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Abstract

The purpose of this paper is to propose the spectral collocation method to solve linear and nonlinear
stochastic Itô-Volterra integral equations (SVIEs). The proposed approach is different from other
numerical techniques as we consider the Legendre Gauss type quadrature for estimating Itô integrals.
The main characteristic of the presented method is that it reduces SVIEs into a system of algebraic
equations. Thus, we can solve the problem by Newton’s method. Furthermore, the convergence
analysis of the approach is established. The method is computationally attractive, and to reveal the
accuracy, validity, and efficiency of the proposed method, some numerical examples and convergence
analysis are included.
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1. Introduction

Stochastic Itô-Volterra integral equations SVIEs have been used recently to solve a rang of prob-
lems in economics, sociology, biology, medical models, anthropology, as well as in engineering and
finance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. These equations arise when a noise source, which is a Gaus-
sian white noise, is introduced into Volterra integral equations. Some papers have focused on the
existence of solution for these equations [12, 13, 14]. On many occasions, it is not possible to find the
exact solutions of SVIEs. Because of this fact, together with the excellent evolution of the numeri-
cal method, it is important to find their approximate solutions by using some numerical techniques
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[6, 9, 14, 15, 16, 17, 18, 19, 20]. Also, numerical methods have been proposed to solve stochastic
differential equations and stochastic integral equations [6, 8, 19, 20, 21, 22, 23, 24]. However, there
are a few papers considering nonlinear stochastic differential equations such as [25, 26, 27]. Solving
these problems are still difficult either numerically or theoretically.
In this paper, the spectral collocation method with numerical integration will be developed to solve
the following nonlinear SVIE

y(t) = y0 +

∫ t

0

k1(t, τ)b(τ, y(τ))dτ +

∫ t

0

k2(t, τ)σ(τ, y(τ))dB(τ), t ∈ D = [0, l], (1.1)

where k1(t, s) and k2(t, s) are known functions on D × D. Also, b(t, y(t)) and σ(t, y(t)), for t ∈ D
are stochastic processes defined on the same probability space (Ω,F, P ) with a filtration {Ft|t ≥ 0}
which is increasing and right continuous with F0 containing all P -null sets. Furthermore, y(t) is the
unknown random function to be found. In addition, y0 = y(0), and B(t) is a standard Brownian
motion defined on the probability space.
It is worth noting that, the main advantage of the proposed method is that it reduces the problem
under consideration into solving a system of algebraic equations by expanding the solution in the
shifted Legendre function basis and using the spectral collocation method. In addition, the Gauss-
Legendre type quadrature for estimating Itô-integral is used. Finally, we can solve the system of
algebraic equations by Newton’s method to obtain the unknown coefficients.
This paper is organized as follows: In Section 2, some basic definitions and preliminaries for the
Legendre polynomials, stochastic processes and Itô integral are presented. The approximation of the
solution of the equation (1.1) using a shifted Legendre collocation approach is introduced in Section
3. Section 4 is devoted to convergence analysis of the method. The accuracy of the proposed method
is demonstrated by considering some numerical examples in section 5. Finally, a brief conclusion is
given in the last section.

2. Preliminaries and notations

2.1. Function approximation
Given an open interval I = (a, b) and a generic positive weight function w on I. Let Pm, m ≥ 1,

be the space of polynomials of degree less than or equal to m, and the sequence {φj}∞j=0 be a complete
orthonormal set of functions in L2

w(I) with φj ∈ Pj, j = 0, 1, · · · .
The inner product and its corresponding norm in L2

w(I) are defined respectively as

(u, v)w =

∫ b

a

u(t)v(t)w(t)dt, for all u, v ∈ L2
w(I),

‖u‖L2
w

=
√

(u, u)w.

Theorem 1 [28].. For any u ∈ L2
w(I) and m ∈ N, there exists a unique q∗m ∈ Pm such that,

‖u− q∗m‖L2
w

= inf
qm∈Pm

‖u− qm‖L2
w
,

where

q∗m(x) =
m∑
k=0

ûkφk(x) with ûk =
(u, φk)w
‖pk‖2w

,

and {φk}mk=0 forms an L2
w-orthogonal basis for Pm.

In particular, we denote the best approximation polynomial q∗m by πmu, which is the L2
w-orthogonal

projection of u.
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2.2. The shifted Legendre polynomials

The well-known Legendre polynomials are defined on the interval [−1, 1]. We define the so-called
shifted Legendre polynomials of degree i on the interval [0, l] as follows

Ψi(t) = Li(
2

l
t− 1), i = 0, 1, . . . ,

where Li(t) is the Legendre polynomial of degree i on [−1, 1].
The shifted Legendre polynomials are orthogonal with respect to the weight function w = 1 over
[0, l], namely ∫ l

0

Ψi(x)Ψj(x)dx =

{
l

2i+1
, i = j,

0, i 6= j.

Therefore, if y is an arbitrary element in L2(0, l), by theorem 1, y has the unique best approximation
πNy, such that

πNy(t) =
N∑
i=0

ciΨi(t) = CTΨ(t),

where vectors C and Ψ(t) are given by

C = [c0, c1, . . . , cN ]T , Ψ(t) = [Ψ0(t),Ψ1(t), . . . ,ΨN(t)]T .

Moreover, the coefficients ci are given by

ci =
2i+ 1

l

∫ l

0

y(τ)Ψi(τ)dτ, i = 0, 1, 2, . . . N.

2.3. Some properties of the Itô integral

Definition 1. [29]. (Brownian motion process)
A real-valued stochastic process B(t), t ∈ [0, T ] is called Brownian motion, if it satisfies the following
properties:
(i) (Independence of increments), B(t) − B(s), for t > s, is independent of the past, that is, of
B(u), 0 ≤ u ≤ s, or of Fs, the σ-field generated by B(u), u ≤ s.
(ii) (Normal increments) B(t)−B(s) has Normal distribution with mean 0 and variance t− s.
(iii) (Continuity of paths) B(t), t ≥ 0 is continuous function of t.

Definition 2.. Let {ℵt}t≥0 be an increasing family of σ−algebras of subsets of Ω. A process g(t, ω) :
[0,∞)× Ω→ Rn is called ℵt-adapted if for each t ≥ 0 the function ω → g(t, ω) is ℵt-measurable.

Definition 3.. Let ν = ν(T, S) be the class of functions f(t, ω) : [0,∞)→ Ω×R such that
(i) The function (t, ω) → f(t, ω) is B × F-measurable, where B denotes the Borel algebra on [0,∞)
and F is the σ-algebra on Ω.
(ii) f is adapted to Ft, where Ft is the σ- algebra generated by the random variables B(s), s ≤ t.

(iii) E[
∫ T

S
f 2(t, ω)dt] <∞.

Definition 4.. A function φ ∈ ν is called elementary if it has the form

φ(t, ω) =
∑
j

ej(ω)χ[tj ,tj+1)(t),

where χ denotes the characteristic (indicator) function. Note that since φ ∈ ν each function ej must
be Ft-measurable.
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Definition 5. (The Itô integral). Let f ∈ ν(S, T ), then the Itô integral of f is defined by∫ T

S

f(t, ω)dBt(ω) = lim
n→∞

∫ T

S

ϕn(t, ω)dBt(ω), (lim in L2(P ))

where, ϕn is a sequence of elementary functions such that

E[

∫ T

S

(f(t, ω)− ϕn(t, ω))2dt]→ 0, as n→∞.

Theorem 2 ([29], Integration by parts). Suppose f(s, ω) = f(s) only depends on s and f is continuous
and of bounded variation in [0, t]. Then∫ t

0

f(s)dBs = f(t)Bt −
∫ t

0

Bsdfs.

Theorem 3. (The Itô isometry). Let f ∈ ν(S, T ), then

E

[(∫ T

S

f(t, ω)dBt(ω)

)2
]

= E

[∫ T

S

f 2(t, ω)dt

]
.

Proof. see ([29], p. 29)

3. Numerical solution

This section is devoted to approximation of the solution of equation (1.1) using a shifted Legendre
collocation approach. To solve this equation, we first approximate function y(t) as

y(t) ' yN(t) = CTΨ(t), (3.1)

with C,Ψ(t) defined in the previous section. Substituting (3.1) into (1.1) yields

yN(t) ' y0 +

∫ t

0

k1(t, τ)b(τ, yN(τ))dτ +

∫ t

0

k2(t, τ)σ(τ, yN(τ))dB(τ). (3.2)

For simplicity, we set

k1(t, τ)b(τ, y(τ)) = Ft(τ, y(τ)), k1(ti, τ)b(τ, y(τ)) = Fi(τ, y(τ))

k2(t, τ)σ(τ, y(τ)) = Gt(τ, y(τ)), k2(ti, τ)σ(τ, y(τ)) = Gi(τ, y(τ))

hence, (3.2) becomes

yN(t) ' y0 +

∫ t

0

Ft(τ, yN(τ))dτ +

∫ t

0

Gt(τ, yN(τ))dB(τ). (3.3)

On the other hand, using Theorem 2 yields∫ t

0

Gt(τ, yN(τ))dB(τ) = Gt(t, yN(t))B(t)−
∫ t

0

Ḡt(τ, yN(τ))B(τ)dτ, (3.4)
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where

Ḡt(τ, yN(τ)) =
∂

∂τ
Gt(τ, yN(τ)).

Inserting (3.4) into (3.3) leads to

yN(t) ' y0 +Gt(t, yN(t))B(t) +

∫ t

0

Ft(τ, yN(τ))dτ

−
∫ t

0

Ḡt(τ, yN(τ))B(τ)dτ. (3.5)

However, the second integral term in (3.5) can not be evaluated exactly. So, we transform [0, t] to
[−1, 1] and use a Gaussian type quadrature rule to approximate the integrals. More precisely, under
the linear transformation

τ :=
t

2
(θ + 1), θ ∈ [−1, 1], τ ∈ [0, t],

(3.5) becomes

yN(t) ' y0 +Gt(t, yN(t))B(t) +
t

2

∫ 1

−1
Ft(τ(t, θ), yN(τ(t, θ)))dθ (3.6)

− t

2

∫ 1

−1
Ḡt(τ(t, θ), yN(τ(t, θ)))B(τ(t, θ))dθ.

Therefore, the integral terms are approximated by Legendre-Gauss-Radau quadrature formula with
the nodes and weights denoted by {θj, wj}Mj=0 as

yN(t) ' y0 +Gt(t, yN(t))B(t)

+
t

2

M∑
j=0

wj

[
Ft(τ(t, θj), yN(τ(t, θj)))− Ḡt(τ(t, θj), yN(τ(t, θj)))B(τ(t, θj))

]
. (3.7)

To find the solution yN(t), we collocate (3.7) at N + 1 points. For suitable collocation points we use
the shifted Chebyshev-Gauss collocation points

ti =
1

2

(
1− cos(

(2i+ 1)π

2N + 2
)

)
, i = 0, 1, . . . , N.

Now, inserting ti into (3.7) leads to

yN(ti) ' y0 +Gi(ti, yN(ti))B(ti) (3.8)

+
ti
2

M∑
j=0

wj

[
Fi(τ(ti, θj), yN(τ(ti, θj)))− Ḡi(τ(ti, θj), yN(τ(ti, θj)))B(τ(ti, θj))

]
,

for i = 0, 1, ..., N.

It is worthwhile to point out the collocation points {ti}Ni=0 and {θj}Mj=0 are chosen differently in types
and numbers.
For simplicity, we define the sequence {zl}(N+1)(M+1)+N

l=0 as

zl =

{
tl, for l = 0, · · · , N,
τ(ti, θj), l = N + 1 + i(M + 1) + j, i = 0, 1, · · ·N, and j = 0, 1, · · · ,M.
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Hence, (3.8) becomes

yN(zi) ' y0 +Gi(zi, yN(zi))B(zi)

+
zi
2

N+(i+1)(M+1)∑
l=N+i(M+1)+1

wj

[
Fi(zl, yN(zl))− Ḡi(zl, yN(zl))B(zl)

]
, (3.9)

for i = 0, 1, . . . , N.
To obtain the values of B at points {zl}(N+1)(M+1)+N

l=0 , we apply the Definition 1 in which the Brawnian
motion has Normal distribution as follows

B(t)−B(s) ∼
√
t− sN(0, 1),

where t > s. So, the points {zl}(N+1)(M+1)+N
l=0 must be sorted in ascending order. Let {(si, qi)}(N+1)(M+1)+N

i=0

be a sequence such that si ∈ {0, 1, 2, . . . , (N + 1)(M + 2)}, and {qi}(N+1)(M+1)+N
i=0 is an increasing

sequence where qi = zsi for i = 0, · · · , (N + 1)(M + 1) + N . By building the Brownian motion on

nodes {qi}(N+1)(M+1)+N
i=0 , we get

B(zsi) = B(qi), i = 0, 1, . . . , (N + 1)(M + 1) +N.

Hence, we have the values of B at points {zj}(N+1)(M+1)+N
j=0 . The resulting non-linear system (3.9) is

solved by Newton’s method with respect to the unknown vector C. Finally, we obtain an approximate
solution for the problem (1.1) by substituting C in (3.1).

4. Convergence analysis

In the following theorems, suppose that the functions b(t, y(t)), σ(t, y(t)) satisfy the Lipschitz and
the linear growth conditions as follows
(i) For every T and R, there is a constant α depending only on T and R such that for all |y1|, |y2| ≤ R
and all 0 ≤ t ≤ T ,

|b(t, y1(t))− b(t, y2(t))|+ |σ(t, y1(t))− σ(t, y2(t))| ≤ α|y1 − y2|, (4.1)

and
(ii)

|b(t, y(t))|+ |σ(t, y(t))| ≤ α(1 + |y|) (4.2)

Theorem 4. Let y(t) and yN(t) be the exact solution and approximate solution of (1.1), respectively;
Furthermore, assume that conditions (4.1), (4.2), and
(i) ||y(t)|| <∞, t ∈ D,
(ii) ||ki(t, s)|| ≤ Ki, (t, s) ∈ D ×D, i = 1, 2,
hold; then,

||y(t)− yN(t)|| → 0,

where
||y(t)||2 = E[|y(t)|2].
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Proof.. Let us eN(t) = y(t)− yN(t) be an error function of approximate solution yN(t) to the exact
solution y(t), so we can write

y(t)− yN(t) =

∫ t

0

k1(t, τ)(b(τ, y(τ))− b(τ, yN(τ)))dτ

+

∫ t

0

k2(t, τ)(σ(τ, y(τ))− σ(τ, yN(τ)))dB(τ) + J(t), (4.3)

where, J(t) is the the error estimate between the the Gauss-Legendre quadrature formula and the
exact integral

J(t) =
t

2

∫ 1

−1

(
Ft(τ(t, θ), yN(τ(t, θ)))dθ − Ḡt(τ(t, θ), yN(τ(t, θ)))B(τ(t, θ))

)
dθ

− t

2

M∑
j=0

wj

[
Ft(τ(t, θj), yN(τ(t, θj)))− Ḡt(τ(t, θj), yN(τ(t, θj)))B(τ(t, θj))

]
, (4.4)

which if we choose M sufficiently large, then the integration error tend to 0.
Using (4.3) leads to

||eN(t)|| ≤ ||I1(t)||+ ||I2(t)||+ ||J(t)||, (4.5)

where,

I1(t) =

∫ t

0

k1(t, τ)(b(τ, y(τ))− b(τ, yN(τ)))dτ, (4.6)

and,

I2(t) =

∫ t

0

k2(t, τ)(σ(τ, y(τ))− σ(τ, yN(τ)))dB(τ). (4.7)

For I1, using condition (ii) and Lipschitz condition (4.1) lead to

||I1(t)|| ≤
∫ t

0

||k1(t, τ) (b(τ, y(τ))− b(τ, yN(τ))) ||dτ,≤ K1α

∫ t

0

||eN(τ)||dτ (4.8)

and for I2, from the Itô isometry, and condition (ii), we get

||I2(t)|| = ||
∫ t

0

k2(t, τ)(σ(τ, y(τ))− σ(τ, yN(τ)))dB(τ)||

≤
∫ t

0

||k2(t, τ)(σ(τ, y(τ))− σ(τ, yN(τ)))||dτ (4.9)

≤ K2α

∫ t

0

||eN(τ)||dτ.

Hence, inserting (4.8) and (4.9) into (4.5) yields

||eN(t)|| ≤ (K1 +K2)α

∫ t

0

||eN(τ)||dτ + ||J(t)||. (4.10)

Thus, by using Gronwall’s Lemma and ||J(t)|| → 0, we obtain

||eN || → 0,

so, yN → y in L2.
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5. Numerical Examples

In this section, some examples are given to illustrate the applicability and accuracy of the proposed
method. The algorithm associated with the numerical method was performed using Maple 18. Let
y(t) be the exact solution of (1.1) and yN(t) be the approximate solution, then we define the absolute
error for some collocation points in the interval [0, l] as

e(n)(tj) =

∑n
i=0 |(yi − yiN)(tj)|

n
, 0 ≤ tj ≤ l, j = 0, 1, . . . ,

in which e(n)(tj) is the error mean at tj with n iteration, and yi(tj), and yiN(tj) are the exact solution
and approximate solution at tj in ith iteration, respectively.

Example 1.. Let us consider the following linear stochastic Itô-Volterra integral equation [9]

y(t) = 1 +

∫ t

0

τ 2y(τ)dτ +

∫ t

0

τy(τ)dB(τ), t ∈ [0, 0.5], (5.1)

where y(t) is the unknown stochastic process defined on the probability space (Ω,F, P ), and B(t) is
a Brownian motion process. The exact solution is

y(t) = exp

(
t3

6
+

∫ t

0

τdB(τ)

)
.

The collocation spectral method presented in Section 3 is employed for deriving
numerical solution of this (SVIE). Here, we collocate (5.1) in N + 1 points ti, i = 0, ..., N. The
error mean of the numerical results is shown in Table 1 for N = M = 10 at collocation points
ti, i = 0, 1, . . . , 5 where t5 = 0.5. Also, the error means for M = N = 20 are shown in Table 2, where
t10 = 0.5. The errors for M = 10, N = 20 are shown in Table 3. Note that from now on, N is the
number of collocation points, and M is the number of nodes of the Gauss-Legendre quadrature. The
results emphasize that when we increase the value of M,N , the errors decrease. Moreover, Figure 1
shows the exact solution and numerical solution computed by the presented method for N = M = 20.
The numerical results reveal the accuracy of the proposed method for solving this SVIE.

Table 1: The errors for Example 1 at collocation points for M = N = 10.

ti t0 t1 t2 t3 t4 t5
e(50)(ti) 8.125E-7 5.264E-5 5.146E-4 2.861E-3 1.058E-2 2.603E-2

e(100)(ti) 7.11E-7 4.881E-5 4.602E-4 2.577E-3 9.656E-3 2.433E-2

Table 2: The errors for Example 1 at collocation points for M = N = 20.

ti t0 t2 t4 t6 t8 t10
e(50)(ti) 5.649E-8 2.092E-5 3.119E-4 2.141E-3 9.169E-3 2.377E-2

e(100)(ti) 7.299E-8 2.265E-5 3.077E-4 2.095E-3 8.601E-3 2.571E-2



About solving stochastic Itô-Volterra integral ... 12 (2021) No. 2, 11-24 19

Figure 1: The Graph of the exact solution and the approximate solution for M = N = 20 for Example 1.

Example 2.. Consider the following stochastic Volterra integral equation [9]

y(t) =
1

12
+

∫ t

0

cos(τ)y(τ)dτ +

∫ t

0

sin(τ)y(τ)dB(τ), t ∈ [0, 1],

where y(t) is the unknown stochastic process defined on the probability space (Ω,F, P ), and B(t) is
a Brownian motion process. The exact solution of this stochastic Itô-Volterra integral equation is

y(t) =
1

12
exp

(
−t
4

+ sin(t) +
sin(2t)

8
+

∫ t

0

sin(τ)dB(τ)

)
.

The absolute errors of the numerical results for M = N = 10, M = 10, N = 20, and M = N = 20 at
some collocation points 0 < ti < 1 are represented in Table 4, Table 5, and Table 6, respectively. The
tables shows that by increasing M,N , the approximate solution can quickly converge to the exact
solution. Also, the numerical findings demonstrate the accuracy of the proposed method. As can be
seen, by less computation, we get good accuracy. Also, Figure 2 illustrates the exact solution and
approximate solution with present method, which are found to be in excellent agreement.

Table 3: The errors for Example 2 at collocation points for M = N = 10.

ti t0 t2 t4 t6 t8 t10
e(50)(ti) 4.887E-6 1.295E-4 1.392E-3 9.059E-3 2.361E-2 3.452E-2

e(100)(ti) 4.546E-6 8.908E-5 1.329E-3 7.555E-3 2.058E-2 3.012E-2

Table 4: The errors for Example 2 at collocation points for M = 10, N = 20.

ti t0 t4 t8 t12 t16 t20
e(50)(ti) 7.203E-7 4.388E-5 9.689E-4 8.572E-3 2.256E-2 3.773E-2

e(100)(ti) 8.234E-7 3.966E-5 8.691E-4 7.500E-3 2.128E-2 3.761E-2
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Table 5: The errors for Example 2 at collocation points for M = N = 20.

ti t0 t4 t8 t12 t16 t20
e(50)(ti) 7.940E-7 4.442E-5 9.738E-4 7.003E-3 1.804E-2 2.859E-2

e(100)(ti) 6.974E-7 4.029E-5 1.049.918E-4 7.056E-3 1.948E-2 2.867E-2

Figure 2: The Graph of the exact solution and the approximate solution for M = N = 20 for Example 2.

Example 3.. Consider the following nonlinear stochastic Itô-Volterra integral equation [8]

y(t) = 0.5 +

∫ t

0

y(τ)(1− y(τ))d(τ) +

∫ t

0

0.25y(τ)dB(τ), t ∈ [0, 1], (5.2)

with the exact solution

y(t) =
0.5 exp(0.96875t+ 0.25B(t))

1 + 0.5
∫ t

0
exp(0.96875τ + 0.25B(τ))dτ

,

where y(t) is the unknown stochastic process defined on the probability space (Ω,F, P ) and B(t) is a
Brownian motion process. The numerical results are shown in Table 7, and Table 8 for M = N = 10,
and M = N = 20, respectively. As the numerical results show, the proposed method is accurate
and efficient for solving nonlinear SVIEs. In order to compare the present method with the analytic
solution, the resulting graph of (5.2) is shown in Figure 3.

Table 6: The errors for Example 3 at collocation points for M = N = 10.

ti t0 t2 t4 t6 t8 t10
e(50)(ti) 1.343E-4 2.235E-3 6.384E-3 1.143E-2 1.576E-2 1.844E-2

e(100)(ti) 1.727E-4 2.377E-3 6.893E-3 1.174E-3 1.532E-2 1.971E-2

Example 4.. Consider the following Itô-Volterra integral equation [5]

y(t) =
1

3
+

∫ t

0

ln(τ + 1)y(τ)d(τ) +

∫ t

0

√
ln(τ + 1)y(τ)dB(τ), t ∈ [0, 1],



About solving stochastic Itô-Volterra integral ... 12 (2021) No. 2, 11-24 21

Table 7: The errors for Example 3 at collocation points for M = N = 20.

ti t0 t4 t8 t12 t16 t20
e(50)(ti) 3.568E-5 1.517E-3 4.209E-3 9.711E-3 1.545E-2 1.622E-2

e(100)(ti) 3.388E-5 1.313.E-3 3.650E-3 6.224E-3 1.0429E-2 1.488E-2

Figure 3: The Graph of the exact solution and the approximate solution for M = N = 20 for Example 3.

where y(t) is the unknown stochastic process defined on the probability space (Ω,F, P ) and B(t) is
a Brownian motion process. The exact solution of this SVIE is

y(t) =
1

3
exp

(
−t
2

+
1

2
t ln(t+ 1) +

1

2
ln(t+ 1) +

∫ t

0

√
ln(s+ 1)dB(s)

)
.

The proposed method in section 3 is employed for solving this SIVE. Table 9 lists the errors for
N = 10 and M = 10, 15 at some collocation points 0 < ti < 1. Also, Table 10 lists the errors at
N = 20, and M = 10, 15, 20. It is observed that by increasing N and M , the errors decrease. The
approximate solution for M = N = 20 and the exact solution are shown in Figure 4.

Table 8: The errors e(50)(ti) for Example 4 at collocation points for M = 10, 15 and N = 10.

M/ti t0 t2 t4 t6 t8 t10
M = 10 9.778E-6 1.799E-3 1.181E-2 4.021E-2 7.160E-2 1.046E-1
M = 15 1.067E-5 1.557E-3 1.303E-2 4.052E-2 8.069E-2 9.650E-2

6. Conclusion

For some SDEs that can be written as Volterra integral equations (1.1), it is impossible to find the
exact solutions. So, it would be convenient to determine their numerical solutions based on stochastic
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Table 9: The errors e(50)(ti) for Example 4 at collocation points for M = 10, 15, 20 and N = 20.

ti M = 10, N = 20 M = 15, N = 20 M = 20, N = 20
t0 1.536E-5 1.469E-6 1.694E-6
t2 1.285E-4 1.538E-4 1.596E-4
t4 9.483E-4 1.203E-3 1.077E-3
t6 4.279E-3 4.330E-3 4.008E-3
t8 1.114E-2 1.158E-2 9.987E-3
t10 2.155E-2 2.071E-2 2.252E-2
t12 3.966E-2 4.161E-2 3.877E-2
t14 5.779E-2 6.528E-2 5.735E-2
t16 9.728E-2 9.021E-2 7.071E-2
t18 1.241E-1 1.0681E-1 8.758E-2
t20 1.507E-1 1.136E-1 1.072E-1

Figure 4: The Graph of the exact solution and the approximate solution for M = N = 20 for Example 4.

numerical analysis. In this paper, a numerical method for obtaining a numerical spectral solution
for SVIEs was discussed. The derivation of this method is essentially based on shifted Legendre
functions and Gauss quadrature formula. The main characteristic of the presented method is that it
reduces SVIE into a system of algebraic equations that can be solved by Newton’s method. Moreover,
this method is used to solve non-linear SIVEs. Furthermore, the error analysis of the approach is
established. In this paper, the applicability and accuracy of this method were shown by some linear
and non-linear examples. The results show that the present method is easy to implement and it is a
powerful mathematical tool for finding the numerical solution of SVIEs.
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