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Abstract

In this paper, we define and investigate Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-
Rassias stability of Prabhakar fractional integral equation.
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1. Introduction

The stability theory for functional equations started with a problem related to the stability of group
homomorphism that was considered by Ulam in 1940 ([21]). The first answer to the question of Ulam
was given by Hyers in 1941 in the case of Banach spaces in [9]. Thereafter, this type of stability is
called the Hyers-Ulam stability. In 1978, Th. M. Rassias [17] generalized the theorem of Hyers by
considering the stability problem with unbounded Cauchy differences. In fact, he has introduced a
new type of stability which is called the Hyers-Ulam-Rassias stability.

Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of a differential
equation [2]. With the extension of theory of fractional calculus (the integral and derivative of
arbitrary order), the stability analysis of differential system

x′(t) = Ax(t), x(0) = x0, A ∈ Rn×n,

∗Corresponding author
Email addresses: aramnia@yahoo.com (A. Moharramnia), nasrineghbali@gmail.com;eghbali@uma.ac.ir

(N. Eghbali*), jrass@otenet.gr (J. M. Rassiasb)

Received: April 2020 Accepted: June 2020

http://dx.doi.org/10.22075/ijnaa.2020.20274.2140


26 Moharramnia, Eghbali, Rassias

was developed in the last decades for the following fractional differential system

Dt
αx(t) = Ax(t), x(0) = x0, 0 < α ≤ 1,

where Dt
α is a fractional differential operator. For the first time in 1996, the stability of the above

system with the Caputo fractional derivatives was surveyed by Matignon [13].
Recently some authors ([10, 11, 20, 22, 23]) extended the Ulam stability problem from an integer-

order differential equation to a fractional-order differential equation.
Integral equations of various types play an important role in many branches of functional analysis

and in their applications, for example in physics, economics and other fields. Also, the fractional
differential equations are useful tools in the modelling of many physical phenomena and processes in
economics, chemistry, aerodynamics, etc. (for more details see [12, 14, 15]).

There are different types of fractional integral equations. In [5], Eghbali et al. defined the types
of Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation to proved that every mapping
from this type can be somehow approximated by an exact solution of the considered equation.

In this paper, we investigate the stability analysis of linear differential systems containing the
Prabhakar fractional derivatives. This type of fractional derivative was introduced by Garra et al.
[7] in terms of the generalized Mittag-Leffler function and was considered as a generalization of the
most popular definitions of fractional derivatives. Also see papers [3, 4, 6, 16].

In this paper, we present similar definitions with [5] and prove stability results for the Prabhakar
fractional integral equation.

2. Preliminaries

In this section, we introduce notations, definitions and theorems which are used throughout this
paper.

Definition 2.1. The Mittag-Leffler function of one parameter, denoted by Eα(z), is defined as

Eα(z) =
∞∑
k=o

zk

Γ(αk + 1)

for z, α ∈ C with Re(α) > 0, where the Euler Gamma function Γ : (0,∞)→ R is defined as

Γ(α) =

∫ ∞
0

sα−1 exp(−s)ds.

Definition 2.2. The generalization of Eα(z) was studied by Wiman (1905) [24], Agarwal [1] and
Humbert and Agarwal [8] defined the function as,

Eα,β(z) =
∞∑
k=o

1

Γ(αk + β)
zk

where z, α, β ∈ C, Re(α) > 0, Re(β) > 0.

In 1971, The more generalized function was introduced by Prabhakar as

Eγ
α,β(z) =

∞∑
k=o

(γ)kz
k

Γ(αk + β)
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for z, α, β, γ ∈ C, Re(α) > 0, Re(β) > 0, Re(γ) > 0, with γ 6= 0, where (γ)k = γ(γ + 1)(γ + 2)...(γ +
k − 1) is the Pochhammer symbol [19], and

(γ)k =
Γ(γ + k)

Γ(γ)

or

Eγ
α,β(z) =

1

Γ(γ)

∞∑
k=o

Γ(γ + k)

k! Γ(αk + β)
zk.

In 2007, Shulka and Prajapati [19] introduce the function which is defined as,

Eγ,q
α,β(z) =

∞∑
k=o

(γ)qkz
k

k!Γ(αk + β)
,

where z, α, β, γ ∈ C,min{Re(α), Re(β), Re(γ)} > 0, and q ∈ (0, 1)
⋃
N. In 2012, further generaliza-

tion of Mittag-Leffler function was defined by Salim [18] as,

Eγ,δ,q
α,β (z) =

∞∑
k=o

(γ)qkz
k

(δ)(qk)Γ(αk + β)
,

where z, α, β, γ ∈ C,min{Re(α), Re(β), Re(γ)} > 0, and q ∈ (0, 1)
⋃
N.

Definition 2.3. The beta function is

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

that x, y ∈ C and Re(x) > 0, Re(y) > 0.

From the definition of Γ and β functions we have

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

For a nonempty set X, we introduce the definitions of the generalized metric on X.

Definition 2.4. A function d : X ×X −→ [0,+∞] is called a generalized metric on X if and only
if satisfies

(A1) d(x, y) = 0 if and only if x = y;
(A2) d(x, y) = d(y, x) for all x, y ∈ X;
(A3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The above concept differs from the usual concept of a complete metric space by the fact that not
every two points in X have necessarily a finite distance. One might call such a space a generalized
complete metric space.
We now introduce one of the fundamental results of Banach,s fixed point theorem in a generalized
complete metric space.
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Theorem 2.5. Let (X, d) be a generalized complete metric space. Assume that Λ : X −→ X is a
strictly contractive operator with the Lipschitz constant L < 1. If there exists a nonnegative integer
k such that d(Λk+1x,Λkx) <∞ for some x ∈ X, then the following are true:

(a) The sequence Λnx convergence to a fixed point x∗ of Λ;
(b) x∗ is the unique fixed point of Λ in

X∗ = {y ∈ X|d(Λkx, y) <∞};

(c) If y ∈ X∗, then

d(y, x∗) ≤ 1

1− L
d(Λy, y).

Definition 2.6. For 0 < γ < 1 and h ∈ L1([a, b],R), a < t < b ≤ ∞, the Riemann-Liouville
fractional integral of the order γ is defined as

Iγa+h(t) =
1

Γ(γ)

∫ t

a

(t− s)γ−1h(s)ds,

where Γ(.) is the Euler Gamma function.

Definition 2.7. [15] For ρ, µ, ω, γ ∈ C, Re(ρ) > 0,m − 1 < Re(µ) < m and function g ∈
L1([a, b],R), 0 < t < b ≤ ∞, the Prabhakar fractional integral is defined as follows

g(t) = (Eγ
ρ,µ,ω,0+g)(t) =

∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)g(s)ds, (2.1)

where Eγ
ρ,µ is the generalized Mittag-Leffler function.

3. Mittag-Leffler-Hyres-Ulam stability

In this section, we will study Mittag-Leffler-Hyers -Ulam stability of the Prabhakar fractional
integral equation.

Definition 3.1. Equation (2.1) is Mittag-Leffler-Hyers-Ulam stable if there exists a real number
c > 0 such that for each ε > 0 and for each solution g of the inequality

|g(t)−
∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)g(s)ds| ≤ εEβ(tβ),

there exists a unique solution g0 of equation (2.1) satisfying the following inequality:

|g(t)− g0(t)| ≤ cεEβ(tβ).

Theorem 3.2. If ρ, µ, ω, γ ∈ C, Re(ρ) > 0,m − 1 < Re(µ) < m and function g ∈ L1([0, b],R,
0 < t < b ≤ ∞, let 0 < Mn := bρn+µ

ρn+µ
< 1 and 0 < Eγ

ρ,µ(ω) < 1, then Prabhakar fractional integral

equation (2.1) is Mittag-Leffler-Hyers-Ulam stable.

Proof . Let us consider the space of continuous functions

X = {g : [0, b] −→ R | g is continuous},
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endowed with the generalized metric defined by

d(g, h) = inf{K ∈ [0,∞] | |g(t)− h(t)| ≤ Kε for all t ∈ [0, b]},

for ε > 0. It is known that (X, d) is a generalized complete metric space.
Define an operator Λ : X −→ X by

(Λg)(t) =

∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)g(s)ds, (3.1)

for all g ∈ X and t ∈ [0, b]. Since g is continuous function, Λg is also continuous and this ensures
that Λ is a well defined operator. For any g, h ∈ X, let K ∈ [0,∞] such that

|g(t)− h(t)| ≤ Kε (3.2)

for any t ∈ [0, b]. This K exists because of definition of (X, d). From the definition of Λ and (3.2) we
have

|(Λg)(t)− (Λh)(t)| ≤
∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)|g(s)− h(s)|ds

≤ Kε

∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)ds

≤ Kε

∫ t

0

(t− s)µ−1 1

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
(ω(t− s)ρ)nds

=
Kε

Γ(γ)

∞∑
n=o

Γ(γ + n)ωn

n!Γ(ρn+ µ)
tρn+µ

∫ 1

0

(1− x)ρn+µ−1dx

=
Kε

Γ(γ)

∞∑
n=o

Γ(γ + n)ωn

n!Γ(ρn+ µ)
tρn+µ

1

ρn+ µ

≤ Kε

Γ(γ)

∞∑
n=o

Γ(γ + n)ωn

n!Γ(ρn+ µ)

bρn+µ

ρn+ µ
=

Kε

Γ(γ)

∞∑
n=o

Γ(γ + n)ωn

n!Γ(ρn+ µ)
Mn

≤ Kε

Γ(γ)

∞∑
n=o

Γ(γ + n)ωn

n!Γ(ρn+ µ)
= KεEγ

ρ,µ(ω),

for all t ∈ [0, b]; that is, d(Λg,Λh) ≤ KεEγ
ρ,µ(ω). Hence, we can conclude that d(Λg,Λh) ≤

Eγ
ρ,µ(ω)d(g, h) for any g, h ∈ X, and so the strictly continuous property is verified. Let us take h0 ∈ X,

from the continuous property of h0 and Λh0, it follows that there exists a constant 0 < K1 <∞ such
that

|(Λh0)(t)− h0(t)| = |
∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)h0(s)ds− h0(t)| ≤ K1ε,
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for all t ∈ [0, b], since h0 is bounded on [0, b], thus (3.1) implies that d(Λh0, h0) < ∞. Therefore,
according to Theorem 2.5, there exists a continuous function g0 : [0, b] −→ R such that Λnh0 −→ g0
in (X, d) as n → ∞ and Λg0 = g0; that is, g0 satisfies the equation (2.1). We will now prove that
{h ∈ X|d(h0, h) < ∞} = X for any h ∈ X, since h and h0 are bounded in [0, b], there exists a
constant 0 < Ch <∞ such that

|h0(t)− h(t)| ≤ Ch,

for any t ∈ [0, b]. Hence, we have d(h0, h) <∞ for all h ∈ X; that is,

{h ∈ X|d(h0, h) <∞} = X.

Hence, in view of Theorem 2.5, we conclude that g0 is the unique continuous function which satisfies
the equation (2.1). Now we have d(g,Λg) ≤ εEβ(tβ). Finally, Theorem 2.5 together with the above
inequality implies that

d(g, g0) ≤
1

1− Eγ
ρ,µ(ω)

d(Λg, g) ≤ 1

1− Eγ
ρ,µ(ω)

εEβ(tβ).

This means that the equation (2.1) is Mittag-Leffler-Hyers-Ulam stable. �

4. Mittag-Leffler-Hyres-Ulam-Rassias stability

In this section, we will study Mittag-Leffler-Hyers-Ulam-Rassias stability of the Prabhakar frac-
tional integral equation.

Definition 4.1. Equation (2.1) is Mittag-Leffler-Hyers-Ulam-Rassias stable if there exists a real
number c > 0 such that for each ε > 0 and for each solution g of the inequality

|g(t)−
∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)g(s)ds| ≤ ϕ(t)εEβ(tβ),

there exists a unique solution g0 of equation (2.1) satisfying the following inequality:

|g(t)− g0(t)| ≤ cϕ(t)εEβ(tβ).

where ϕ : [0, b] −→ R is a continuous function.

Theorem 4.2. If ρ, µ, ω, γ ∈ C, Re(ρ) > 0,m − 1 < Re(µ) < m and function g ∈ L1([0, b],R),
0 < t < b ≤ ∞, and suppose that for each ε > 0 we have

|g(t)−
∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)g(s)ds| ≤ ϕ(t)εEβ(tβ),

where ϕ : [0, b] −→ R is a L
1
p -integrable function which satisfies(∫ t

0

(ϕ(s))
1
pds
)p
≤ Bϕ(t),

for all t ∈ [0, b] and 0 < BEγ
ρ,µ(ω) < 1. Let

Mn := bρn+µ−p
( 1− p
ρn+ µ− p

)1−p
,

if 0 < Mn < 1, then Prabhakar fractional integral equation (2.1) is Mittag-Leffler-Hyers-Ulam-
Rassias stable.
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Proof . Let us consider the space of continuous functions

X = {g : [0, b] −→ R | g is continuous},

endowed with the generalized metric defined by

d(g, h) = inf{K ∈ [0,∞] | |g(t)− h(t)| ≤ Kεϕ(t) for all t ∈ [0, b]}, (4.1)

for ε > 0. It is known that (X, d) is a generalized complete metric space.
For any g, h ∈ X, let K ∈ [0,∞] such that

|g(t)− h(t)| ≤ Kεϕ(t), (4.2)

for any t ∈ [0, b]. This K exists, because of definition of (X, d).
Define an operator Λ : X −→ X by

(Λg)(t) =
∫ t
0
(t− s)µ−1Eγ

ρ,µ(ω(t− s)ρ)g(s)ds,

for all g ∈ X and t ∈ [0, b].
Now, g is continuous function, so Λg is also continuous and this ensures that Λ is a well defined
operator. From the definition of Λ and (4) we have

|(Λg)(t)− (Λh)(t)| ≤
∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)|g(s)− h(s)|ds

≤ Kε

∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)ϕ(s)ds

= Kε

∫ t

0

(t− s)µ−1 1

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
(ω(t− s)ρ)nϕ(s)ds

=
Kε

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
.ωn
∫ t

0

(t− s)ρn+µ−1.ϕ(s)ds

≤ Kε

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
.ωn
(∫ t

0

(t− s)
ρn+µ−1

1−p ds
)1−p

.
(∫ t

0

(ϕ(s))
1
pds
)p

=
Kε

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
.ωn
(∫ 1

0

(t− tx)
ρn+µ−1

1−p tdx
)1−p

.
(∫ t

0

(ϕ(s))
1
pds
)p

≤ Kε

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
.ωntρn+µ−pBϕ(t)

(∫ 1

0

(1− x)
ρn+µ−1

1−p dx
)1−p

=
KεBϕ(t)

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
.ωntρn+µ−p

( 1− p
ρn+ µ− p

)1−p

≤ KεBϕ(t)

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
.ωnbρn+µ−p

( 1− p
ρn+ µ− p

)1−p
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≤ KεBϕ(t)

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
.ωn.Mn ≤

KεBϕ(t)

Γ(γ)

∞∑
n=o

Γ(γ + n)

n!Γ(ρn+ µ)
.ωn

= KεBϕ(t)Eγ
ρ,µ(ω),

for all t ∈ [0, b]; that is, d(Λg,Λh) ≤ KεBϕ(t)Eγ
ρ,µ(ω). Hence, we can conclude that d(Λg,Λh) ≤

BEγ
ρ,µ(ω)d(g, h) for any g, h ∈ X, and so the strictly continuous property is verified. Let us take h0 ∈

X, from the continuous property of h0 and Λh0, it follows that there exists a constant 0 < K1 <∞
such that

|(Λh0)(t)− h0(t)| = |
∫ t

0

(t− s)µ−1Eγ
ρ,µ(ω(t− s)ρ)h0(s)ds− h0(t)| ≤ K1εϕ(t),

for all t ∈ [0, b], since h0 is bounded on [0, b] and mint∈[0,b] ϕ(t) > 0, thus, (4.1) implies that
d(Λh0, h0) < ∞. Therefore, according to Theorem 2.5, there exists a continuous function g0 :
[0, b] −→ R such that Λnh0 −→ g0 in (X, d) as n→∞ and Λg0 = g0; that is, g0 satisfies the equation
(2.1). We will now prove that {h ∈ X|d(h0, h) <∞} = X for any h ∈ X, since h and h0 are bounded
in [0, b] and mint∈[0,b] ϕ(t) > 0, there exists a constant 0 < Ch <∞ such that

|h0(t)− h(t)| ≤ Chϕ(t),

for any t ∈ [0, b]. Hence, we have d(h0, h) <∞ for all h ∈ X; that is,

{h ∈ X|d(h0, h) <∞} = X.

Hence, in view of Theorem 2.5, we conclude that g0 is the unique continuous function which satisfies
the equation (2.1). Now we have d(g,Λg) ≤ ϕ(t)εEµ(tµ). Finally, Theorem 2.5 together with the
above inequality implies that

d(g, g0) ≤
1

1−BEγ
ρ,µ(ω)

d(Λg, g) ≤ 1

1−BEγ
ρ,µ(ω)

ϕ(t)εEβ(tβ).

This means that the equation (2.1) is Mittag-Leffler-Hyers-Ulam-Rassias stable. �
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