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Abstract

In this paper, some fixed point results for generalized Geraghty type α-admissible contractive map-
pings and rational type generalized Geraghty contraction mappings are given in partially ordered
partial bv (s)-metric spaces. Also, a modified version of a partial bv (s)-metric space is defined and a
fixed point theorem is proved in this space. Finally, some examples are given related to the results.
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1. Introduction and Preliminaries

The Banach contraction principle is one of the most important results in fixed point theory. The
importance of this principle stems from the fact that it has large application areas in different
disciplines. This principle was generalized by many authors in different ways and some fixed point
results were obtained. In 1973, Geraghty [7] introduced a generalization of Banach contraction
principle in complete metric space. Later, Amini-Harandi and Emami [2] studied the results of
Geraghty in partially ordered complete metric space. Gordji et al. [12] defined the concept of ψ-
Geraghty contractive mappings and improved the results of Amini-Harandi and Emami [2]. In 2012
Samet et al. [22] established remarkable fixed point results by defining the concept of α-ψ contraction
mapping. Recently, Karapınar and Bae [4] introduced the notion of α- Geraghty type contractive
mappings in metric space and proved the existence and uniqueness of such mapping in the concept of
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a complete metric space. In 2017, Erhan [6] proved some fixed point theorem for generalized Geraghty
type α-admissible contractive mappings defined in a complete Branciari b-metric spaces.Afterwards,
Arshad and Hussaın [3], Prasad and Singh [20], Latif et al. [16] and Roshan et al. [21] published
some papers about the existence and uniqueness of fixed points of different kinds of generalizations
of Geraghty type contraction mappings.

On the other hand, many different type generalizedmetric spaces were introduced by many authors
for many years. In 1994, Matthews [17] introduced the notion of partial metric spaces as a part of
the study of denotational semantics of dataflow network. By the time the usual metric is replaced
by partial metric. In this type metric spaces, the self-distance of any point may not be zero. In 2013,
Shukla [23] introduced the concept of partial b-metric spaces as a generalization of partial metric
and b-metric spaces. Afterwards, In 2014, Shukla [24] generalized the rectangular metric spaces and
extended the notion of partial metric space by introducing the partial rectangular metric space.

In 2017, Mitrovic and Radenovic introduced the following generalized metric space which is
called as bv (s)-metric space.

Definition 1.1. [18]Let X be a nonempty set and d : X × X → [0,∞) be a mapping and v ∈ N.
Then (X, d) is said to be a bv (s)-metric space if there exists a real number s ≥ 1 such that following
conditions hold for all distinct points x, y, u1, u2, ..., uv ∈ X \ {x, y}:

1. d (x, y) = 0 iff x = y,

2. d (x, y) = d (y, x),

3. d (x, y) ≤ s [d (x, u1) + d (u1, u2) + ...+ d (uv−1, uv) + d (uv, y)].

In 2020, Karahan and Isik [13] introduced the concept of partial bv (s)-metric space as follows.

Definition 1.2. [13]Let X be a nonempty set and dp : X ×X → [0,∞) be a mapping and v ∈ N.
Then (X, dp) is called a partial bv (s)-metric space if there exists a real number s ≥ 1 such that
following conditions hold for all x, y, u1, u2, ..., uv ∈ X:

1. x = y iff dp (x, x) = dp (x, y) = dp (y, y),

2. dp (x, x) ≤ dp (x, y),

3. dp (x, y) = dp (y, x),

4. dp (x, y) ≤ s [dp (x, u1) + dp (u1, u2) + ...+ dp (uv−1, uv) + dp (uv, y)]−
v∑

i=1

dp (ui, ui).

It is easy to see that every bv (s)-metric space is a partial bv (s)-metric space. However, the
converse is not usually true. In the following, we give some properties and definitions related with
partial bv (s)-metric space.

Remark 1.3. [13]Let (X, dp) be a partial bv (s)-metric space. If dp (x, y) = 0 for x, y ∈ X, then
x = y.

Proposition 1.4. Let E be a nonempty set such that d1 is a partial metric and d2 is a bv(s)-metric
on E. Then (E, ρ) is a partial bv(s)-metric space where ρ : E × E → [0,∞) is a mapping defined by
ρ (u,w) = d1 (u,w) + d2 (u,w) for all u,w ∈ E.

Definition 1.5. [13] Let {xn} be a sequence in partial bv (s)-metric space (X, dp) and x ∈ X. Then:

1. The sequence {xn} is called convergent in X and converges to x, if limn→∞ dp (xn, x) = dp (x, x) .
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2. The sequence {xn} is called Cauchy sequence in X if limn,m→∞ dp (xn, xm) exists and is finite.

3. (X, dp) is called complete partial bv (s)-metric space if for every Cauchy sequence {xn} in X
there exists x ∈ X such that

lim
n,m→∞

dp (xn, xm) = lim
n→∞

dp (xn, x) = dp (x, x) .

Note that the limit of a convergent sequence has not to be unique in a partial bv (s)-metric space.
In this paper, we consider partially ordered partial bv (s)-metric spaces and α-admissible mappings

which are defined by the following ways.

Definition 1.6. Let X be a nonempty set. If (X,�) is a partially ordered set and dp is a partial
bv (s)-metric on X, then (X,�, dp) is called as a partially ordered partial bv (s)-metric space.

Definition 1.7. [22] Let T : X → X be a mapping and α : X ×X → [0,∞) be a function. Then
T is said to be α-admissible if

α (x, y) ≥ 1 implies α (Tx, Ty) ≥ 1 for x, y ∈ X.

2. Main Results

In this section, we present our main results about existence and uniqueness of fixed points of
special generalized Geraghty type contractive mappings in partially ordered partial bv (s)-metric
spaces.

Let Fs be the class of functions β : [0,∞)→
[
0, 1

s

)
for which

lim sup
n→∞

β (tn) =
1

s
whenever lim

n→∞
tn = 0,

holds for some s ≥ 1. If s = 1, we obtain the well-known class F of all Geraghty type contrac-
tive mappings introduced in [7]. The following theorem is an extension of [[6], Theorem 2.2] from
rectangular b-metric spaces to the case of partially ordered partial bv (s)-metric space.

Theorem 2.1. Let (X,�, dp) be a complete partially ordered partial bv (s)-metric space with a con-
stant s > 1 and α : X ×X → [0,∞) be a function. Let T : X → X be a α-admissible nondecreasing
mapping with respect to ”�” . Assume that

α (x, y) dp (Tx, Ty) ≤ β (M1 (x, y))M1 (x, y) (2.1)

for some β ∈ Fs and for all x, y ∈ X with x � y where

M1 (x, y) = max {dp (x, y) , dp (x, Tx) , dp (y, Ty)} .

Also, suppose that the following assertions hold:

1. α (x, x) ≥ 1 for all x ∈ X and there exists x0 ∈ X such that α (x0, Tx0) ≥ 1 and x0 � Tx0.

2. T is continuous mapping.

3. For every fixed points u and v of T , α (u, v) ≥ 1.

Then T has at least one fixed point u. Also, if v is another fixed point of T such that u and v are
comparable, then u = v.
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Proof . Let x0 ∈ X be an arbitrary initial point such that α (x0, Tx0) ≥ 1 and let define the sequence
{xn} by

xn+1 = Txn for n ∈ N.

If there exists n ∈ N such that xn = xn+1, then xn is a fixed point of T and the proof is completed.
Otherwise, suppose that xn 6= xn+1 for all n ∈ N. Since x0 � Tx0 and T is a nondecreasing mapping,
we have by induction that

x0 � Tx0 � T 2x0 � ... � T nx0 � T n+1x0 � ....

Since T is α-admissible, we have

α (x0, x1) = α (x0, Tx0) ≥ 1 implies α (Tx0, Tx1) = α (x1, x2) ≥ 1.

Continuing this process, we get that

α (xn, xn+1) ≥ 1 for all n ∈ N. (2.2)

Now, we define a sequence {en} as

en = dp (xn−1, xn) .

We will prove that the sequence {en} converges to 0, that is,

lim
n→∞

dp (xn−1, xn) = 0.

Since xn � xn+1 for each n ∈ N, then by (2.1) and (2.2) we have

dp (xn, xn+1) = dp (Txn−1, Txn)

≤ α (xn−1, xn) dp (Txn−1, Txn)

≤ β (M1 (xn−1, xn))M1 (xn−1, xn)

<
1

s
M1 (xn−1, xn) . (2.3)

for all n ≥ 1 where,

M1 (xn−1, xn) = max {dp (xn−1, xn) , dp (xn−1, Txn−1) , dp (xn, Txn)}
= max {dp (xn−1, xn) , dp (xn, xn+1)} .

Assume that M1 (xn−1, xn) = dp (xn, xn+1). Then, we write

dp (xn, xn+1) <
1

s
dp (xn, xn+1)

which is not possible. Thus, we have M (xn−1, xn) = d (xn−1, xn) for all n ≥ 1. Then from the
inequality (2.3) we get

dp (xn, xn+1) <
1

s
dp (xn−1, xn)

< dp (xn−1, xn) . (2.4)
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In other words, the sequence {en} = {dp (xn−1, xn)} is positive and decreasing. Thus, it converges
to some e ≥ 0. If we take limit as n→∞ in (2.3), we obtain

1

s
e ≤ e = lim

n→∞
en+1 = lim

n→∞
β (en) en = e lim

n→∞
β (en) ≤ 1

s
e.

This implies that limn→∞ β (en) = 1
s

and therefore

lim
n→∞

en = lim
n→∞

dp (xn−1, xn) = 0.

On the other hand, we observe that repeated application of (2.4) leads to

en+1 <
1

s
en <

1

s2
en−1 < ... <

1

sn
e1. (2.5)

for all n ∈ N. Now, we will prove that {xn} is a Cauchy sequence in the partially ordered partial
bv (s)-metric space. In other words, we need to show that limm,n→∞ dp (xn, xm) exists and is finite.
Particularly we will show that limm,n→∞ dp (xn, xm) = 0. For m,n ∈ N with m > n and n0 ∈ N, by
using inequality (2.5) we obtain

dp (xn, xm) ≤ s [dp (xn, xn+1) + dp (xn+1,xn+2) + ...+ dp (xn+v−3,xn+v−2)

+dp (xn+v−2,xn+n0) + dp (xn+n0 , xm+n0) + dp (xm+n0 , xm)]

−
v−2∑
i=1

dp(xn+i, xn+i)− dp (xn+n0 , xn+n0)− dp (xm+n0 , xm+n0)

≤ s [dp (xn, xn+1) + dp (xn+1,xn+2) + ...+ dp (xn+v−3,xn+v−2)

+dp (xn+v−2,xn+n0) + dp (xn+n0 , xm+n0) + dp (xm+n0 , xm)]

≤ s

[(
1

sn
dp (x0, x1) +

1

sn+1
dp (x0, x1) + ...+

1

sn+v−3dp (x0, x1)

)
+

1

sn
dp (xv−2, xn0) +

1

sn0
dp (xn, xm) +

1

sm
dp (x0, xn0)

]
= s

(
1

sn
+

1

sn+1
+ ...+

1

sn+v−3

)
dp (x0, x1) +

1

sn−1
dp (xv−2, xn0)

+
1

sn0−1
dp (xn, xm) +

1

sm−1
dp (x0, xn0) .

So, we get(
1− 1

sn0−1

)
dp (xn, xm) ≤ 1

sn−1

(
1− 1

sv−2

1− 1
s

)
dp (x0, x1)

+
1

sn−1
dp (xv−2, xn0) +

1

sm−1
dp (x0, xn0) .

By taking limit from both side, we have

lim
m,n→∞

dp (xn, xm) = 0.

Therefore {xn} is a Cauchy sequence in (X,�, dp). Since X is complete, the sequence {xn} converges
to some u ∈ X such that

lim
n→∞

dp (xn, u) = lim
m,n→∞

dp (xn, xm) = dp (u, u) = 0. (2.6)
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Since T is a continuous mapping, then from (2.6) we may write

lim
n→∞

dp (Txn, Tu) = lim
n→∞

dp (xn+1, Tu) = dp (Tu, Tu) .

Now we show that u is a fixed point of T, i.e., dp (Tu, u) = 0. We assume on the contrary that
dp (Tu, u) 6= 0. So, we get

dp (Tu, u) ≤ s [dp (Tu, xn+1) + dp (xn+1, xn+2) + ...+ dp (xn+v−1, xn+v) + dp (xn+v, u)]

−
v∑

i=1

dp (xn+i, xn+i)

≤ s [dp (Tu, xn+1) + dp (xn+1, xn+2) + ...+ dp (xn+v−1, xn+v) + dp (xn+v, u)]

Letting n→∞ in the above inequality we obtain

1

s
dp (Tu, u) ≤ lim

n→∞
dp (Tu, xn+1) + lim

n→∞
dp (xn+1, xn+2) + ...

+ lim
n→∞

dp (xn+v−1, xn+v) + lim
n→∞

dp (xn+v, u)

= dp (Tu, Tu) .

So, we get 1
s
dp (Tu, u) ≤ dp (Tu, Tu). It follows from α (u, u) ≥ 1 that

1

s
dp (Tu, u) ≤ dp (Tu, Tu) ≤ α (u, u) dp (Tu, Tu)

≤ β (M1 (u, u))M1 (u, u) , (2.7)

where

M1 (u, u) = max {dp (u, u) , dp (u, Tu) , dp (u, Tu)}
= dp (u, Tu) .

Hence, from inequality (2.7) we have

1

s
dp (Tu, u) ≤ β (dp (u, Tu)) dp (u, Tu) .

As a result, 1
s
≤ lim supn→∞ β (dp (u, Tu)) ≤ 1

s
. We concluded lim supn→∞ dp (u, Tu) = 0 and so

dp (u, Tu) = 0 which is a contradiction. Therefore, we obtain Tu = u, that is, u is a fixed point of T .
Since the existence of a fixed point is proved, we need to prove only the uniqueness under the given
conditions. Assume that T has two distinct comparable fixed points u and v.We put these points in
the contractive condition (2.1) and use the fact that α (u, v) ≥ 1, we obtain,

dp (u, v) ≤ α (u, v) dp (Tu, Tv) ≤ β (M1 (u, v))M1 (u, v) <
1

s
M1 (u, v) ,

where
M1 (u, v) = max {dp (u, v) , dp (u, Tu) , dp (v, Tv)} = dp (u, v) .

This implies

dp (u, v) <
1

s
dp (u, v) ,

which is a contradiction and hence we get dp (u, v) = 0, that is u = v. 2

In the next theorem we replace the continuity of the mapping T by a property of the space. Thus,
the following theorem is an enlargement of [[6], Theorem 2.4] from Branciari b metric spaces to the
case of partially ordered partial bv (s) metric space.
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Theorem 2.2. Let (X,�, dp) be a complete partially ordered partial bv (s)-metric space with a con-
stant s > 1 and α : X×X → [0,∞) be a function. Let T : X → X be an α-admissible nondecreasing
mapping with respect to ”�”. Suppose that

α (x, y) dp (Tx, Ty) ≤ β (M1 (x, y))M1 (x, y) x, y ∈ X (2.8)

for some β ∈ Fs and for all x, y ∈ X with x � y where

M1 (x, y) = max {dp (x, y) , dp (x, Tx) , dp (y, Ty)} .

Suppose also that

1. There exists x0 ∈ X such that α (x0, Tx0) ≥ 1 and x0 � Tx0 .

2. For any nondecreasing sequence {xn} ∈ X which converges to x, we have xn � x and for {xn}
which satisfies α (xn, xn+1) ≥ 1 for all n ∈ N, we have α (xn, x) ≥ 1 for all n ∈ N.

3. For every pair z and w of fixed points of T , we have α (z, w) ≥ 1.

Then T has at least one fixed point z. Also, if v is another fixed point of T such that z and v are
comparable, then z = v.

Proof . Taking x0 ∈ X as the element satisfying the condition (1), we construct sequence {xn} as
usual, that is xn = Txn−1, for n ∈ N. The convergence of this sequence can be shown exactly as in
the proof of Theorem 2.1. Let z be the limit of {xn}, that is,

lim
n→∞

dp (xn, z) = lim
m,n→∞

dp (xn, xm) = dp (z, z) = 0.

We will show that z is a fixed point of T . For any nondecreasing sequence {xn} ∈ X which
converges to z we know from the assumption that xn � z. Also, we can show in the same way as in
the proof of Theorem 2.1 that α (xn, xn+1) ≥ 1 for all n ∈ N and dp (xn, xn+1) → 0 for n → ∞. So,
the condition (2) in the statement of the theorem implies that

α (xn, z) ≥ 1, for all n ∈ N.

Then, for Tz 6= z we have

dp (Tz, z) ≤ s [dp (Tz, xn+1) + dp (xn+1, xn+2) + ...+ dp (xn+v−1, xn+v) + dp (xn+v, z)]

−
v∑

i=1

dp (xn+i, xn+i)

≤ s [dp (Tz, xn+1) + dp (xn+1, xn+2) + ...+ dp (xn+v−1, xn+v) + dp (xn+v, z)]

Letting n→∞ in the above inequality we obtain

dp (Tz, z) ≤ s lim
n→∞

dp (Tz, xn+1) + s lim
n→∞

dp (xn+1, xn+2) + ...

+s lim
n→∞

dp (xn+v−1, xn+v) + s lim
n→∞

dp (xn+v, z)

= s lim
n→∞

dp (Tz, xn+1) .

Also, we have

sdp (xn+1, T z) = sdp (Txn, T z) ≤ sα (xn, z) dp (Txn, T z)

≤ sβ (M1 (xn, z))M1 (xn, z)

< M1 (xn, z) , (2.9)
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where
M1 (xn, z) = max {dp (xn, z) , dp (xn, Txn) , dp (z, Tz)} . (2.10)

So, we get
dp (Tz, z) < max {dp (xn, z) , dp (xn, Txn) , dp (z, Tz)} .

By taking limit we conclude that

dp (Tz, z) < lim
n→∞

[max {dp (xn, z) , dp (xn, Txn) , dp (z, Tz)}]

= dp (z, Tz)

which is a contradiction. Then dp (z, Tz) = 0, thus z is a fixed point of T . The rest of the proof can
be shown similarly to the proof of Theorem 2.1. 2

From Theorem 2.1, we can easily conclude that the following result.

Theorem 2.3. Let (X,�, dp) be a complete partially ordered partial bv (s)-metric spaces with a pa-
rameter s > 1 and T : X → X be an α-admissible nondecreasing mapping with respect to �. Suppose
that

α (x, y) dp (Tx, Ty) ≤ β (dp (x, y)) dp (x, y) (2.11)

for some β ∈ Fs and for all x, y ∈ X with x � y. Then T has at least one fixed point z. If v is
another fixed point of T such that z and v are comparable, then z = v. Moreover, if we suppose that
the following conditions are satisfied, then the Picard sequence {xn} converges strongly to the fixed
point of T .

1. There exists x0 ∈ X such that α (x0, Tx0) ≥ 1 and x0 � Tx0 .
2. For any nondecreasing sequence {xn} ∈ X which converges to x, we have xn � x and for

{xn} which satisfies α (xn, xn+1) ≥ 1 for all n ∈ N, we have α (xn, x) ≥ 1 for all n ∈ N.
3. For every pair z and w of fixed points of T , we have α (z, w) ≥ 1.

Now, we will give an example which satisfies the conditions of Theorem 2.3.

Example 2.4. Let X = {1, 2, 3, 4, 5} and the function dp : X ×X → [0,∞) be defined by

dp (x, y) =


0, if x = y and x, y ∈ {3, 4} ,
9
10

, if x or y ∈ {1, 2} , x 6= y,
1
10
, otherwise,

for all x, y ∈ X. It is easy to see that (X, dp) is a complete partially ordered partial bv (s)-metric
space where v = 3 and s = 5

4
. Also, if we define a mapping α : X ×X → R by

α (x, y) =

{
2 x, y ∈ {3, 4, 5} ,
1 otherwise,

,

a mapping T : X ×X → [0,∞) by T2 = T3 = T4 = T5 = 4, T1 = 3, and a mapping β : [0,∞) →[
0, 4

5

)
by β (t) = 4

5
e−t, then it is clear that T is a nondecreasing α-admissible mapping which satisfies

the inequality (2.11). Then T has a unique fixed point z = 4 and the Picard sequence converges to
unique fixed point.

The following theorem is an enlargement of [[5],Theorem 2.1] from the framework of bv (s)-metric
spaces to the case of partially ordered partial bv (s)-metric spaces.
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Theorem 2.5. Let (X,�, dp) be a complete partially ordered partial bv (s)-metric spaces with pa-
rameter s > 1 and T : X → X be a nondecreasing mapping with respect to � such that there exists
x0 ∈ X with x0 � Tx0. Suppose that

dp (Tx, Ty) ≤ β (M2 (x, y))M2 (x, y) (2.12)

for some β ∈ Fs and all comparable elements x, y ∈ X,where

M2 (x, y) = max

{
dp (x, y) ,

dp (x, Tx) dp (y, Ty)

1 + dp (Tx, Ty)
,
dp (x, Tx) dp (y, Ty)

1 + dp (x, y)
,

dp (x, Tx) dp (x, Ty)

1 + dp (x, Ty) + dp (y, Tx)

}
.

If (X,�, dp) has a sequential limit comparison property, i.e., for any nondecreasing sequence
{xn} ∈ X which converges to x, we have xn � x, then T has a fixed point. Furthermore, the set of
fixed points of T is well ordered if and only if T has a unique fixed point.
Proof . Starting with a given x0 such that x0 � Tx0, let {xn} be a sequence defined by xn = T nx0.
If xn = xn+1 for all n ∈ N, then xn is a fixed point of T . Therefore, we will assume that xn 6= xn+1

for all n ∈ N. Since x0 � Tx0 and T is an nondecreasing mapping, we obtain by induction

x0 � x1 � x2 � ... � xn � ... .

First, we will show that limn→∞ dp (xn, xn+1) = 0. Since xn and xn+1 are comparable for each
n ∈ N, then by (2.12) we have

dp (xn, xn+1) = dp (Txn−1, Txn) ≤ β (M2 (xn−1, xn))M2 (xn−1, xn) , (2.13)

where

M2(xn−1, xn) = max

{
dp (xn−1, xn) ,

dp (xn−1, Txn−1) dp (xn, Txn)

1 + dp (Txn−1, Txn)
,

dp (xn−1, Txn−1) dp (xn, Txn)

1 + dp (xn−1, xn)
,

dp (xn−1, Txn−1) dp (xn−1, Txn)

1 + dp (xn−1, Txn) + dp (xn, Txn−1)

}
= max

{
dp (xn−1, xn) ,

dp (xn−1, xn) dp (xn, xn+1)

1 + dp (xn, xn+1)
,

dp (xn−1, xn) dp (xn, xn+1)

1 + dp (xn−1, xn)
,

dp (xn−1, xn) dp (xn−1, xn+1)

1 + dp (xn−1, xn+1) + dp (xn, xn)

}
≤ max {dp (xn−1, xn) , dp (xn, xn+1)} .

If max {dp (xn−1, xn) , dp (xn, xn+1)} = dp (xn, xn+1), then from (2.13) we have

dp (xn, xn+1) ≤ β (M2 (xn−1, xn))M2 (xn−1, xn)

≤ 1

s
dp (xn, xn+1) .

This is a contradiction. Therefore, we get max {dp (xn−1, xn) , dp (xn, xn+1)} = dp (xn−1, xn) . So, from
(2.13) we have

dp (xn, xn+1) ≤
1

s
dp (xn−1, xn) .

If we repeat this process, we obtain

dp (xn, xn+1) ≤
1

sn
dp (x0, x1) (2.14)
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for all n ∈ N. Then we have limn→∞ dp (xn, xn+1) = 0. Now we will prove that {xn} is a
Cauchy sequence in partially ordered partial bv (s)-metric space. In this case,we need to show that
limm,n→∞ dp (xn, xm) exists and is finite. Particularly, we will show that limm,n→∞ dp (xn, xm) = 0.
For m,n ∈ N with m > n and n0 ∈ N, by using (2.14) and the triangular inequality we obtain

dp (xn, xm) ≤ s [dp (xn, xn+1) + dp (xn+1,xn+2) + ...+ dp (xn+v−3,xn+v−2)

+dp (xn+v−2,xn+n0) + dp (xn+n0 , xm+n0) + dp (xm+n0 , xm)]

−
v−2∑
i=1

dp(xn+i, xn+i)− dp (xn+n0 , xn+n0)− dp (xm+n0 , xm+n0)

≤ s [dp (xn, xn+1) + dp (xn+1,xn+2) + ...+ dp (xn+v−3,xn+v−2)

+dp (xn+v−2,xn+n0) + dp (xn+n0 , xm+n0) + dp (xm+n0 , xm)]

≤ s

[
1

sn
dp (x0, x1) +

1

sn+1
dp (x0, x1) + ...+

1

sn+v−3dp (x0, x1)

+
1

sn
dp (xv−2, xn0) +

1

sn0
dp (xn, xm) +

1

sm
dp (x0, xn0)

]
=

(
1

sn−1
+

1

sn
+ ...+

1

sn+v−4

)
dp (x0, x1) +

1

sn−1
dp (xv−2, xn0)

+
1

sn0−1
dp (xn, xm) +

1

sm−1
dp (x0, xn0) ,

and so, we have(
1− 1

sn0−1

)
dp (xn, xm) ≤ 1

sn−1

(
1− 1

sv−2

1− 1
s

)
dp (x0, x1)

+
1

sn−1
dp (xv−2, xn0) +

1

sm−1
dp (x0, xn0) .

By taking limit from both side for m,n→∞, we get

lim
m,n→∞

dp (xn, xm) = 0.

Therefore {xn} is a Cauchy sequence in X. Since X is complete, there exists u ∈ X such that

lim
n→∞

dp (xn, u) = lim
m,n→∞

dp (xn, xm) = dp (u, u) = 0.

Now, we will show that u is a fixed point of T . We know from the sequential limit comparision
property of the space that xn and u are comparable for all n ∈ N. Further, there exists n ∈ N such
that u, Tu /∈ {xn+1, xn+2, ...}. Then we have

dp (u, Tu) ≤ s [dp (Tu, xn+1) + dp (xn+1, xn+2) + ...+ dp (xn+v−1, xn+v) + dp (xn+v, u)]

−
v∑

i=1

dp (xn+i, xn+i)

≤ s [dp (Tu, xn+1) + dp (xn+1, xn+2) + ...+ dp (xn+v−1, xn+v) + dp (xn+v, u)] .

By taking limitsup in the above inequality for n→∞, we obtain

1

s
dp (u, Tu) ≤ lim sup

n→∞
dp (Tu, xn+1)

≤ lim sup
n→∞

β (M2 (u, xn))M2 (u, xn)

≤ 0.
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Indeed, the inequality lim supn→∞ β (M2 (u, xn)) = 0 can be showed by the following:

lim sup
n→∞

M2(xn, u) = lim sup
n→∞

max

{
dp (xn, u) ,

dp (xn, Txn) dp (u, Tu)

1 + dp (Txn, Tu)

,
dp (xn, Txn) dp (u, Tu)

1 + dp (xn, u)
,

dp (xn, Txn) dp (xn, Tu)

1 + dp (xn, Tu) + dp (u, Txn)

}
= lim sup

n→∞
max

{
dp (xn, u) ,

dp (xn, xn+1) dp (u, Tu)

1 + dp (xn+1, Tu)

,
dp (xn, xn+1) dp (u, Tu)

1 + dp (xn, u)
,

dp (xn, xn+1) dp (xn, Tu)

1 + dp (xn, Tu) + dp (u, Txn)

}
= 0.

Therefore,we have Tu = u . Hence u is a fixed point of T . Finally, assume that the set of fixed
point of T is well ordered. We need to show that T has a unique fixed point. Assume on the contrary,
u and v are two fixed points of the T such that u 6= v. Then, by (2.12) we have

dp (u, v) = dp (Tu, Tv) ≤ β (M2 (u, v))M2 (u, v)

<
1

s
M2 (u, v)

where

M2(u, v) = max

{
dp (u, v) ,

dp (u, Tu) dp (v, Tv)

1 + dp (Tu, Tv)
,
dp (u, Tu) dp (v, Tv)

1 + dp (u, v)
,

dp (u, Tu) dp (u, Tv)

1 + dp (u, Tv) + dp (v, Tv)

}
= max {dp (u, v) , 0, 0, 0}
= dp (u, v) .

Hence, we get dp (u, v) < 1
s
dp (u, v) which is a contradiction. Hence u = v and T has a unique

fixed point. Conversely, if T has a unique fixed point, it is clear that the set of fixed points of T is
well ordered. Morever, for any fixed point u, let assume that dp (u, u) > 0. Then, we get

dp (u, u) = dp (Tu, Tu) ≤ β (M2 (u, u))M2 (u, u)

<
1

s
M2 (u, u)

where

M2(u, u) = max

{
dp (u, u) ,

dp (u, Tu) dp (u, Tu)

1 + dp (Tu, Tu)
,
dp (u, Tu) dp (u, Tu)

1 + dp (u, u)
,

dp (u, Tu) dp (u, Tu)

1 + dp (u, Tu) + dp (u, Tu)

}
= max {dp (u, u) , 0, 0, 0}
= dp (u, u) .

So, we obtain dp (u, u) < 1
s
dp (u, u) which is a contradiction. So, assumption is wrong, that is

dp (u, u) = 0. This completes the proof. 2

3. A Modified Partial bv (s)-Metric Space

It is known from the Proposition 1.4 that the sum of a bv (s)-metric and a partial metric is a
partial bv (s)-metric. This means that defining a partial bv (s)-metric by using a bv (s)-metric is
possible. But, on the contrary that, defining a bv (s)-metric by using a partial bv (s)-metric is not
possible in this concept. In this part, we introduce a modified partial bv (s)-metric space such that
each partial bv (s)-metric generates a bv (s)-metric. While defining this space, we inspired by the
following partial b-metric space introduced by Mustafa et al.[19].
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Definition 3.1. [19]Let X be a nonempty set and s ≥ 1 be a given real numbers. A mapping
pb : X×X → [0,∞) is said to be a modified partial b-metric spaces if for all x, y, z ∈ X the following
condition hold:

1. x = y iff pb (x, x) = pb (x, y) = pb (y, y),

2. pb (x, x) ≤ pb (x, y),

3. pb (x, y) = pb (y, x) ,

4. pb (x, y) ≤ s [pb (x, z) + pb (z, y)− pb (z, z)] +
(
1−s
2

)
[pb (x, x) + pb (y, y)] .

We are now in a position to define our modified space.

Definition 3.2. Let X be a nonempty set and pbv : X × X → [0,∞) be a mapping and v ∈ N.
Then, (X, pbv) is said to be a modified partial bv (s)-metric space if there exists a real number s ≥ 1
such that following conditions hold for all x, y, u1, u2, ..., uv−1, uv ∈ X:

1. x = y ⇔ pbv (x, x) = pbv (x, y) = pbv (y, y),

2. pbv (x, x) ≤ pbv (x, y),

3. pbv (x, y) = pbv (y, x),

4. pbv (x, y) ≤ s

[
pbv (x, u1) + pbv (u1, u2) + ...+ pbv (uv−1, uv) + pbv (uv, y)−

v∑
i=1

pbv (ui, ui)

]
+ (1−s)

2
[pbv (x, x) + pbv (y, y)].

Remark 3.3. In definition (3.2), if we take v = 1, then we derive the modified partial b-metric
spaces.

From the triangular inequality of definition (3.2), we have

pbv (x, y) ≤ s

[
pbv (x, u1) + pbv (u1, u2) + ...+ pbv (uv−1, uv) + pbv (uv, y)−

v∑
i=1

pbv (ui, ui)

]

+
(1− s)

2
[pbv (x, x) + pbv (y, y)]

≤ s [pbv (x, u1) + pbv (u1, u2) + ...+ pbv (uv−1, uv) + pbv (uv, y)]−
v∑

i=1

pbv (ui, ui) .

Hence, a modified partial bv (s)-metric space is also a partial bv (s)-metric space. On the other
hand, since a modified partial bv (s)-metric is a partial metric with s = v = 1, it should be noted that
the class of a modified partial bv (s)-metric spaces is larger than the class of partial metric spaces.

Proposition 3.4. Let (X, d) be a bv (s)-metric space and p > 1 and k ≥ 0 be real numbers. If
pbv : X × X → [0,∞) is a mapping defined by pbv (x, y) = d (x, y)p + k, then (X, pbv) is a modified
partial bv (s)-metric space with s = vp−1.

Proof . We will show that pbv is a modified partial bv (s)-metric with s = vp−1. Obviously,by
using the convexity of the function f (x) = xp for x ≥ 0 and Jensen inequality, we may write
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(x1 + x2 + ...+ xv−1 + xv)
p ≤ vp−1

(
xp1 + xp2 + ...+ xpv−1 + xpv

)
for x1, x2, ..., xv−1, xv ≥ 0. Thus, for

each x, y, x1, x2, ..., xv−1, xv ∈ X, we obtain

pbv (x, y) = d (x, y)p + k

≤ [d (x, x1) + d (x1, x2) + ...+ d (xv−1, xv) + d (xv, y)]p + k

≤ vp−1 [d (x, x1)
p + d (x1, x2)

p + ...+ d (xv−1, xv)
p + d (xv, y)p] + k

= vp−1 [d (x, x1)
p + k + d (x1, x2)

p + k + ...+ d (xv−1, xv)
p + k + d (xv, y)p + k − vk − k]− vp−1k + k

= vp−1

[
pbv (x, x1) + pbv (x1, x2) + ...+ pbv (xv−1, xv) + pbv (xv, y)−

v∑
i=1

pbv (xi, xi)

]

+

(
1− vp−1

2

)
[pbv (x, x) + pbv (y, y)] .

Hence, pbv is a modified partial bv (s) metric on X. 2
In the following proposition, we show that a modified partial bv (s)-metric space generates a

bv (s)-metric space.

Proposition 3.5. Let (X, pbv) be a modified partial bv (s)-metric space. Then, modified partial bv (s)-
metric pbv defines a bv (s)-metric d by the following way:

d (x, y) = 2pbv (x, y)− pbv (x, x)− pbv (y, y) ,

Proof . Let x, y, u1, u2, ..., uv−1, uv ∈ X
d (x, y) = 2pbv (x, y)− pbv (x, x)− pbv (y, y)

≤ 2s [pbv (x, u1) + pbv (u1, u2) + ...+ pbv (uv−1, uv) + pbv (uv, y)− pbv (u1, u1)− pbv (u2, u2)− ...

−pbv (uv−1, uv−1)− pbv (uv, uv)] + 2
(1− s)

2
[pbv (x, x) + pbv (y, y)]− pbv (x, x)− pbv (y, y)

= s [2pbv (x, u1)− pbv (u1, u1)− pbv (x, x) + 2pbv (u1, u2)− pbv (u1, u1)− pbv (u2, u2) + ...

+2pbv (uv−1, uv)− pbv (uv−1, uv−1)− pbv (uv, uv) + 2pbv (uv, y)− pbv (uv, uv)− pbv (y, y)]

= s [d (x, u1) + d (u1, u2) + ...+ d (uv−1, uv) + d (uv, y)] .

2

Let (X,�) be an ordered set. The mappings T, S : X → X are said to be weakly increasing
mappings, if Tx � STx and Sx � TSx for all x ∈ X. The following theorem is a generalization of
[[1], Theorem 2.2.] from the concept of partially ordered partial b-metric spaces.

Theorem 3.6. Let (X,�, pbv) be a complete partially ordered modified partial bv (s)-metric space
with constant s > 1. Suppose that T, S : X → X are two weakly increasing mappings which satisfy
the following condition for all x, y ∈ X with x � y and β ∈ Fs :

spbv (Tx, Sy) ≤ β (M (x, y))M (x, y) + LN (x, y) , (3.1)

where L ≥ 0,

M (x, y) = max

{
pbv (x, y) ,

pbv (x, Tx) pbv (y, Sy)

1 + pbv (Tx, Sy)

}
and

N (x, y) = min {d (x, y) , d (x, Tx) , d (y, Sy) , d (y, Tx) , d (x, Sy)}
where d is a bv (s)-metric. Suppose that there exist a x0 ∈ X such that Tx0 � STx0 and X has

a sequential limit comparison property. Then T and S have a common fixed point. Moreover, if the
set of common fixed points of T and S is comparable, then they have a unique common fixed point.
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Proof . By using assumption there exists x0 ∈ X such that Tx0 � STx0. Let {xn} be a sequence
in X defined by the following way:

Tx2n = x2n+1 and Sx2n+1 = x2n+2, for ∀n ≥ 0

Note that
x1 = Tx0 � STx0 = Sx1 = x2 � TSx1 = x3.

So, we obtain
x1 � x2 � x3 � x4 � ... � xn � xn+1 � ....

Since x2n and x2n+1 are comparable and T and S satisfy (3.1), we have

spbv (x2n+1, x2n+2) = spbv (Tx2n, Sx2n+1)

≤ β (M (x2n, x2n+1))M (x2n, x2n+1) + LN (x2n, x2n+1) ,

where

M (x2n, x2n+1) = max

{
pbv (x2n, x2n+1) ,

pbv (x2n, Tx2n) pbv (x2n+1, Sx2n+1)

pbv (Tx2n, Sx2n+1)

}
= max

{
pbv (x2n, x2n+1) ,

pbv (x2n, x2n+1) pbv (x2n+1, x2n+2)

pbv (x2n+1, x2n+2)

}
≤ max {pbv (x2n, x2n+1) , pbv (x2n, x2n+1)} = pbv (x2n, x2n+1)

and

N (x2n, x2n+1) = min {d (x2n, x2n+1) , d (x2n, Tx2n) , d (x2n, Sx2n+1) , d (x2n+1, Tx2n) , d (x2n+1, Sx2n+1)}
= min {d (x2n, x2n+1) , d (x2n, x2n+1) , d (x2n, x2n+2) , d (x2n+1, x2n+1) , d (x2n+1, x2n+2)}
= min {d (x2n, x2n+1) , d (x2n, x2n+1) , d (x2n, x2n+2) , 0, d (x2n+1, x2n+2)} = 0.

Thus, we can write

spbv (x2n+1, x2n+2) ≤ β (pbv (x2n, x2n+1)) pbv (x2n, x2n+1)

≤ 1

s
pbv (x2n, x2n+1) ≤ pbv (x2n, x2n+1) .

Similarly we can show that

spbv (x2n+2, x2n+3) ≤ pbv (x2n+1, x2n+2) .

Hence, we conclude that

pbv (xn, xn+1) ≤
1

s
pbv (xn−1, xn) for each n ∈ N. (3.2)

So, by repeating this process, we obtain

pbv (xn, xn+1) ≤
1

sn
pbv (x0, x1)

for all n ∈ N. Then we obtain limn→∞ pbv (xn, xn+1) = 0. Now we prove that the sequence {xn} is a
Cauchy sequence in partially ordered modified partial bv (s)-metric spaces. Namely, we need to show
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that limn→∞ p (xn, xm) exists and finite. Particularly,we will show that limm,n→∞ pbv (xn, xm) = 0.
For m,n ∈ N with m > n and n0 ∈ N, by using (3.2) and the triangular inequality we obtain

pbv (xn, xm) ≤ s [pbv (xn, xn+1) + pbv (xn+1,xn+2) + ...+ pbv (xn+v−3,xn+v−2) + pbv (xn+v−2,xn+n0)

+pbv (xn+n0 , xm+n0) + pbv (xm+n0 , xm)−
v−2∑
i=1

pbv(xn+i, xn+i)

−pbv (xn+n0 , xn+n0)− pbv
(
xm+n0

, xm+n0

)]
+

(1− s)
2

[pbv (xn, xn) + pbv (xm, xm)]

≤ s [pbv (xn, xn+1) + pbv (xn+1,xn+2) + ...+ pbv (xn+v−3,xn+v−2) +

pbv (xn+v−2,xn+n0) + pbv (xn+n0 , xm+n0) + pbv (xm+n0 , xm)]

= s

[(
1

sn
pbv (x0, x1) +

1

sn+1
pbv (x0, x1) + ...+

1

sn+v−3pbv
(x0, x1)

)
+

1

sn
p
bv

(xv−2, xn0) +
1

sn0
p
bv

(xn, xm) +
1

sm
dp (x0, xn0)

]
=

(
1

sn−1
+

1

sn
+ ...+

1

sn+v−4

)
p
bv

(x0, x1) +
1

sn−1
p
bv

(xv−2, xn0)

+
1

sn0−1
dp (xn, xm) +

1

sm−1
dp (x0, xn0) .

So, we get(
1− 1

sn0−1

)
p
bv

(xn, xm) ≤ 1

sn−1

(
1− 1

sv−2

1− 1
s

)
p
bv

(x0, x1)

+
1

sn−1
p
bv

(xv−2, xn0) +
1

sm−1
p
bv

(x0, xn0) .

Taking limit as n,m→∞ in the above inequality, we have

lim
m,n→∞

p
bv

(xn, xm) = 0.

Since the space is complete, there exists u ∈ X such that

lim
n→∞

p
bv

(xn, u) = lim
m,n→∞

p
bv

(xn, xm) = p
bv

(u, u) = 0.

Now, we show that u is a fixed point of T. Since X has a sequential limit comparison property,
we know that xn � u . Then, we have

p
bv

(Tu, u) ≤ s
[
p
bv

(Tu, x2n+2) + pbv (x2n+2, x2n+3) + ...+ pbv (x2n+v, x2n+v+1) + pbv (x2n+v, u)

−
v∑

i=1

pbv (u2n+i, u2n+i)

]
+

(1− s)
2

[pbv (Tu, Tu) + pbv (u, u)]

≤ s [pbv (Tu, x2n+2) + pbv (x2n+2, x2n+3) + ...+ pbv (x2n+v, x2n+v+1) + pbv (x2n+v, u)] .

By taking limit as n→∞ from both side, we have

pbv (Tu, u) ≤ s lim
n→∞

pbv (Tu, x2n+2) = s lim
n→∞

pbv (Tu, Sx2n+1)

≤ lim
n→∞

β (M (u, x2n+1))M (u, x2n+1) + L lim
n→∞

N (u, x2n+1) , (3.3)
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where

lim
n→∞

M (u, x2n+1) = lim
n→∞

max

{
pbv (u, x2n+1) ,

pbv (u, Tu) pbv (x2n+1, Sx2n+1)

1 + p (Tu, Sx2n+1)

}
= lim

n→∞
max

{
pbv (u, x2n+1) ,

pbv (u, Tu) pbv (x2n+1, x2n+2)

1 + pbv (Tu, x2n+2)

}
= 0

and

lim
n→∞

N (u, x2n+1) = lim
n→∞

min {d (u, x2n+1) , d (u, Tu) , d (x2n+1, Sx2n+1) , d (x2n+1, Tu) , d (u, Sx2n+1)}

= lim
n→∞

min {d (u, x2n+1) , d (u, Tu) , d (x2n+1, x2n+2) , d (x2n+1, Tu) , d (u, x2n+2)}
= 0.

So, we get pbv (Tu, u) ≤ 0 which shows that Tu = u. From (3.1), we obtain

spbv (u, Su) = spbv (Tu, Su) ≤ β (M (u, u))M (u, u) + LN (u, u) ,

where

M (u, u) = max

{
pbv (u, u) ,

pbv (u, Tu) pbv (u, Su)

1 + pbv (Tu, Su)

}
= 0

and

N (u, u) = min {d (u, u) , d (u, Tu) , d (u, Su) , d (u, Tu) , d (u, Su)}
= min {0, 0, d (u, Su) , 0, d (u, Su)}
= 0.

Hence, we have
spbv (u, Su) ≤ 0.

Therefore, we obtain Su = u. Consequently, u is a common fixed point of T and S . Finally,
we will prove the uniqueness of the common fixed point. Let v = Tv = Sv be another comparable
common fixed point for T and S. Then, it follows from (3.1) that

spbv (u, v) = spbv (Tu, Su) ≤ β (M (u, v))M (u, v) + LN (u, v)

where

M (u, v) = max

{
pbv (u, v) ,

pbv (u, Tu) pbv (v, Sv)

1 + pbv (Tu, Sv)

}
= pbv (u, v)

and

N (u, v) = min {d (u, v) , d (u, Tu) , d (v, Sv) , d (u, Tu) , d (u, Su)}
= min {d (u, v) , 0, 0, 0, 0}
= 0.
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So, we get

spbv (u, v) ≤ β (pbv (u, v)) pbv (u, v)

<
1

s
pbv (u, v)

which is a contradiction. Therefore, u = v, that is T and S have a unique common fixed point.
2

Open Problem: In the main results section, we proved some theorems in partial bv (s)-metric
spaces equipped with partial order relations. On the other hand, nowadays, some papers have been
published about orthogonal metric spaces and R-metric spaces, for detail please see [8, 9, 10, 11, 14,
15]. So, it is an open problem whether it is possible to prove our main results in orthogonal and
R-metric spaces.

References

[1] M. Abbas, I.Z. Chema and A. Razani, Existence of common fixed point for b-metric rational type contraction,
Filomat 30(6) (2016) 1413–1429.

[2] A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric
spaces and applications to ordinary differantial equations, Nonlinear Anal. 72 (2010) 2238–2242.

[3] M. Arshad, A. Hussaın, Fixed point results for generalized rational α-Geragty contraction, Miskolc Mat. Notes,
18 (2017) 611–621.

[4] S.E. Cho, J. S. Bae and E. Karapınar, Fixed Point theorems for α-Geraghty contraction type maps in metric
spaces, Fixed Point Theory Appl. 2013 Article ID 329 (2013).

[5] T. Dosenovic, Z. Kadelburg, Z. D. Mitrovic and S. Radenovic, New fixed point results in bv (s)-metric Spaces,
Math. Slovaca, 70 (2020) 441–452.

[6] I. M. Erhan, Geraghty type contraction mappings on Branciari b-metric spaces, Adv. Theor. Nonlinear Anal.
Appl. 1 (2017) 147–160.

[7] M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc. 40 (1973) 604–608.
[8] M. Eshaghi Gordji and H. Habibi, Fixed point theory in ε-connected orthogonal metric space, Sahand Comm.

Math. Anal. 16 (2019), 35–46.
[9] M. Eshaghi Gordji and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Top. Alg.

6 (2017) 251–260.
[10] M. Eshaghi Gordji, H. Habibi and M. B. Sahabi, Orthogonal sets; orthogonal contractions, Asian-Eur. J. Math.

12 (2019) 1950034.
[11] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y. J. Cho, On orthogonal sets and Banach fixed point

theorem, Fixed Point Theory, 18(2) (2017) 569–578.
[12] M. Eshaghi Gordji, M. Ramezani, Y. J. Cho and S. Pirbavafa, A generalization of Geraghty’s theorem in partially

ordered metricspaces and applications to ordinary differential equations, Fixed Point Theory Appl. 2012(74)
(2012).
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