growth in isotropic and 
orthotropic media. Fang et al. [28] by combining 
XFEM, developed a new enriched technique 
based on sign function which can eliminate the 
blending element problems. 

In the last decade, XFEM has become one of 
the important tools to carry out analysis of 
structures with discontinuities, various 
researchers have developed different approaches 
by utilizing XFEM. Liu et al. [29] developed an 
accurate extended 3-node triangular plate 
element in the context of XFEM by integrating the 
DSG to eliminate shear-locking and presented 
numerical results of buckling failure analysis of 
cracked composite functionally graded plates 
subjected to uniaxial and biaxial compression 
loads. Wang et al. [30-31] developed a novel local 
mesh refinement approach and described an 
adaptive numerical framework for modeling 
arbitrary inclusions and holes in terms of the 
XFEM. Yin et al. [32] combined XIGA based on the 
NURBS and Reissner- Mindlin plate theory, they 
have evaluated the critical buckling parameters 
and natural frequencies of defective FGM plates 
with internal cracks or voids. Ma et al. [33] 
introduced a novel detection scheme suitable for 
multiple complex flaw clusters in large structures 
by adopting XFEM. Yu and Bui [34] described a 
new adaptive local mesh refinement XFEM 
approach which combines a posteriori error 
estimation algorithm, a local non-conformal 
mesh connection strategy. They have presented 
some introductory studies of the developed 
method in two dimensional problems of strong 
and weak discontinuities. Bui et al. [35] for 
carrying out the analysis of transient DSIFs of 
two-dimensional fracture problems of FGMs, 
introduced and improved the extended moving 
Kriging based meshfree method by introducing 
three new different types of correlation function 
which fully eliminate the user parameter for MK 
shape functions. Ding et al. [36-37] proposed and 
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enhanced a Matlab object-oriented 
implementation of the variable-node XFEM, an 
easy-to-use local mesh refinement scheme, they 
have applied this scheme for modeling strong and 
weak discontinuities such as cracks, inclusions, 
voids and for simulations of multiple crack 
growth in brittle materials. 

For carrying out fatigue crack growth 
analysis, [38-40] proposed and carried out the 
simulations of three-dimensional fatigue crack 
growth of 3-D planar, non-planar and arbitrary 
shape cracks under mechanical and cyclic 
thermal loads by using XFEM. By applying XFEM, 
crack interactions have been studied by Pathak 
[41] in the heterogeneous FGM under mixed 
mode mechanical and thermal loading 
environment and Mishra et al. [42] studied the 
behavior of piezoelectric components in the 
presence of multiple cracks under thermo-
electro-mechanical loading environment. Patil et 
al. [43] integrated phase field method with 
multiscale XFEM and simulated the crack growth 
in highly heterogeneous materials. For 3-D 
analysis of heterogeneous unit cell, Bansal et al. 
[44] proposed a multi-split XFEM approach, to 
reduce the computational cost, a parallel 
algorithm is developed for large degrees of 
freedom systems. Kumar et al. [45] proposed a 
homogenized multigrid XFEM approach for 
carrying out the crack growth simulations in 
ductile materials by modelling the geometric and 
material nonlinearity. They have investigated the 
load carrying capacity of the structures with 
microstructural defects. 

During fracture toughness tests significant 
amounts of crack-tip plasticity is exhibited by 
most of the structural materials, in such 
situations only biaxially applied stresses are 
expected to exert a considerable influence on 
their fracture characteristics along with various 
biaxial load factors [46-48]. Therefore, there is 
considerable incentive to perform fracture 
analysis in which the biaxial stresses along with 
various biaxial load factors varied over a 
considerable range of values. 

In this direction, earlier work by Liebowitz et 
al. [49] explained the importance of the second 
term in the series representation of an exact 
analytical solution for the crack tip stresses for an 
infinite center-cracked specimen subjected to 
symmetric and uniform biaxial loadings. 
Oladimeji [50] employed the principle of linear 
superposition by combining the series type 
analytical solution around the crack tip for 
studying cracks emanating from a circular hole in 
a finite sheet under biaxial loading. To simulate 
crack initiation and propagation, from an initially 
inclined crack in isotropic and orthotropic 
material, Theocaris and Papadopoulos [51] 
proposed a procedure based on either of the two-

term S2-criterion (S2) and the T-criterion (T).  
Lim et al. [52] suggested to consider the 
evaluation of singular expression for the stresses 
and the corresponding displacements near a 
crack tip and their effect on the predicted crack 
growth direction in an anisotropic solid subjected 
to a biaxial loading. [53-54] developed complex 
variables formulation for the derivation of the 
complex variable expressions of the elastic field 
for the orthotropic materials, and studied the 
elasto-static fracture response of an orthotropic 
cracked plate. The influence of load biaxiality on 
the stress intensity factors, crack growth, and on 
the local stress components in an orthotropic and 
isotropic medium have been studied by [55-58]. 
Meek and Ainsworth [59] performed upper and 
lower bound limit load analyses and finite 
element analyses of a center-cracked plate under 
a wide range of biaxial loadings for a wide range 
of crack sizes and plate lengths.  

It is evident from the literature, the various 
numerical and experimental results indicate that 
biaxial loadings have shown considerable 
influence on fracture resistance, crack driving 
force and load carrying capacity. Considering the 
heterogeneous nature of composite materials, 
strengths obtained using uniaxial testing 
procedures for these materials often does not 
give the true insights about multi-axially loaded 
conditions. This puts significant limitations for 
wide scale, efficient usage of composites in 
various sensitive engineering structures.  

To the author’s knowledge, in contrast to the 
isotropic materials, lesser attention has been 
paid to the study of effects of the multi-axial loads 
in cracked composite structures. Additionally, the 
ability to successfully model and simulate the 
multi-axial behavior of composite laminates 
largely depends on proper choice of numerical 
algorithm/approach that eventually ensures 
wide applicability of the respective fracture 
failure model in describing the corresponding 
material behavior under variety of complex 
loading conditions and for different crack 
configurations and their propagation. 

This paper therefore presents a systematic 
study of the effects of biaxially applied loadings 
(tensile, shear and tensile and shear combined) 
on the MSIFs of an inclined through thickness 
cracked finite angle ply laminated composite 
plates along with crack propagation path analysis 
by implementing the well-established, simple 
and accurate XFEM algorithm. The MSIFs for 
different biaxial load factors, crack angles, 
lamination angles, location of the crack along the 
X and or Y axis by varying crack length to plate 
width ratio are evaluated. In addition, the 
detailed investigation of the crack propagation 
path analysis by applying global tracking crack 
growth algorithm is carried out in the framework 
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of XFEM. The effect of different types of biaxial 
stresses on the MSIFs with each step of the crack 
growth and its effect on the crack propagation 
direction are investigated. 

An excellent agreement of the present results 
with the literature will be helpful for actual 
manufacturing and determining the fracture 
behavior of these materials. 

2. FEM Formulation for Fracture 
Analysis of Composite Structures 

To evaluate the MSIFs, essential XFEM 
formulation for fracture analysis of composite 
materials developed by Mohammadi [60, 61], 
applied and explained by Asadpoure et al. [18], 
Asadpoure and Mohammadi [20] is used in the 
present analysis. 

In XFEM, to model the crack problems a 
numerical model is generated by dividing the 
model into two parts; first generate a mesh for 
the total domain geometry (neglecting the 
existence of any discontinuities/cracks) by the 
classical finite element method. Then in the 
second part by considering the location of 
discontinuities/ cracks and by using appropriate 
functions, enrichment of the selected nodes near 
to the discontinuities/ cracks is carried out by 
adding a few degrees of freedom to the classical 
finite element. Then, by defining a transition zone 
between enriched and non-enriched domains the 
compatibility is achieved. Thus, the total 
geometry is divided into three sub domains: the 
standard FEM domain, elements cut by the crack 
face are enriched by the crack face enrichment 
functions and the elements cut by crack tip are 
enriched by crack tip enrichment functions. 

Assume a cracked orthotropic body with 
global Cartesian coordinates (X, Y) and the axes of 
elastic symmetry coincide with the local 
Cartesian coordinate axes (x1, y1), the local polar 
coordinates (r, θ) are defined on the crack tip 
subjected to arbitrary forces with general 
displacement and traction boundary conditions 
as illustrated in Fig.1. 

The equilibrium equations and boundary 
conditions for a cracked body can be written as 

0qf + =  in Ω (1) 

    with the following boundary conditions, 
tn f = on 

t  (2) 

u u=  on 
u  (3) 

0n =  on 
c    (4) 

where Γt , Γu and Γc are external traction 
applied on the body, prescribed displacement 
and traction free crack boundaries, respectively, 
σ is the stress tensor and qf , tf are the body force 

and external traction vectors, respectively. 
In the XFEM, the displacement field of any 

point x located within the cracked domain, 

following approximation along with the classical 
finite element method (CFEM) is used          

CFEM XFEMu u u= +    (5) 

where  XFEM Crack Face Crack tipu u u= +  (6) 

Therefore, the Eq. (6) will take the form, 

1 1

( ) ( ) ( ) ( )
n cr

h

j j k k

j k

u x L x u L x x a
= =

= +     (7) 

where uj is the nodal degrees of freedom in CFEM, 
ak is the added set of degrees of freedom to CFEM 
model, Lj and Lk are the shape functions 
associated with nodes j and k; and ϕ(x) is the 
discontinuous enrichment function defined for 
the set of nodes those have the crack in their 
influence/support domain. The enrichment 
function ϕ(x) can be chosen by applying 
appropriate analytical solutions according to the 
type of crack/ discontinuity. 

The displacement field can be approximated 
by rearranging Eq. (7) as below 

( ) ( ) ( ) ( )( ) ( )( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1 1

1

2 2

2

1 1

1 1

1 1

2 2

1 1

cfn
h

j j k k k

j k

t t f
t

l t t l l

l t

t t f
t

m t t m m

m t

u x L x u L x H x H x a

L x F x F x b

L x F x F x b

 
= =

= =

= =

   
= + −   

  

  
−  

  
+
 

 
 + − 
   

 

 

 

 
(8) 

where three parentheses in Eq. (8) represents 
linear, discontinuous and tip enrichment parts of 
an approximation respectively. Nodes that 
belong to two crack-tips are enriched with the 
two enrichment functions ( ) ( )1 2,t tF x F x   

respectively, for each crack tip, and the nodes 
which contain the crack surface within their 
support domain are enriched with the Heaviside 
function H (ξ).  

In Eq. (8) the cf is the set of nodes that have 
the crack face in their support domain. t1 and t2 
are the sets of nodes associated with crack tips 1 
and 2 in their influential domain, respectively. uj 
are the nodal displacements (standard degrees of 
freedom),  ak, 1 2,t t

l mb b  are the vectors of additional 

degrees of freedom for the nodes located on crack 
face and the two crack tips respectively. The 
functions 1 2,t tF F  represent the crack tip 

enrichment functions for both the crack tips. The 
necessary crack tip enrichment functions for an 
orthotropic body used in this study are explained 
in the succeeding section 2.1.1.  The Heaviside 
function H (ξ(x)) is defined as a step function or 
the signed distance function used for modelling 
strong discontinuity/crack face. 

( )
1

1
H






+

−

+ 
= 

− 
   (9) 

It should be noted that, in this study; the value 
of +1 if the point is on the positive side of the 
crack face and –1, otherwise is used. 
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Fig.1. An arbitrary orthotropic body with crack, having 

global Cartesian coordinates (X, Y), local polar co-ordinate (r, 
θ) defined at the crack-tip surrounded by contour ᴦ and its 

interior area A with arbitrary boundary conditions subjected 
to traction f t 

2.1. General Displacement, Stress Field and 
Enrichment Functions for an Orthotropic Cracked 
Body   

The general form of Hooke’s law for the 
stress- strain relationship of an orthotropic body 
can be defined as 

i ij iC =  (i, j = 1,2,6)       (10) 

where Cij (i, j =1, 2, 6) are the relevant 
compliance coefficients of the orthotropic 
material along the local Cartesian coordinate axes 
(x1, y1) as shown in Fig. 1. Using the basic theories 
of elasticity and applying the stress function, the 
governing fourth-order partial differential 
characteristic equation of an anisotropic body by 
applying equilibrium and compatibility 
conditions can be given as 

4 3 2

11 16 12 66 26 222 (2 ) 2 0C C C C C C   − + + − + =  (11) 

It can be shown that the roots of Eq. (11) are 
in the complex form, these roots always occur in 
conjugate pairs as 

1 1,   and
2 2,   having the 

general form and are derived as [62]. For 
numerical purposes, only those roots that have 
either positive imaginary coefficient or negative 
one is selected. 

The roots μk of Eq. (12) are purely imaginary, 
which can be given as , with 1,2k ki k = =  , [63] 

 2 2

1,2 12 66 12 66 11 22

11

1
(2 ) (2 ) 4

2
c c c c c c

c
 = − − +  + −  (12) 

1 1
, where ( 1,2)k kx kyi k  = + =    (13) 

For an orthotropic case in the plane problems, 
the Eq. (11) is reduced to the following simplified 
equation [63]: 

4 2

11 12 66 22(2 ) 0c c c c + + + =  (14) 

Sih et al. [64] derived the two-dimensional 
asymptotic displacement and stress fields in the 
vicinity of the crack tip by means of analytical 
functions and complex variables

1 1( ( 1,2))k k kz x y k= + = . 

  

1/2

1 2 2 2 1 1

1 2

2 1
ReI

I

r
u K p g p g 

  

    = −    −   
 (15) 

1/2

1 2 2 2 1 1

1 2

2 1
ReI

I

r
v K q g q g 

  

    = −    −   
 (16) 

0Iw =  (17) 

The stress components for pure mode I are 
defined as, 

  
( )

1 2 2 1

11 1/2

1 2 2 1

Re
2

I IK

g gr

   


 

  
 = − 

 −   

 (18) 

( )
1 2

22 1/2

1 2 2 1

1
Re

2

I IK

g gr

 


 

  
 = − 

 −   

 (19) 

( )
1 2

12 1/2

1 2 1 2

1 1
Re

2

I IK

g gr

 


 

  
 = − 

 −   

 (20) 

The displacement and stress components for 
pure mode II can be defined in the similar way 
and can be given as. 

  

1/2

2 2 1 1

1 2

2 1
ReII

II

r
u K p g p g

  

    = −    −   
 (21) 

1/2

2 2 1 1

1 2

2 1
ReII

II

r
v K q g q g

  

    = −    −   
 (22) 

0IIw =  (23) 

and 

  
( )

2 2

2 1

11 1/2

1 2 2 1

1
Re

2

II IIK

g gr

 


 

  
 = − 

 −   

 (24) 

( )
22 1/2

1 2 2 1

1 1 1
Re

2

II IIK

g gr


 

  
 = − 

 −   

 (25) 

( )
1 2

12 1/2

1 2 1 2

1
Re

2

II IIK

g gr

 


 

  
 = − 

 −   

 (26) 

where KI and KII  are stress intensity factors (SIFs) 
for mode I and mode II, respectively, Re denotes 
the real part of the complex function, and gk,  pk , 
qk  can be defined as 

  cos sin , ( 1,2)k kg k  = + =          (27) 

2

11 12 16k k kp C C C = + −  (28) 

22

12 26k k

k

C
q C C


= + −  (29) 

2.1.1. Orthotropic Crack Tip Enrichment Functions 

By using the general displacement and stress 
conditions given in the Eqs. (15-26), the 
necessary crack tip enrichment functions can be 
extracted by the evaluation of near tip 
displacement fields for a general traction free 
crack within an infinite orthotropic body. 
Asadpoure et al. [18, 19] and Asadpoure and 
Mohammadi [20] investigated various types of 
crack tip enrichment functions for an orthotropic 
media.  
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In the most general case, the orthotropic crack 
tip enrichment functions which can cover the 
whole range of orthotropic media are presented 
in [20].  

The crack tip enrichment functions in the 
crack tip local polar coordinate system (r, θ) are 
defined as 

( )
( ) ( )

( ) ( )

1 2
1 2

4

1
1 2

1 2

cos , cos ,
2 2

( , )

sin , sin
2 2

t t

r g r g

F r

r g r g

 
 


 

 
=

 
 

=  
 
  

 
(30) 

where 

( ) ( ) ( )
22

cos sin sin

sin
arctan ( 1,2)

cos sin

k kx ky

ky

k

kx

g

k
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where μx or y have been defined in Eq. (13). 

2.2. Evaluation of Stress Intensity Factors (SIFs) 

In the XFEM, the global form of linear 
equilibrium equations for a discrete system by 
discretizing Eq. (8) can be written as, 

KU F=  (32) 

where K is the stiffness matrix, U is the vector of 
degrees of freedom for nodes (for both CFEM and 
enriched ones by XFEM) and F is the vector of 
external forces. The global matrix and vectors are 
calculated by assembling matrices and vectors of 
each element. 

K and F for each element are defined as 
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and   1 2 3 4t t t t
T

b b b be u a
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and U is the vector of nodal parameters 
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In Eq. (36), D is the material stiffness matrix 
and B is the matrix of shape function derivatives.  
The B matrix can be as given   
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The parameter D for orthotropic and 
composite material can be defined as;    
(a) For orthotropic material 
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(b) For laminated composite material 
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where NL is the number of layers of the laminate, 
with 
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where β is the fiber orientation angle of the 
lamina and   
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The standard path independent J-integral 
method for homogeneous orthotropic materials 
as explained by Mohammadi [61] has been used in 
this study to calculate the MSIFs. This method can 
be represented by adding assumptions and 
exploiting divergence theorem in the form of 
domain integral approach, the general form of 
this method can be explained as 
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where A is the area surrounding the crack tip and 
would be the interior region of Γ as shown in Fig. 
1, nj is jth component of the outward unit normal 
to A, W is the strain energy density, 

1 1

2 2
ij ij ijkl kl ijW C   = =  (50) 

Using the equivalent domain integral, Eq. (49) 
can be transformed to 
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where, Δ1j is the Kronecker delta and q is a simple 
function varying linearly from q=1 at the crack tip 
to q=0 at the exterior boundary ᴦ as shown in Fig. 
1. 

The interaction integral is employed to 
compute mode I and II SIFs. It is based on the 
superimposition of auxiliary and actual fields. 
The J integral can be obtained by superposition of 
the actual and auxiliary states of J integrals as: 

act auxJ J J M= + +  (52) 

where M is the interaction integral and can be 
given as 
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For linear elastic conditions 
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The auxiliary stress and displacement fields, 
which are defined by asymptotic fields near the 
crack-tip, can be given as 
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where, µ1 and µ2 are the roots obtained from Eq. 
(13),  gk, pk and qk are defined in Eqs. (27- 29), and 
superscript aux stands for the auxiliary state. The 
strain of the auxiliary field can be chosen by 
either the strain–stress relationship, or selected 
so as to satisfy the equilibrium as well as traction 
free condition. 

It has been proved that for the two 
superimposed fields [65] 
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By setting states as ( )1, 0aux aux

I IIK K= =   and

( )1, 0aux aux

II IK K= =  leads to a system of linear 

algebraic equations which are used to calculate 
the MSIFs. 

The MSIFs associated with auxiliary and 
actual states can be evaluated by calculating M 
from both the Eqs. (53) and (60) and solving a 
system of linear algebraic equations as. 

( )

11 122I

IM m K m= +  (64) 
( )

12 222II

I IIM m K m K= +  (65) 

3. Crack Growth and Propagation 
Paths with MSIFs Variation 

The accuracy and reliability of the analysis of 
a structure with evolving cracks are primarily 
depends upon the accurate determination and 
the continuity of the crack path. It is worthwhile 
to mention here that in the case of CFEM this 
requirement becomes computationally 
expensive and burdensome, as the mesh is 
required to be updated at each step of crack 
increment. XFEM gives an elegant way of 
modelling discontinuities, where the 
discontinuities arbitrarily aligned with the mesh 
could be modelled. This alleviates the need of a 
conforming mesh and hence no mesh update is 
required, which in the case of CFEM might result 
in the loss of accuracy as the data is transferred 
from one mesh to the other. 
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It is therefore very much essential to select 
the crack growth criteria very carefully.  Some of 
the commonly used crack growth criteria/ 
algorithms are: 
I. Minimum strain energy density criteria 
proposed by Sih [66] 
II. Maximum energy release rate criteria 
proposed by Nuismer [67] 
III. Maximum hoop stress or maximum principal 
stress criteria proposed by Erdogan and Sih [68] 
IV. The global tracking algorithm proposed by 
Oliver et al. [69]. 

The first three criteria/ algorithms are widely 
used in CFEM. In these algorithms, the basic 
requirement is that the algorithm is needed to be 
evaluated for each individual crack growth 
segment, which is an expensive and may result in 
inaccuracy as discussed earlier. 

In contrast to these tracking algorithms, 
Global tracking crack growth algorithm proposed 
by Oliver et al. [69- 70] traces all discontinuity 
paths at once and does not need to be evaluated 
at each individual crack propagation step. This 
algorithm shows good results [71- 72] in 
predicting crack paths and can be easily and 
elegantly incorporated in the XFEM algorithm. 
The basic idea is to construct a scalar function ψ 
whose isolines run perpendicular to the direction 
of principal stresses in all integration points of 
the investigated structure. However, this comes 
at the cost of solving additional global system of 
equations with one degree of freedom per node. 
An Iso-line is then defined as 

( ) Yi iY x x =  =  (66) 

If crack growth is indicated by the crack 
propagation criterion, the value of ψ is calculated 
at the crack tip. The crack is then extended 
following the isoline corresponding to this value 
of ψ. The crack growth criterion which is used for 
present analyses is an energy-based crack 
propagation criterion proposed by Xie and 
Gerstle [73]. According to this criterion the crack 
propagation condition can be given as follows, 

0 nocrack propagation

0 stationarycrack propagation

0 crack propagationcrA


→

 
= →

  →

 (67) 

        

 
where Acr is the area of a new crack segment. 

4. Numerical Examples 

In this section, several numerical examples 
are presented by developing a computer code in 
MATLAB. From the literature available it is being 
observed that, in the investigation of the effects of 
biaxially applied stresses, MSIFs are considered 
among the important parameters for fracture 
analysis and also for the determination of the 
path of crack propagation. Therefore, firstly to 

show the accuracy of MATLAB code developed 
for implementation of XFEM algorithm to handle 
various fracture problems, the MSIFs are 
calculated and compared with the exact solution 
and those available in the literature, and then in 
the further study the effect of different types of 
biaxially applied stresses like tensile, shear and 
tensile and shear combined on the MSIFs by 
varying the load and crack parameters along with 
crack propagation paths is studied. 

In all the examples considered in this study, 
the following average material parameters which 
are being the functions of independent 
engineering constants (Eij, υij, Gij, i, j = 1, 2) are 
used for all orthotropic and laminated composite 
plates as suggested by Mohammadi [60] 
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where E'  is the efficient Young’s modulus, ν' is the 
effective Poisson’s ratio, δ4 is the stiffness ratio, 
and κ' is the shear parameter. 

The following normalized MSIFs, KI and KII are 
used in the present analysis unless otherwise 
mentioned, and 

for tensile stress 
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( )for combined tensile  shear  stress 
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where 
IK   and 

IIK   are the first and second mode 

SIFs, the parameter σ, τ and ϛ are the tensile, 
shear and combined (tensile + shear) stresses 
respectively, which are assumed as unity, as the 
thickness of the plate considered is unity for the 
present analysis (unless otherwise mentioned) 
and the parameter a is a semi crack length. 

4.1. Convergence and Validation of Present 
Study 

For validating the present computer program 
developed for XFEM algorithm, the program is 
firstly applied to standard test problem. In this 
example, a finite plate of isotropic material 
having material parameters as E = 200 GPa and υ 
= 0.3 with an inclined central crack under biaxial 
stress as explained by Tabarraei and Sukumar 
[10] is considered. A square plate with height H 
(=5 mm), width W (=5 mm) and unit thickness 
with centrally located inclined crack with the 
crack angle α measured with the Y-axis and the 
semi crack length a=1mm is considered. The 
plate is subjected to uniformly applied tensile 
stress of KσX =1 MPa with K (=0.5) and σY = 2 MPa 
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in the X- and Y-directions respectively is shown in 
Fig. 2 (a). The factor K is the biaxial load factor, 
which is defined as the ratio of the load applied 
parallel to the crack to that applied perpendicular 
to it, where the crack is aligned with the X or Y 
coordinate axis. The meshing, modelling of the 
plate and elements selected for the enrichment of 
the crack face and crack tips are shown in Fig. 2 
(b-c). 

For the accuracy point of view, convergence 
studies of various structured meshes are carried 
out. It is evident from the Table 1 that the present 
computations of MSIFs for the plate with an 
inclined center crack with crack angle (α =40°) as 
explained in the literature [10] are converged 
well for the 4 nodes quadrilateral elements with 
mesh size of 40 x 40 elements. Therefore, for 
further computations, 40 x 40 number of element 
mesh is used. The interaction integral with semi 
crack length ae is calculated within the domain of 
size 3d er a=  as the values of the SIFs become 

nearly independent of the domain size [61]. 
The exact stress intensity factors which are 

the functions of the crack angle α and as given by 
Tabarraei and Sukumar [10] are 

( )2 2sin cosI Y XK a    = +  (72) 

( )sin cosII Y XK a    = −  (73) 

It should be noted here that the exact values 
of stress intensity factors mentioned by 
Tabarraei and Sukumar [10] are for an infinite 
plate, and as the problem at hand has the plate 
dimensions quite large as compared to the crack 
length used for analysis, therefore the numerical 
solution can be compared with the exact solution 
and results given in [10]. 

The MSIFs are determined and compared for 
different values of crack angle α, are presented in 
Fig. 3 (a-b). The present XFEM results, the results 
obtained for Quadrilateral meshes in [10] and the 
results of exact solution are in excellent 
agreement.

 In this study, the effect of the biaxially applied 
tensile stress on an orthotropic plate with an 
inclined central crack is studied by varying the 
biaxial load factor (K) and crack angle (α). 
Analysis of variation of MSIFs along with crack 
propagation path is also carried out. 

 
Table 1. Convergence study of normalized MSIFs of the 

isotropic plate with an inclined center crack with crack angle 
(α=40°) 

Number of Elements  KI KII 

20X20 1.32572 0.48829 

30X30  1.71898 0.59935 

40X40  1.76547 0.63719 

60X60 1.76547 0.63719 

80X80 1.76547 0.63719 

 
(a) 

 
(b) 

 
(c) 

Fig.2. Plate subjected to biaxial tensile stress (a) geometry 
and loading condition (b) X-FEM meshing of the plate with 

center inclined crack (c) crack tip and crack face enrichment 
by X-FEM 

 

 
                                                    (a) 
 

 
(b) 

Fig.3. Comparison of present MSIFs results 
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4.2. Effect of Variation of Biaxial Load Factor 
(K) on an Orthotropic Plate with an Inclined 
Centre Crack Subjected to Biaxial Tensile 
Stress and Crack Propagation Path Analysis. 

In this example, a square plate with a centrally 
located inclined crack is considered. The 
dimensions of the plate and crack are as 
explained in the previous case. The material 
properties used are E11 =144.8 GPa, E22=11.7 GPa, 
G12=9.66 GPa and υ12 =0.21. The plate is subjected 
to uniformly applied biaxial tensile stresses of 
KσX and σY in the X- and Y-directions respectively. 

The obtained results are presented in Fig.4 (a-
b), which shows the variation of MSIFs for 
various biaxial load factors (K= 0, 1, 2, 4) and 
crack angle (α =0, 10, 20, 30 to 180°).  

Fig.4 (a) shows the variation of normalized 
mode I SIF KI for various values of K, for K=1 the 
values of SIF KI are almost equal and independent 
of the crack angle while for K=0, 2 and 4 the 
values of SIF KI are symmetric about a vertical 
line passing through crack angle 90° and shows 
the sinusoidal variation with maxima at α= 90°. 
Fig.4 (b) shows the variation of normalized SIF KII 
for various values of K, it is seen that for K=1, the 
value of KII is independent of the crack angle and 
is equal to zero. Except for K=1, irrespective of the 
value of K, SIF KII is zero for α= 0°, 90° and 180° 
and shows the sinusoidal variation with 
maxima/minima occurring at α= 45°/135°. 

 

 
             (a) 

 
       (b) 

Fig.4. Effect of variation of K on MSIFs of an orthotropic 
square plate with a center inclined crack subjected to biaxial 

tensile stress 

 

In order to examine further the effects of 
biaxially applied stress, we have predicted the 
crack extension/propagation path in this case. 
From the results obtained, it is observed that the 
values of KI are higher when K =4 and KII shows 
the sinusoidal variation with maxima/minima 
occurring at α= 45°/135° therefore, the case of an 
inclined crack with α (= 45°) and K (=4) is 
considered for crack propagation. 

As explained previously, in the present study 
the global tracking algorithm is used to find the 
path of crack propagation by defining an ISO-line, 
crack increment length (Δincr) and number of 
crack increment step. In the present case Δincr = 
1mm and the number of steps equal to 5 is used. 
The crack is propagated through the domain till it 
cut the whole body into two halves. The results 
are presented in Fig.5 (a-c). 

Fig.5 (a-b) shows the path followed by the 
upper and lower crack tips. The obtained 
propagating paths are representing the crack 
growth pattern for the cracks subjected to tensile 
stress in plates. Both crack tips follow the similar 
propagation pattern, after first two steps crack 
follows a straight line perpendicular to X-
direction. This indicates the mode I failure of the 
plate which can be confirmed from Fig.5 (c) 
which shows the values of KI increase while the 
values of KII decrease linearly in each step after 
the first two steps. This may be due to the fact 
that, in that zone the plate is in compression 
because of biaxial stress in Y-direction and after 
that, as K is large, the crack tips move almost 
perpendicular to X-direction which confirms the 
mode I failure of the plate. 

4.3. Effect of Fiber Angle (± β°) and Crack 
Angle (α) on the MSIFs of Centrally Inclined 
Crack in an Orthotropic Square Plate 
Subjected to Tensile, Shear and Combined 
Stress 

In this numerical example, the effects of fiber 
angle and crack angle on the MSIFs are evaluated 
by applying the different types of stresses like 
tensile, shear and combined i.e., tensile and shear. 
The plate geometry and loading conditions for 
the plate subjected to biaxial shear stress and 
combined stresses are shown in Figs. 6 and 7, 
respectively. 

4.3.1. Effect of Fiber Angle 

In this case, the dimensions of the plate and 
material properties used are as explained in the 
previous example, the crack angle is fixed at 
α=45° and K =2 is considered.  

For orthotropic material under consideration 
the fiber orientation is defined as the angle of the 
counterclockwise rotation from the crack axis to 
the fiber axis as shown in Fig. 8. 
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(a) 

 
(b) 

 
(c) 

Fig.5. Crack propagation path for center inclined crack (α = 
45°) in an orthotropic plate with K =4, subjected to biaxial 
tensile stress (a) upper crack tip (b) lower crack tip, (c) KI 

and KII variation 

 

  
Fig.6. Plate geometry and loading condition subjected to 

biaxial shear stress 

 
Fig.7. Plate geometry and loading condition subjected to 

biaxial combined stress 

 
Several fiber orientations (β = 0°, ±10°, ±20°, 

±30°, ±40°, ±50°, ±60°, ±70°, ±80°, 90°) are used 
for the evaluation of normalized MSIFs by 
applying uniform biaxial tensile, shear and 
combined stress. The results obtained for MSIFs 
are presented in Fig. 9 (a-b). 

From Fig.9 (a-b) it is observed that biaxially 
applied tensile, shear and combined stresses 
follow the same trend for KI and KII. The values of 
SIFs are decreasing up to β = ±30°, and then 
increases and are maximum at β = ±40° and again, 
these values decrease up to β = ±80°, for β = 0° 
and 90° the values are same. Values of KII are very 
small in comparison with KI which shows that 
there is no effect on the mode- II SIF which is also 
observed in uniaxial loading. The MSIFs KI and KII   
follow almost sinusoidal variation about 40 ° 
fiber angle for all types of biaxial loads 
considered in this study. 

4.3.2. Effect of Crack Angle 

As the results of the previous example reveals 
that MSIFs shows almost a sinusoidal variation 
about 40 ° fiber angle. Therefore, in the present 
case the effect of variation of crack angle α on the 
MSIFs of an orthotropic plate with fiber angle β = 
±40° is studied. The plate is subjected to different 
types of biaxially applied stresses as explained in 
the preceding section. The MSIFs are evaluated 
by keeping biaxial load factor K=2.  

 

 
Fig.8. Positive rotation of principal material axes from 

material axes 
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      (a) 

 
     (b) 

Fig. 9. Effect of orthotropic axis ± β ° on the MSIFs of 
centrally inclined crack (α =45°) in orthotropic plate 

subjected to biaxial tensile, shear and combined (tensile+ 
shear) stress with (K=2) 

 

 
(a) 

 
(b) 

Fig. 10.  Effect of crack angle α on the MSIFs of centrally 
inclined crack in an orthotropic plate subjected to biaxial 
tensile, shear and combined (tensile+ shear) stress with 

(K=2) 

 

The material properties, plate and crack 
dimensions are kept same as in the preceding 
example. The numerical results obtained for KI 
and KII are presented in Fig.10 (a) and (b), 
respectively. 

From the obtained results it is observed that 
when orthotropic plate is subjected to biaxial 
tensile stress, values of KI start increasing up to 
the crack angle α =90° and then decreasing up to 
180°, the values are same for α =0° and 180°, 
while the values of KII show the symmetric 
sinusoidal variation. The values of KII vary 
symmetrically about the mean line with KII = 0, 
and are zero for the crack angle α =0°, 90° and 
180° with maxima at α =50° and 130°. 

In the present case, the crack propagation 
paths along with MSIFs variation in each crack 
increment step for the tensile, shear and 
combined stress are determined; the results are 
presented in Fig. 11-13 (a-c). For this analysis, we 
considered the case with crack angle α (= 45°), K 
(=2), Δincr (= 1 mm) and the number of steps equal 
to 5. 

From the Fig. 11 (a-b) it is observed that when 
tensile stress is applied, both the crack tips 
propagate in the similar manner, and Fig. 11 (c) 
show the linear variation of MSIFs with KI greater 
than KII, this confirms the mode I failure of the 
plate. This may be due to the crack tips start to 
open almost perpendicular to the direction of 
application of stress as the value of K is kept equal 
to two. 

From the Fig. 12 (a), it can be observed that 
when shear stress is applied, the crack tips start 
sliding and show the mode- II failure. The Fig. 12 
(b) shows the variation of MSIFs, it is observed 
that KII increases linearly while KI decrease after 
every two steps, which indicate that the crack 
becomes unstable and propagate in failure mode- 
II. 

Fig. 13 (a) shows the mixed mode crack 
propagation paths when combined stress I 
applied. In the first step crack propagates in 
mode-I and further it shows oscillations which 
indicate that the crack direction becomes 
unstable. 

This is due to the fact that, after the first step, 
because of combined stresses the crack tips, 
slides and opens simultaneously and starts 
oscillating and may get fracture failure in the 
mixed mode manner. From the Fig. 13 (b) it is 
observed that the values of MSIFs obtained are 
greater than those obtained when tensile and 
shear stresses are applied. Again, it is observed 
that the KI is greater than KII, which indicates that 
though the crack tips show mixed mode failure, 
still KI shows dominant effects than KII in the 
fracture failure of the plate. 

 
 

0 20 40 60 80

-1

0

1

2

3

Orthotropic angle (degree) 

N
o

rm
a

li
ze

d
 S

IF
 K

I

 

 
Tensile stress 

Shear stress

Combined stress

0 20 40 60 80

-0.8

-0.6

-0.4

-0.2

0

Orthotropic angle (degree)

N
o

rm
a

li
ze

d
 S

IF
 K

II

 

 
Tensile stress

Shear stress

Combined stress

0 50 100 150
-1

0

1

2

3

4

Crack angle (degree)

N
o

rm
a

li
ze

d
 S

IF
 K

I

 

 
Tensile stress

Shear stress

Combined stress

0 50 100 150
-1.5

-1

-0.5

0

0.5

1

Crack angle (degree)

N
o

r
m

a
li

z
e
d

 S
IF

 K
II

 

 
Tensile stress

Shear stress

Combined stress



Shailesh & Lal / Mechanics of Advanced Composite Structures 8 (2021) 213-234 

225 

 
(a) 

 
(b) 

 
(c) 

Fig.11. Crack propagation path for center inclined crack (α = 
45°) in orthotropic plate with K =2subjected to biaxial tensile 

stress (a) upper crack tip (b) lower crack tip, (c) KI and KII 
variation 

 

4.4. Effect of variation of K on MSIFs  

The results of the previous example, show that, 
when an orthotropic plate is subjected to biaxial 
stresses the value of K, crack angle along with the 
fiber angle has considerable effects on the 
fracture failure of orthotropic materials. 
Therefore, to assess the effect of K and fiber angle, 
in this example, MSIFs of symmetric angle ply 
[0°/β°/ β°/0°] laminated composite plate by 
keeping β (=15°, 30°, 45º, 60°, 75º, and 90°) and 
keeping K (= 2, 1, 0.5, and 0.25) are assessed. The 
geometry of the crack, plate dimensions and 
material properties are kept same as in the 

previous example, the crack angle is fixed at 
α=45°. 

 

 
(a) 

 
(b) 

Fig. 12. Crack propagation path for center inclined crack (α = 
45°) in orthotropic plate with K =2subjected to biaxial shear 

stress (a) crack tip (b) KI and KII variation 
 

 
(a) 

 
(b) 

Fig. 13. Crack propagation path for center inclined crack (α = 
45°) in orthotropic plate with K =2subjected to biaxial 
combined stress (a) crack tip, (b) KI and KII variation 
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The MSIFs are evaluated by applying uniform 
biaxial tensile, shear and combined stress, and 
results are presented in Table 2. 

The obtained results reveal that, for tensile 
stress the value of MSIF is increased up to a fiber 
angle β = 45° and then decreasing up to 90°.  

The MSIFs obtained for all values of K for 
[0°/45°/ 45°/0°] laminated composite plate are 
higher among the lamination schemes 
considered for tensile stress.  

For shear and combined stresses, the value of 
MSIFs is continuously increasing from a fiber 
angle β = 15° up to 90° and MSIFs are maximum 
for [0°/90°/ 90°/0°] laminated composite plate 
for all the values of K. 

From Table 2 it is observed that for K =2, and 
0.5, the MSIFs obtained are exactly same for all 
types of stresses considered in this study. This 
reveals that for the same value of total applied 
stress there is no effect of changing the direction 
of stress from the X-axis to Y-axis or from Y-axis 
to X-axis on the MSIFs when α=45° of an inclined 
crack. For K=0.25 the MSIFs are higher than the 

MSIFs of other values of K, this indicates that for 
an inclined crack with α=45°, the stresses applied 
along the Y-axis have a dominant effect in 
comparison with the stresses applied along X-
axis. 

From Table 2, again, it is observed that for        
K =2, 0.5, and 0.25, the MSIFs obtained for shear 
stress are higher while for the tensile stress are 
lower and vice versa for K=1. This is in 
contradiction with the results obtained in section 
4.3.2; this indicates that there is considerable 
effect of fiber angle, lamina configuration and 
variation of K on the fracture behavior of the 
laminated composite plate when biaxial stresses 
are applied. 

In order to examine the effect of lamination 
scheme and the value of K on crack 
extension/propagation path, the [0°/45°/ 
45°/0°] laminated composite plate with an 
inclined crack with α (= 45°) and K (=0.25) is 
considered in the analysis. For this analysis the 
Δincr and the number of steps is kept same as in 
the previous example. 

 

Table 2. Effect of biaxial load factor K on SIFs of centrally located inclined crack (α=45°) in symmetric angle ply laminated composite 
square plate subjected to biaxial tensile, shear, combined (Tensile + shear) stress

Biaxial load 
factor  

Lamination 
Scheme 

Tensile stress Shear stress Combined stress 

KI KII KI KII KI KII 

K=2 

 

[0/15]2S 1.6191 0.7125 -2.6798 -0.7403 -1.0607 -0.0278 

[0/30]2S 1.6530 0.6458 -2.6717 -0.7053 

 

-1.0187 -0.0595 

 
[0/45]2S 1.6594 0.6210 

 

-2.7035 -0.5881 -1.0441 

 

0.0330 

[0/60]2S 1.6406 0.6341 -2.7329 

 

-0.4676 -1.0923 0.1665 

[0/75]2S 1.6091 0.6951 -2.7709 

 

-0.4271 -1.1618 0.2680 

 
[0/90]2S 1.5869 0.7716 -2.7853 -0.6033 

 

-1.1984 0.1683 

K=1 [0/15]2S 1.2110 0.0332 -1.1445 -0.2954 0.0665 -0.2622 

[0/30]2S 1.2183 0.0255 -1.1665 -0.2905 0.0518 -0.2651 

[0/45]2S 1.2265 0.0239 

 

-1.1912 -0.2556 

 

0.0354 

 

-0.2318 

[0/60]2S 1.2286 0.0271 -1.1989 -0.2157 0.0297 -0.1887 

 
[0/75]2S 1.2306 0.0302 -1.1913 -0.1976 0.0393 -0.1674 

[0/90]2S 1.2309 0.0263 -1.1579 -0.2448 0.0730 -0.2185 

 
K=0.5 [0/15]2S 1.6191 0.7125 -2.6798 -0.7403 

 

-1.0607 -0.0278 

 
[0/30]2S 1.6530 0.6458 -2.6717 -0.7053 

 

-1.0187 

 

-0.0595 

 
[0/45]2S 1.6594 0.6210 -2.7035 -0.5881 

 

-1.0441 

 

0.0330 

[0/60]2S 1.6406 0.6341 -2.7329 -0.4676 -1.0923 0.1665 

[0/75]2S 1.6091 0.6951 -2.7709 -0.4271 -1.1618 

 

0.2680 

 
[0/90]2S 1.5869 0.7716 -2.7853 -0.6033 -1.1984 0.1683 

K=0.25 [0/15]2S 2.4352 2.0710 -5.7505 -1.6302 -3.3152 0.4408 

[0/30]2S 2.5224 1.8866 -5.6821 

 

-1.5349 -3.1597 0.3517 

[0/45]2S 2.5250 1.8153 -5.7281 -1.2529 -3.2031 0.5624 

[0/60]2S 2.4646 1.8483 -5.8009 -0.9714 

 

-3.3363 

 

0.8769 

[0/75]2S 2.3660 2.0250 

 

-5.9301 -0.8861 -3.5641 1.1389 

[0/90]2S 2.2988 2.2624 -6.0401 

 

-1.3203 -3.7413 0.9421 
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(a) 

 
                                                          (b) 

Fig. 14. Crack propagation path for center inclined crack 
(α=45°) in [0°/45°/45°/0°] laminated composite plate with 
K =0.25subjected to biaxial tensile stress (a) crack tip, (b) KI 

and KII variation 

 
From Fig. 14 (a) it is observed that when the 

tensile stress with K (= 0.25) is applied, the crack 
tips move almost perpendicular to the Y-axis and 
follow a straight path, which show mode-I failure 
along the Y-axis. From Fig.14 (b) it is observed 
that, initially when the plate is under the 
influence of biaxial stress with less stress along X-
axis, the values of KII are larger than KI for the first 
two steps and crack shows some kinks. After this, 
in the further steps, the crack tips get stabilized 
and start moving in a straight path and the values 
of KI start increasing and are larger than KII. 

From Fig. 15 (a) it is observed that for shear 
stress, the crack follows the same mode-II 
propagation pattern as observed in the previous 
section 4.3, this can be confirmed from Fig. 15 (b). 

It is observed from Fig. 16 (a), when the crack 
is subjected to combined stress; the crack tips 
follow a zigzag trajectory, forming successive 
kinks. These phenomena occur as KII begins to 
increase and the ratio of KI to KII begins to 
decrease, this can be observed from the results of 
KI and KII shown in Fig.16 (b). In such cases after 
certain steps, this ratio becomes too large and the 
crack path is susceptible to oscillation and 
becomes unstable as identified by Belytchko and 
Flemming [53]. 

 

4.5. Effect of Crack Eccentricity in Y-Direction, 
Crack Length and Biaxial Load Factor on 
MSIFs of Laminated Composite 
[0°/45°/45°/0°] Plate  

In this example an eccentric crack symmetric 
about Y-axis and subjected to uniformly applied 
biaxial tensile, shear and combined stresses as 
shown in Fig.17 (a-c) is considered. The 
[0°/45°/45°/0°] laminated composite plate is 
used to evaluate the effect of crack length and 
variation of K on the MSIFs. The material 
properties and plate dimensions used are as in 
the previous example. The eccentricity of the 
crack is defined by the ratio ey/H, where ey is the 
distance of the crack along the Y-axis and H is the 
semi height of the plate as shown in Fig. 17 (a-c). 

To verify the effect of variation of crack length, 
the ratio of crack length to semi plate width 
(a/W) is used. The MSIFs are evaluated by 
keeping ey/H (= 0. 2, 0.4 and 0.8), a/W (=0. 1, 0.2, 
0.3, 0.4 and 0.5) and K (= 0.5 and 2). The results 
are presented in Table 3. 

From the results it is observed that for an 
eccentric crack with eccentricity along Y-axis, for 
tensile stress the values of KI are greater than KII, 
for shear stress the values of KII are greater than 
KI, but for combined stress the values of KII are 
slightly greater than KI for K=0. 5 and vice versa 
for K=2. 

 

 
(a) 

 
(b) 

Fig. 15. Crack propagation path for center inclined crack (α = 
45°) in [0°/45°/45°/0°] laminated composite plate with K 
=0.25subjected to biaxial shear stress (a) crack tip, (b) KI  

and KII variation 
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Table 3. Effect of eccentricity ey/H and a/W ratio on the laminated composite [0°/45°/45°/0°] square plate with eccentric crack 
subjected to bi-axial tensile, shear, combined (Tensile + shear) stress with different K

ey/
H 

a 
/W 

K=0.5 K=2 
Tensile  
stress 

Shear  
stress 

Combined 
stress 

Tensile  
stress 

Shear  
stress 

Combined 
stress 

KI KII KI KII KI KII KI KII KI KII KI KII 

0.2 0.1 2.70 0.013 0.013 3.02 2.71 3.03 1.48 0.020 0.012 1.07 1.50 1.09 

0.2 2.46 -0.014 -0.014 2.77 2.44 2.76 1.37 -0.003 0.012 0.98 1.38 0.98 

0.3 3.02 -0.023 -0.015 3.37 3.00 3.34 1.65 -0.009 0.017 1.18 1.66 1.17 

0.4 3.55 -0.039 -0.012 3.94 3.54 3.90 1.91 -0.019 0.023 1.38 1.93 1.36 

0.5 4.07 -0.063 -0.002 4.49 4.06 4.43 2.16 -0.033 0.025 1.56 2.19 1.52 

0.4 0.1 2.73 -0.026 -0.019 2.84 2.75 2.81 1.51 -0.017 0.003 1.33 1.51 1.31 

0.2 2.51 -0.016 -0.021 2.62 2.49 2.61 1.39 -0.003 0.035 1.23 1.43 1.23 

0.3 3.10 -0.031 -0.023 3.20 3.08 3.16 1.69 -0.009 0.057 1.49 1.75 1.48 

0.4 3.69 -0.062 -0.014 3.76 3.67 3.69 1.98 -0.027 0.083 1.74 2.07 1.71 

0.5 4.28 -0.113 0.009 4.30 4.29 4.18 2.28 -0.055 0.113 1.97 2.39 1.91 

0.8 0.1 2.78 -0.013 0.009 2.60 2.79 2.59 1.52 -0.003 0.004 1.72 1.53 1.72 

0.2 2.75 -0.070 0.051 2.45 2.80 2.38 1.51 -0.023 0.065 1.63 1.57 1.60 

0.3 3.73 0.239 0.153 3.02 3.88 2.78 2.00 -0.105 0.163 2.02 2.16 1.92 

0.4 4.88 0.538 0.307 3.55 5.16 3.01 2.57 -0.251 0.306 2.40 2.26 2.15 

0.5 6.11 0.958 0.492 4.03 6.61 3.07 3.20 -0.457 0.484 2.76 3.69 2.31 

 
(a) 

 
(b) 

Fig.16. Crack propagation path for center inclined crack 
(α = 45°) in [0°/45°/45°/0°] laminated composite plate with 
K =0.25subjected to biaxial combined stress (a) crack tip, (c) 

KI  and KII variation 
 

This may be so because, when the plate is in 
tension the crack faces may start opening and 
increasing KI, when the plate is under shear the 
crack faces slide over each other and increasing 
KII, and when combined stress is applied the 
elongation of the plate in Y-direction is 

accompanied by a contraction in X-direction and 
crack faces/tips exhibit mixed mode behavior. 
From Table 3, it is noticed that negative values of 
KII for tensile stress and negative values of KI for 
shear stress are obtained except for a few values 
of ey/H and a/W. 

This may be contributed to the eccentricity of 
the crack in Y-direction, as the crack tips are in 
the first and second quadrants the deformation in 
the X and Y direction has a different direction of 
dislocation. From the Table 3 it is also observed 
that, with the increase in the ratios ey/H and a/W 
the MSIFs also increases. 

4.6.  Effect of Eccentricity of the Crack in X and Y-
Direction Along with the Effect of Variation in 
Crack Angle and Biaxial Load Factor on MSIFs of 
Laminated Composite [0°/45°/45°/0°] Plate  

In this study the effect of crack eccentricity in 
X and Y-direction in [0°/45°/45°/0°] laminated 
composite plate is studied by varying the biaxial 
load factor (K) and crack angle (α). The same 
material properties and plate dimensions are 
used as in the previous example. The eccentricity 
of the crack in X and Y direction is defined by the 
ratio and are ex/W =ey/H (= 0.5), where ex is the 
distance of a crack along X-axis and ey is the 
distance of the crack along Y-axis as shown in Fig. 
18 (a-c). 

The MSIFs are evaluated by varying α (=0° to 
180°), K (=0.5, 1 and 2) and keeping a/W (=0.4). 
The MSIFs are evaluated and are presented in 
Figs. 19-21 (a-b). 

 

3 4 5 6 7 8

-1

0

1

2

3

1 2 3 4 5
-10

-5

0

5

10

Number of steps

N
o

rm
a

li
ze

d
 S

IF

 

 
K

I

K
II



Shailesh & Lal / Mechanics of Advanced Composite Structures 8 (2021) 213-234 

 

229 

 
(a) 

 
(b) 

 
(c) 

Fig.17. Plate with crack eccentric in Y- direction, subjected to 
biaxially applied (a) tensile stress (b) shear stress (c) 

combined stress 

 
From the Figs. 19-21 (a-b) it is observed that, 

when the plate is subjected to tensile stress, for 
K=0. 5, the values of KI start decreasing up to the 
crack angle α =90° and then increasing up to 180°, 
and the same values are obtained for α =0° and 
180°. While for K=1 and 2, the values of KI start 
increasing up to the crack angle α =90° and then 
decreasing up to 180°.  

For shear and combine stress, the values of KI 
show the sinusoidal variation, and are symmetric 
about α =90° for all values of K (=0.5, 1 and 2). For 
tensile stress, the values of KII show the exact 
opposite behavior that of KI for K =0. 5 and 2. For 
shear and combined stress the values of KII show 
increasing and decreasing variation in the 
interval of α =40° and varies symmetric about α 
=90° for K =1. 

 

 
(a) 

 
(b) 

 
(c) 

Fig.18. Plate with crack eccentric in X and Y- directions 
subjected to biaxially applied (a) tensile stress (b) shear 

stress (c) combined stress 

 

 
(a) 

 
(b) 

Fig. 19. Effect of biaxial stresses, when K=0.5 on SIFs of 
laminated composite [0°/45°/45°/0°] plate with inclined 

crack eccentric in X and Y-directions, (a) KI (b) KII 
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The crack propagation paths and the 
corresponding variation of MSIFs of this example 
are derived and shown in Fig. 22-24 (a- c). In this 
study the crack with α (= 50°) and K (=2) is 
considered by keeping Δincr (= 0.5 mm) and the 
number of steps equal to 5. 
 

 
(a) 

 
(b) 

Fig. 20. Effect of biaxial stresses when K=1 on SIFs of 
laminated composite [0°/45°/45°/0°] plate with inclined 

crack eccentric in X and Y-directions, (a) KI (b) KII 

 

 
(a) 

 
(b) 

Fig. 21. Effect of biaxially applied stresses when K=2 on SIFs 
of laminated composite [0°/45°/45°/0°] plate with inclined 

crack eccentric in X and Y-directions, (a) KI (b) KII 

 

 
(a) 

 
(b) 

Fig. 22. Crack propagation path for center inclined eccentric 
(ex/W =ey/H= 0.5) crack with (α= 50°) in [0°/45°/45°/0°] 
laminated composite plate with K =2 subjected to biaxial 

tensile stress (a) crack tip, (b) KI and KII variation 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 23. Crack propagation path for center inclined eccentric 
(ex/W=ey/H= 0.5) crack with (α = 50°) in [0°/45°/45°/0°] 
laminated composite plate with K=2 subjected to biaxial 

shear stress (a) upper crack tip (b) lower crack tip, (c) KI and 
KII variation 
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(a) 

 
(b) 

 
(c) 

Fig. 24. Crack propagation path for center inclined eccentric 
(ex/W =ey/H= 0.5) crack with (α= 50°) in [0°/45°/45°/0°] 
laminated composite plate with K =2 subjected to biaxial 

combined stress (a) upper crack tip (b) lower crack tip, (c) KI 
and KII variation 

 
The crack propagation paths and the 

corresponding variation of MSIFs of this example 
are derived and shown in Fig. 22-24 (a- c). In this 
study the crack with α (= 50°) and K (=2) is 
considered by keeping Δincr (= 0.5 mm) and the 
number of steps equal to 5. 

From Fig. 22 (a) it is observed that for tensile 
stress, the crack tips show oscillations after a 
certain interval of steps and shows mode-I 
fracture failure as can be confirmed from Fig 22 
(b).  

For shear and combine stress the crack tips 
follow a zigzag trajectory as shown in Fig.23-24 
(a-c), this may be contributed due to the 
eccentricity of the crack and similar reasons as 
discussed in section 4.4. In both these cases, the 
crack tips follow mixed mode fracture failure as 
the distance of crack from the plate edge is 
increased. 

 

5. Conclusions 

In the present work, detailed analysis of 
MSIFs and crack propagation paths of a central 
crack, inclined crack and an eccentric crack in X 
and /or Y direction in an orthotropic and 
symmetric angle ply laminated composite plates 
subjected to different types of biaxially applied 
stresses is presented. The well-established XFEM 
approach and global tracking crack growth 
algorithm utilized in this study provides a simple, 
reliable and accurate finite element algorithm for 
estimation of MSIFs and the crack propagation 
paths in an orthotropic structure subjected to 
biaxially applied different stresses. 

Present results show significant effects of 
variation of crack angle, fiber angle, biaxial load 
factor, crack length and crack position on the 
MSIFs and on the crack propagation paths of an 
inclined crack in an orthotropic laminated 
composite plates and therefore can be taken into 
account in the damage development studies and 
actual manufacturing of these materials. 

The following conclusions are noted from this 
study 

a) The MSIFs show sinusoidal and symmetric 
variation about a certain value of crack angle for 
the different values of biaxial load factors (K) 
except for K (=1). 

b) There is an increase in the value of MSIFs 
with the increase in fiber orientation angle β˚, 
which reveals that fiber orientation angle 
determines the fracture axis in the case of 
orthotropic and laminated composite structures. 

c) Inclined center crack shows mode-I failure 
when subjected to tensile stress, mode-II failure 
when subjected to shear stress and mixed mode 
failure when subjected to combine stress. From 
the study of an eccentric crack, it is observed that, 
as the distance of the crack from the plate edge 
increases the crack tips follow mixed mode 
fracture failure when subjected to shear and 
combine stress, and shows mode-I failure when 
subjected to tensile stress. 
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