
Int. J. Nonlinear Anal. Appl. 12 (2021) No. 2, 75-83
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2021.22892.2431

Expected mean square rate estimation of repeated
measurements model

Hayder Abbood Koria,∗, Abdulhussein Saber AL-Mouelb

aDepartment of Economics, College of Administration and Economics, Thi-Qar University, Thi-Qar, Iraq
bDepartment of mathematics, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq

(Communicated by Madjid Eshaghi Gordji)

Abstract

In this paper, we obtained the estimation corresponding to the expected mean square rate of repeated
measurement model depend on maximum likelihood method (MLM), restricted maximum likelihood
method (REMLM) and modified restricted maximum likelihood method (MREMLM), and got 8
cases that were classified into three types.
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1. Introduction

In several areas, such as health and life sciences, epidemiology, biomedical, environmental, manu-
facturing, psychological, educational studies, and so on, repeated measurement analysis is commonly
used. Repeated measurements are a concept used to characterize data in which the result variable
is observed several times and likely under various experimental conditions within each experimental
device. The analysis of variance of repeated measurements, also referred to as randomized designs
of blocks and split plots [1, 7, 13, 14].

The maximum likelihood estimation is a method of estimating the parameters of a model. This
estimation method is one of the most widely used which selects the set of values of the model pa-
rameters that maximize the likelihood function. Intuitively, this maximizes the ”agreement” of the
selected model with the observed data. It is giving a unified approach to estimation [6, 8, 12]. Many
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studies have explored the repeated measurements model, for example: Vonesh and Chinchilli (1997)
discussed the univariate repeated measurements model, analysis of variance model [13]. Keselman,
Algina and Kowalchuk in (2001) Studied the designs of repeated measures The various approaches
are presented with a discussion of their strengths and weaknesses, and recommendations are made
regarding the ’best’ choice of analysis, [9]. Moser and Macchiavelli in (2002) used model selection
methods for repeated measurements of covariance structure have been explored, [10]. AL-Mouel
and Mustafa, in (2014) studied the sphericity test for one-way Multivariate Repeated Measurements
Analysis of variance mode, [3]. AL-Mouel and Naji, in (2014) devoted to study of one-way multi-
variate repeated measurements structure of covariance model, [4]. AL-Mouel and Hassan in (2016)
estimated the repeated measurement model parameters by using maximum likelihood method, [5].
Özgür and et al., in (2020) discussed the non-Gaussian repeated measurement results, they analyzed
the linear mixed-effects models, using maximum likelihood analysis using a general linear model
for expected responses and arbitrary structural models for the covariances within the case, [11]. In
this work, we obtained the estimation corresponding to the expected mean square rate of repeated
measurement model depend on maximum likelihood method (MLM), restricted maximum likelihood
method (REMLM) and modified restricted maximum likelihood method (MREMLM), and got 8
cases that were classified into three types.

2. Setting Up The Model

The repeated measurement model can be summarized as following:

habc = θ + Ab + πa(b) + Bc + (AB)bc + εabc (2.1)

where
a = 1, . . . , I ”is an index for experimental unit within group (b)”,
b = 1, . . . , J ”is an index for levels of the between-units factor (Group)”,
c = 1, . . . , K ”is an index for levels of the within-units factor (Time)”,
habc : ”is the response measurement at time (c) for unit (a) within group (b)”, θ : ”is the overall
mean”,
Ab : ”is the added effect for treatment group (b)”,
πa(b) : ”is the random effect for due to experimental unit (a) within treatment group(b)′′,
Bc : ”is the added effect for time (c)′′,
(AB)bc : ”is the added effect for the group (b)× time (c) interaction”,
εabc : ”is the random error on time (c) for unit (a) within group (b)′′.
For the parameterization to be of full rank, we imposed the following set of conditions:

∑J
b=1Ab =

0;
∑K

c=1 Bc = 0;
∑J

b=1(AB)bc = 0 for each c = 1, . . . ,K∑K
c=1(AB)bc = 0 for each b = 1, . . . , J

and let, the εabc and πa(b) are independent with

εabci.i.d ∼ N
(
0, σ2

ε

)
and πa(b)i.i.d ∼ N

(
0, σ2

π

)
. (2.2)
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The (ANOVA) table of the repeated measurements model is:

Source of
Variation

Degree of
Freedom

Sum
Square

Mean Square Expected of Mean Square

Group J − 1 SSA
SSA
J−1

IK
J−1

∑J
b=1A

2
b +Kσ2π + σ2ε

Unit (Group) J(I − 1) SSπ
SSπ

J(I−1) Kσ2π + σ2ε

Time K − 1 SSB
SSB
K−1

1J
K−1

∑K
c=1B

2
c + σ2e

Group × Time (K − 1)(J − 1) SSA×B
SSA×B

(K−1)(J−1))
t

(K−1)(J−1)
∑I

a=1

∑K
c=1(AB)2bc + σ2e

Residual J(K − 1)(I − 1) SSe
SSe

J(K−1)(I−1) σ2ε

The sum of squares due to groups, subjects group, time, group × time and residuals are then defined
respectively as follows:

SSA = IK
∑K

b=1

(
h̄.b. − h̄.....

)2
, SSπ = K

∑I
a=1

∑J
b=1

(
h̄ab. − h̄.b.

)2
SSB = IJ

∑K
c=1

(
h̄...c − h̄...

)2
, SSA×B = I

∑J
b=1

∑K
c=1

(
h̄.bc − h̄.b. − h̄.c + h̄...

)2
SSε =

∑I
a=1

∑J
b=1

∑K
c=1

(
h̄abc − h̄.bc − hab. + h̄.b.

)2
where
h̄... = 1

1JK

∑I
i=1

∑J
j=1

∑K
k=1 habc : the overall mean.

h̄.b. = 1
IJ

∑I
i=1

∑K
c=1 yabc : the mean for group (b).

h̄ab. = 1
K

∑K
c=1 habc : the mean for a th subject within group (b).

h̄..c = 1
IJ

∑I
i=1

∑J
j=1 habc : the mean for time (c).

h̄.bc = 1
I

∑I
a=1 habc : the mean for group (b) at time (c).

Let

θabc = θ +Ab + πa(b) +Bc + (AB)bc (2.3)

represent the mean of time (c) for unit (a) within group (b) and, let

H = `0θ +

J∑
b=1

`bAb +

I∑
a=1

J∑
b=1

`a`bπa(b) +

K∑
c=1

`cBc +

J∑
b=1

k∑
c=1

`b`c(AB)bc (2.4)

be an arbitrary linear combination of parameters θ,A1, . . . , Aq, π1(1), . . . , πI(J), B1, . . . ,BK , (AB)11, . . . , (AB)JK
the best linear unbiased estimators (BLUE’s) of the estimable parameters θ,Ab, πa(b), Bc, (AB)bc and θabc

are θ̂ = h̄...,Âb = h̄.b. − h̄...,, π̂a(b) = (1− r)
(
h̄ab. − h̄.b.

)
, B̂c = h̄..c − h̄...., (ÂB)bc = h̄.bc + h̄.... − h̄.b. − h̄..c and

θ̂abc = (1− r)
(
h̄ab.− h̄.b.

)
+ h̄.bc, [2] from the variance analysis (ANOVA) table, we have that

E (MSπ) = τπ = Kσ2π + σ2ε (2.5)

and

E (MSε) = τε = σ2ε (2.6)

since, the ANOVA estimators of τπ and τε are

τ̂ε = MSε and τ̂π = MSπ. (2.7)

The rate of expected mean squares is denote

r =
τε
τπ

=
σ2ε

Kσ2π + σ2ε
(2.8)
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note that 0 < r ≤ 1 is known if and only if σ2ε /σ
2
π is known. And the corresponding estimator of r is

No.1 r̂ =
MSε
MSπ

=
SSε
SSπ

1

(K − 1)
. (2.9)

These estimates can be beyond the parameter space. To trim the estimated value of r̂ by result (9), we
put r > 1, thus obtaining the estimator

No.2 r̂ = min

{
SSε
SSπ

1

(K − 1)
, 1

}
(2.10)

the trimmed version, No. 1 , is the usual ANOVA estimator.

3. Estimation of parameters

We consider maximum likelihood method (MLM), restricted maximum likelihood method (REMLM)
and modified restricted maximum likelihood method (MREMLM) the rate of expected mean squares. The
statistical h̄...,h̄.b.− h̄..., h̄.c− h̄..., h̄.bc+ h̄...− h̄.b.− h̄.c, SSε and SSπ form a set of complete sufficient statistics
for θ,Ab, Bc, (AB)bc, σ

2
ε and σ2π. These six statistics are distributed independently as:

h̄... ∼ N
(
θ, τπ

IJK

)
h̄.b. − h̄... ∼ N

(
Ab,

(J+1)τπ
IK

)
h̄...c − h̄.... ∼ N

(
Bc,

σ2
ε+σ

2
π

IJ + τπ
IJ

)
h̄.bc + h̄... − h.b. − h̄.c ∼ N

(
(AB)bc, (J + 1)

(
σ2
ε+σ

2
π

IJ + τπ
IJK

))
SSε ∼ τεχ2[(I − 1)(K − 1)]
SSπ ∼ τπχ2[J(I − 1)]


(3.1)

where χ2(t) a central distribution of chi-square of (t) degrees of freedom indicates. The maximum likelihood
estimators of θ,Ab, Bc, (AB)bc, τε and τπ are determined by the parameter values, which maximize the
function:

L (θ,Ab, Bc, (AB)bc, τε, τπ | h) ∝

(τπ)−2 (τπ)−
J(I−1)

2 (τε)
−J(I−1)(K−1)

2 exp

{
−1

2

[
IJK (h... − θ)2

τπ
+
nqp

(
h̄.b. − h̄... −Ab

)2
τπ

+
IJK

(
h̄.c − h̄... −Bc

)2
τπ

+
IJK

(
h̄.bc + h̄..... − h.b. − h̄..c − (AB)bc

)2
τπ

+
SSπ
τπ

+
SSε
τε

]}

L (θ,Ab, Bc, (AB)bc, τε, τπ | h) ∝ (τπ)−
J(I−1)−4

2 (τε)
−J(I−1)(K−1)

2 exp

{
−1

2

[
IJK (h..., − θ)2

τπ
+

nqp
(
h̄.b − h̄.... −Ab

)2
τπ

+
IJK

(
h̄.c − h̄... −Bc

)2
τπ

+
IJK

(
h̄.bc + h̄.... − h.b. − h̄.c − (AB)bc

)2
τπ

+
SSπ
τπ

+
SSε
τε

]}
(3.2)

subject to the restrictions τπ ≥ τε > 0 and the ML estimates of τπ and τε are these values of τπ and τε that
maximize the function:

logL (τπ, τε | h) ∝ −J(I − 1)− 4

2
log (τπ)− J(I − 1)(K − 1)

2
log (τε) +

{
−1

2

[
SSπ
τπ

+
SSε
τε

]}
(3.3)
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logLA (τπ, τε | h) = −1

2
{[J(I − 1) + 2] log (τπ)− J(I − 1)(K − 1) log (τε) +

SSπ
τπ

+
SSε
τε

}
(3.4)

subject to the restrictions τπ ≥ τε > 0
The maximize logLA for τπ > 0 and τε > 0, but the solution can violate the constraint τπ ≥ τε. If we
neglected the restriction τπ ≥ τε, we would have the following estimator:

τ̂π =
SSπ

J(I − 1) + 2
, τ̂ε =

SSε
J(I − 1)(K − 1)

(3.5)

Then, the corresponding estimator of r = τε
τπ

would be

No.3r̂ =
SSε
SSπ

J(I − 1) + 2

J(I − 1)(K − 1)
(3.6)

The REML estimator of τπ and τε are defined to be those values of these parameters that maximize
logLB (τπ, τε) subject to the restrictions τπ ≥ τε > 0

logLB (τπ, τε) = −1

2

{
[J(I − 1) + 1] log (τπ)− J(I − 1)(K − 1) log (τε) +

SSπ
τπ

+
SSε
τε

}
(3.7)

The maximize logLB for τπ > 0 and τε > 0, but the solution can violate the constraint τπ ≥ τε. If we
neglected the restriction τπ ≥ τε, we would have the following estimator:

τ̂π =
SSπ

J(I − 1) + 1
, τ̂ε =

SSε
J(I − 1)(K − 1)

(3.8)

Then, the corresponding estimator of r = τε
τπ

would be

No.4 r̂ =
SSε
SSπ

J(I − 1) + 1

J(I − 1)(K − 1)
(3.9)

For the modification REML technique of estimates of τπ and τε which depend on the Jeffreys non-information
prior distribution, the Jeffreys prior distribution is:

π (τπ, τε) =
(
τπτε)

−1 (τπ ≥ τε > 0) (3.10)

Therefore, the estimators of τπ and τε are obtained by maximizing the function

logLC (τπ, τε) = −1

2
{[J(I − 1) + 6] log (τπ)− [J(I − 1)(K − 1) + 2] log (τε) +

SSπ
τπ

+
SSε
τε

}
(3.11)

subject to the restrictions (τπ ≥ τε > 0).
The maximize logLC for τπ and τε > 0, but the solution can violate the constraint τπ ≥ τε. If we neglected
the restriction τπ ≥ τε, we would have the following estimator:

τ̂π =
SSπ

J(I − 1) + 6
, τ̂ε =

SSε
J(I − 1)(K − 1) + 2

(3.12)

Then, the corresponding estimator of r = τε
τπ

would be

No.5r̂ =
SSε
SSπ

J(I − 1) + 6

J(I − 1)(K − 1) + 2
(3.13)

The three functions logLA (τπ, τε) , logLB (τπ, τε) and logLC (τπ, τε) are all of the form:

logL = −1

2

[
(lπ + kπ) log (τε) + (lε + kε) log (τπ) +

SSπ
τπ

+
SSε
τε

]
(3.14)
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where lπ = J(I − 1) and lε = J(I − 1)(K − 1) are the degrees of freedom. The choices for kπ and kε that
given logLA (τπ, τε) , logLB (τπ, τε) and logLC (τπ, τε) are:

logLA (τπ, τε) : kπ = 2, kε = 0
logLB (τπ, τε) : kπ = 1, kε = 0
logLC (τπ, τε) : kπ = 6, kε = 2

 (3.15)

the corresponding estimators of r = τε
τπ

would be
The parameter space limits are not taken into account by the estimators (3.5), (3.8) and (3.12) and are
therefore not true ML, REML or modified REMLs. It can be seen that the maximum values of τπ and τε
are subject to the constraints of (τπ ≥ τε > 0 ) are

τ̂π =

{
fπ, if fπ ≥ fε
fπε, if fπ < fε

(3.16)

and

τ̂ε =

{
fε, if fπ ≥ fε
fπε, if fπ < fε

(3.17)

where fπε = (gπfπ+gεfε)
gπ+gε

and gi = li + ki, (i = π, ε).
The τπ and τε estimators are given by (26) and (27) result in the following r estimators:

r̂ = min

{
fε
fπ
, 1

}
(3.18)

Therefore, the ML, REML and modified REML trimmed-off estimators are:

No. 6 r̂ = min

{
SSε
SSπ

J(I − 1) + 2

J(I − 1)(K − 1)
, 1

}
(3.19)

No.7 r̂ = min

{
SSε
SSπ

J(I − 1) + 1

J(I − 1)(K − 1)
, 1

}
(3.20)

No.8 r̂ = min

{
SSε
SSπ

J(I − 1) + 6

J(I − 1)(K − 1) + 2
, 1

}
(3.21)

Notice that they are truncated forms, respectively, of estimators No.3, No.4 and No.5.
The corresponding estimators of θ,Ab, πa(b), Bc, (AB)bc, θabc and H = `0θ+

∑J
b=1 `bAb

+
∑I

a=1

∑J
b=1 `a`bπa(b) +

∑K
c=1 `cBc +

∑J
b=1

∑k
c=1 `b`c(AB)bc are given by [2]

θ̂ = h̄
π̂a(b) = (1− r̂)

(
h̄ab. − ȳ.b.

)
Âb = h̄.b. − h̄
B̂c = h̄..c − h̄
(ÂB)bc = h̄.bc + h̄... − h̄.b. − h̄.c
θ̂abc = h̄.bc + π̂a(b)
Ĥ = `0θ +

∑J
b=1 `b

(
h̄.b. − h̄...

)
+
∑I

a=1

∑J
b=1 `b`c

[
(1− r̂)

(
h̄ab. − ȳ.b.

)]
+
∑K

c=1 `c
(
h̄.c − h̄...

)
+
∑J

b=1

∑K
c=1 `b`c

(
h̄.bc + h̄... − h̄.b − h̄..c

)


(3.22)
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where (a = 1, . . . , I; b = 1, . . . , J ; c = 1, . . . ,K), for estimators No.1-No.8.
There are three types of estimators of θ,Ab, πa(b), Bc, (AB)bc, θabc and H as follows:
Type 1: This type consists of estimators as follows:

θ̂1 = h̄....

π̂1;a(b) = (1− r̂)
(
h̄ab. − ȳ.b.

)
Â1;b = ˆA1,z;b = h̄.b. − h̄...
B̂1;c = B̂1,z;c = h̄.c − h̄....

(ÂB)1;bc = (ÂB)1,z;bc = h̄.bc + h̄... − h̄.b. − h̄..c
θ̂1;abc = θ̂1,z;abc = h̄... + Â1,z;b + π̂1,z;a(b) + B̂1,z;c + (ÂB)1,z;bc,

θ̂1,z;abc = h̄.bc + π̂1,z;a(b)

and

Ĥ1 =`0θ +

J∑
b=1

`b
(
h̄.b. − h̄...

)
+

I∑
a=1

J∑
b=1

`b`c
[
(1− r̂)

(
h̄ab. − ȳ.b.

)]
+

K∑
c=1

`c
(
h̄.c − h̄....

)
+

J∑
b=1

K∑
c=1

`b`c
(
h̄.bc + h̄... − h̄.b. − h̄.c

)
with

r̂1 = r̂1,z = z
SSε
SSπ

where (a = 1, . . . , I; b = 1, . . . , J ; c = 1, . . . ,K) and z is an arbitrary positive constant. Let θ̂1 = θ̂1,z denote

the vector of dimensions n× 1 whose ath component is θ̂1,z;a.
Type 1 estimators will be called untruncated estimators. This type contains No.1, No.3, No.4, No.5and
No.7.
Tvpe 2: This type consists of estimators as follows:

θ̂2 = h̄....

π̂2;a(b) = (1− r̂)
(
h̄ab. − ȳ.b.

)
,

Â2;b = Â2,z;b = h̄.b. − h̄....
B̂2;c = B̂2,z;c = h̄.c − h̄...,
(ÂB)2;bc = (ÂB)2,z;bc = h̄.bc + h̄... − h̄.b. − h̄..c,

θ̂2;abc = θ̂2,z;abc = h̄... + Â2,z;b + π̂2,z;a(b) + B̂2,z;c + (ÂB)2,z;bc,

θ̂2,z;abc = h̄.bc + π̂2,z;a(b),

and

Ĥ1 = `0θ +
J∑
b=1

`b
(
h̄.b. − h̄...

)
+

I∑
a=1

J∑
b=1

`b`c
[
(1− r̂)

(
h̄ab. − ȳ.b.

)]
+

K∑
c=1

`c
(
h̄.c − h̄...

)
+

J∑
b=1

K∑
c=1

`b`c
(
h̄.bc + h̄... − h̄.b. − h̄..c

)
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with

r̂2 = r̂2,z = min

{
z
SSε
SSπ

, 1

}
where (a = 1, . . . , I; b = 1, . . . , J ; c = 1, . . . ,K) and z is an arbitrary positive constant. Let θ̂2 = θ̂2,z denote

the vector of dimensions n× 1 whose ath component is θ̂2,z;a.
Type 2 estimators will be called truncated estimators. This type contains No.2, No.6, No. 7 and No.8.
Type 3: This type consists of estimators as follows:

θ̂3 = h̄

π̂3;a(b) = (1− r̂)
(
h̄ab. − ȳ.b.

)
,

Â3;b = Â3,z;b = h̄.b. − h̄....
B̂3;c = B̂3,z;c = h̄.c − h̄...
(ÂB)3;bc = (ÂB)3,z;bc = h̄.bc + h̄... − h̄.b. − h̄..c
θ̂3;abc = θ̂3,z;abc = h̄..... + Â3,z;b + π̂3,z;a(b) + B̂3,z;c + (ÂB)3,z;bc,

θ̂3,z;abc = h̄.bc + π̂3,z;a(b)

and

Ĥ3 = `0θ +
J∑
b=1

`b
(
h̄.b. − h̄...

)
+

I∑
a=1

J∑
b=1

`b`c
[
(1− r̂)

(
h̄ab. − ȳ.b.

)]
+

K∑
c=1

`c
(
h̄.c − h̄.....

)
+

J∑
b=1

K∑
c=1

`b`c
(
h̄.bc + h̄... − h̄.b. − h̄.c

)
with

r̂3 = r̂3,z = f3 (SSπ, SSε)

where (a = 1, . . . , I; b = 1, . . . , J ; c = 1, . . . ,K) and f3(x, y) is an arbitrary function of x, y > 0. Let θ̂3 = θ̂3,z
denote the vector of dimensions n× 1 whose ath component is θ̂3,z;a
This type contains No.1, No.2, No.3, No.4, No.5, No.6.No.7, No.8.

Summary and Classification of Estimators

A full list of the estimators viewed in this paper is as follows:

No.1 r̂ =
MSε
MSπ

=
SSε
SSπ

1

(K − 1)
, (K > 1)

No.2 r̂ = min

{
SSε
SSπ

1

(K − 1)
, 1

}
No.3 r̂ =

SSε
SSπ

J(I − 1) + 2

J(I − 1)(K − 1)
, (K > 1 and I > 1).

No.4 r̂ =
SSε
SSπ

J(I − 1) + 1

J(I − 1)(K − 1)
, (K > 1 and I > 1).

No.5 r̂ =
SSε
SSπ

J(I − 1) + 6

J(I − 1)(K − 1) + 2
,
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No.6 r̂ = min

{
SSε
SSπ

J(I − 1) + 2

J(I − 1)(K − 1)
, 1

}
No.7 r̂ = min

{
SSε
SSπ

J(I − 1) + 1

J(I − 1)(K − 1)
, 1

}
,

No.8 r̂ = min

{
SSε
SSπ

J(I − 1) + 6

J(I − 1)(K − 1) + 2
, 1

}
These estimators were classified into three types: 1,2 and 3.
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