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Abstract

The aim of this paper is to give sufficient conditions for Ψ-instability of trivial solution of a nonlinear
Lyapunov matrix differential equation with integral term as right side.
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1. Introduction

The Lyapunov matrix differential equations occur in many branches of control theory such as opti-
mal control and stability analysis. Recent works for Ψ-stability, Ψ-asymptotic stability, Ψ-instability,
Ψ-boundedness, controllability, dichotomy and conditioning for Lyapunov matrix differential equa-
tions have been given in many papers. See [4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17] and the references
therein.

In this paper are presented a several new sufficient conditions for Ψ-instability of the trivial
solution to the nonlinear Lyapunov matrix differential equation with integral term as right side:

Z ′ = A(t)Z + ZB(t) + F (t, Z) +

∫ t

0

G(t, s, Z(s))ds. (1.1)

These conditions can be expressed in the terms of a fundamental matrices of the matrix differential
equations

X ′ = A(t)X (1.2)
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Y ′ = Y B(t) (1.3)

Z ′ = A(t)Z + ZB(t) (1.4)

and on the functions F and G. Here, Ψ is a matrix function whose introduction permits to obtaining
a mixed asymptotic behavior for the components of solutions. The main tools used in this paper are
the technique of the variation of constants formula and Kronecker product of matrices, which has
been successfully applied in various fields of matrix theory, group theory and particle physics. See,
for example, the cited papers and the references cited therein.

2. Preliminaries

In this section we present some basic notations, definitions, hypotheses and results which are
useful later on. Let Rd be the Euclidean d-dimensional space. For x = (x1, x2, ..., xd)

T ∈ Rd, let
‖ x ‖ = max{| x1|, | x2|, ..., | xd|} be the norm of x (here, T denotes transpose). Let Md×d be the
linear space of all real d × d matrices. For A = (aij) ∈ Md×d, we define the norm | A | by formula

| A | = sup
‖x‖≤1

‖ Ax ‖ . It is well-known that | A | = max
1≤i≤d

{
d∑
j=1

| aij |}. By a solution of the equation

(1.1) we mean a continuous differentiable d× d matrix function satisfying the equation (1.1) for all
t ∈ R+ = [0,∞). In equation (1.1), we assume that A(t), B(t), F (t, Z) and G(t, s, Z) are continuous
d × d matrices for t ∈ R+, Z ∈ Md×d and t ≥ s ≥ 0. We will admit that for all t0 ∈ R+ and
Z0 ∈Md×d, the equation (1) has a unique solution Z(t), defined on R+, such that Z(t0) = Z0.

Let Ψi : R+ −→ (0,∞), i = 1, 2, ..., d, be continuous functions and the matrix

Ψ = diag [Ψ1,Ψ2, · · ·Ψd].

Definition 2.1. ([4], [9])The trivial solution of the equation X ′ = F (t,X) (where X ∈ Md×d and
F is a continuous d × d matrix function) is said to be Ψ− stable over R+ if for each ε > 0 and
each t0 ∈ R+, there is a a corresponding δ = δ(ε, t0) > 0 such that any solution X(t) of the equation
which satisfies the inequality | Ψ(t0)X(t0) |< δ, exists and satisfies the inequality | Ψ(t)X(t) |< ε for
all t ≥ t0.
Otherwise, we say that the trivial solution is Ψ− unstable over R+.

Remark 2.2. 1. The Definition extends the definition of stability (instability) from (vector) differ-
ential equations to matrix differential equations.
2. For Ψ = Id, one obtain the notion of classical stability (instability) (see [2]).
3. It is easy to see that if Ψ and Ψ−1 are bounded on R+, then the Ψ− stability (instability) is
equivalent with the classical stability (instability).

Definition 2.3. ([6], [7])The matrix function M : R+ −→Md×d is said to be Ψ− bounded on R+ if
the matrix function Ψ(t)M(t) is bounded on R+ (i.e. there exists m > 0 such that | Ψ(t)M(t) |≤ m,
for all t ∈ R+).
Otherwise, is said that the matrix function M is Ψ− unbounded on R+.

Definition 2.4. ([1]) Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mp×q. The Kronecker product of A
and B, written A⊗B, is defined to be the partitioned matrix

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
...

am1B am2B · · · amnB

 .
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Obviously, A⊗B ∈Mmp×nq.
The important rules of calculation of the Kronecker product are given in [1], [12], Chapter 2 and

Lemma 1, [9].

Definition 2.5. ([12]) The application Vec : Mm×n −→ Rmn, defined by

Vec(A) = (a11, a21, · · · , am1, a12, a22, · · · , am2, · · · , a1n, a2n, · · · , amn)T ,

where A = (aij) ∈ Mm×n, is called the vectorization operator.

For important properties and rules of calculation of the Vec operator, see Lemmas 2, 3, 4, [9].
For ”corresponding Kronecker product system associated with (1.1)”, see Lemma 5, [9].
The Lemmas 6 and 9, [9], play an important role in the proofs of main results of present paper.
For Ψ− instability of matrix differential equations (1.2), (1.3) and (1.4), see essential details in

[9].

3. Main results

In this section, we obtain sufficient conditions for Ψ− instability of trivial solution of nonlinear
Lyapunov matrix differential equation (1), in three cases.

Case 1. We start from Ψ− instability of equation Z ′ = A(t)Z.

Theorem 3.1. Suppose that:
(1). There exist supplementary projections P1 and P2, P2, 6= Od, and a positive constant K such that
the fundamental matrix X(t) for (2) satisfies the condition∫ t

0

∣∣Ψ(t)X(t)P1X
−1(s)Ψ−1(s)

∣∣ ds+

∫ ∞
t

∣∣Ψ(t)X(t)P2X
−1(s)Ψ−1(s)

∣∣ ds ≤ K,

for all t ≥ 0;
(2). The matrix function F (t, Z) satisfies the inequality

| Ψ(t)F (t, Z) |≤ γ | Ψ(t)Z |,

for all t ∈ R+ and Z ∈Md×d, where γ is a positive constant;
(3). The matrix function B(t) satisfies the condition | B(t) |≤ b, for all t ≥ 0, where b is a positive
constant;
(4). The matrix function G(t, s, Z) satisfies the inequality

| Ψ(t)G(t, s, Z) |≤ g(t, s) | Ψ(s)Z |,

for t ≥ s ≥ 0 and Z ∈ Md×d, where g(t, s) is a continuous nonnegative function for t ≥ s ≥ 0 such
that ∫ t

0

g(t, s)ds ≤M,

for all t > 0, M being a positive constant;
(5). (b+ γ +M)K < 1.
Then, the trivial solution of (1.1) is Ψ− unstable over R+.
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Proof . We may reason by reduction to absurdity. Suppose the contrary. Then, by Definition,
it results that the trivial solution of the equation (1) is Ψ− stable over R+. Therefore, for each
ε > 0 and each t0 ∈ R+, there is a a corresponding δ = δ(ε, t0) > 0 such that any solution Z(t) of
the equation (1) which satisfies the inequality | Ψ(t0)Z(t0) |< δ, exists and satisfies the inequality
| Ψ(t)Z(t) |< ε for all t ≥ t0.
Without loss of generality, we may assume that X(0) = Id. We choose Z0 ∈ Md×d such that
P1Z0 = Od and 0 <| Ψ(0)Z0 |< δ(ε, 0). Let Z(t) be the solution of (1) with Z(0) = Z0. Then,
| Ψ(t)Z(t) |< ε for all t ≥ 0.
Let W (t) be the matrix function

W (t) = Z(t)−
∫ t

0

X(t)P1X
−1(s)H(s)ds+

∫ ∞
t

X(t)P2X
−1(s)H(s)ds

for t ≥ 0, where

H(s) = Z(s)B(s) + F (s, Z(s)) +

∫ s

0

G(s, u, Z(u))du, for s ≥ 0.

For s ≥ 0, we have

| Ψ(s)H(s) |=

=| Ψ(s)
(
Z(s)B(s) + F (s, Z(s)) +

∫ s
0
G(s, u, Z(u))du

)
|≤

≤| Ψ(s)Z(s) || B(s) | + | Ψ(s)F (s, Z(s)) | +
∫ s
0
| Ψ(s)G(s, u, Z(u)) | du ≤

≤ b | Ψ(s)Z(s) | +γ | Ψ(s)Z(s) | +
∫ s
0
g(s, u) | Ψ(u)Z(u) | du ≤

≤ ε(b+ γ) + ε
∫ s
0
g(s, u)du ≤ ε(b+ γ +M),

from which, for v ≥ t ≥ 0, we obtain

|
∫ v
t
X(t)P2X

−1(s)H(s)ds |=

=| Ψ−1(t)
∫ v
t

Ψ(t)X(t)P2X
−1(s)Ψ−1(s)Ψ(s)H(s)ds |≤

≤| Ψ−1(t) |
∫ v
t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) || Ψ(s)H(s) | ds ≤

≤ ε (b+ γ +M) | Ψ−1(t) |
∫ v
t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) | ds.

.

It follows that ∫ ∞
t

X(t)P2X
−1(s)H(s)ds, for t ≥ 0,

is an absolutely convergent integral on R+. It is easy to see that the function W (t) exists on R+ and
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is a continuously differentiable function on R+. For t ∈ R+, we have

W ′(t) = Z ′(t)−
∫ t
0
X ′(t)P1X

−1(s)H(s)ds−X(t)P1X
−1(t)H(t)+

+
∫∞
t
X ′(t)P2X

−1(s)H(s)ds−X(t)P2X
−1(t)H(t) =

= A(t)Z(t) + Z(t)B(t) + F (t, Z(t)) +
∫ t
0
G(t, s, Z(s))ds−

−
∫ t
0
A(t)X(t)P1X

−1(s)H(s)ds−X(t)P1X
−1(t)H(t)+

+
∫∞
t
A(t)X(t)P2X

−1(s)H(s)ds−X(t)P2X
−1(t)H(t) =

= A(t)Z(t) + Z(t)B(t) + F (t, Z(t)) +
∫ t
0
G(t, s, Z(s))ds−

−A(t)
(∫ t

0
X(t)P1X

−1(s)H(s)ds−
∫∞
t
X(t)P2X

−1(s)H(s)ds
)
−

−X(t) (P1 + P2)X
−1(t)H(t) =

= A(t)Z(t) +H(t)− A(t) (Z(t)−W (t))−H(t) = A(t)W (t).

Thus, W (t) is a solution on R+ of the linear equation (2). For t ∈ R+, we have

| Ψ(t)W (t) |≤| Ψ(t)Z(t) | +
∫ t
0
| Ψ(t)X(t)P1X

−1(s)Ψ−1(s) || Ψ(s)H(s) | ds+
+
∫∞
t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) || Ψ(s)H(s) | ds
≤ ε+ ε (b+ γ +M)K.

This shows that the solution W (t) is Ψ− bounded on R+.
On the other hand,

W (t) = X(t)X−1(0)W (0) = X(t) (P1 + P2)W (0) =

= X(t)P1

(
Z(0) +

∫∞
0
X(0)P2X

−1(s)H(s)ds
)

+

+X(t)P2W (0) = X(t)P2W (0).

If P2W (0) 6= Od, from Lemma 11, [9], it follows that lim sup
t→∞

| Ψ(t)W (t) | = +∞, which contradicts

the Ψ− boundedness of W (t) on R+

Thus, P2W (0) = Od and then, W (t) = Od on R+.
Therefore, for t ∈ R+, we have

Z(t) =

∫ t

0

X(t)P1X
−1(s)H(s)ds−

∫ ∞
t

X(t)P2X
−1(s)H(s)ds.

From this,
| Ψ(t)Z(t) |≤

∫ t
0
| Ψ(t)X(t)P1X

−1(s)Ψ−1(s) || Ψ(s)H(s) | ds+

+
∫∞
t
| Ψ(t)X(t)P2X

−1(s)Ψ−1(s) || Ψ(s)H(s) | ds ≤

≤ K (b+ γ +M) sup
s≥0
| Ψ(s)Z(s) | .
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Therefore,
sup
s≥0
| Ψ(s)Z(s) |≤ K (b+ γ +M) sup

s≥0
| Ψ(s)Z(s) |,

which contradicts the hypothesis (5) of Theorem (because | Ψ(0)Z(0) | > 0).
This contradiction shows that the trivial solution of the equation (1) is Ψ− unstable over R+. �

Remark 3.2. 1. In particular case B = Od and F = Od, one obtain variant for differential matrix
equation of Theorem 5, [3].
Indeed, in this case, for

Z =


z1 z1 · · · z1
z2 z2 · · · z2
...

...
...

...
zd zd · · · zd

 and G =


g1(t, s, z) g1(t, s, z) · · · g1(t, s, z)
g2(t, s, z) g2(t, s, z) · · · g2(t, s, z)

...
...

...
...

gd(t, s, z) gd(t, s, z) · · · gd(t, s, z)

 ,

the equation (1) becomes

z′ = A(t)z +

∫ t

0

G(t, s, Z(s))ds,

where z = (z1, z2, ..., zd)
T , i.e. equation (1) from [3].

Now, the solution Z(t) is Ψ− unstable over R+ if and only if the solution z(t) is Ψ− unstable over
R+.
Thus, the Theorem generalizes the result from [3].
2. For F = Od, one obtain a new result in connection with Ψ− instability of trivial solution of
nonlinear Lyapunov matrix differential equation with integral term as right side

Z ′ = A(t)Z + ZB(t) +

∫ t

0

G(t, s, Z(s))ds,

in which the equation Z ′ = A(t)Z is Ψ− unstable over R+.

Case 2. We start from Ψ− instability of equation Z ′ = A(t)Z + ZB(t).

Theorem 3.3. Suppose that:
(1). There exist supplementary projections P1 and P2, P2, 6= Od, and a positive constant K such that
the fundamental matrices X(t) and Y (t) for (2) and (3) respectively satisfy for all t ≥ 0 the condition∫ t

0

∣∣∣(Y T (t)
(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P1X

−1(s)Ψ−1(s))
∣∣∣ ds+

+
∫∞
t

∣∣∣(Y T (t)
(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)P2X

−1(s)Ψ−1(s))
∣∣∣ ds ≤ K,

(2). The matrix function F (t, Z) satisfies the inequality

| Ψ(t)F (t, Z) |≤ γ | Ψ(t)Z |,

for all t ∈ R+ and Z ∈Md×d, where γ is a positive constant;
(3). The matrix function G(t, s, Z) satisfies the inequality

| Ψ(t)G(t, s, Z) |≤ g(t, s) | Ψ(s)Z |,
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for t ≥ s ≥ 0 and Z ∈ Md×d, where g(t, s) is a continuous nonnegative function for t ≥ s ≥ 0 such
that ∫ t

0

g(t, s)ds ≤M,

for all t > 0, M being a positive constant;
(4). (γ +M)K < 1.
Then, the trivial solution of (1.1) is Ψ− unstable over R+.

Proof . We may reason by reduction to absurdity. Suppose the contrary. Then by Definition,
it results that the trivial solution of the equation (1) is Ψ− stable over R+. Therefore, for each
ε > 0 and each t0 ∈ R+, there is a a corresponding δ = δ(ε, t0) > 0 such that any solution Z(t) of
the equation (1) which satisfies the inequality | Ψ(t0)Z(t0) |< δ, exists and satisfies the inequality
| Ψ(t)Z(t) |< ε for all t ≥ t0.
Let z(t) = Vec(Z(t)), t ≥ 0. From Lemma 5, [9], the function z(t) is a solution of the corresponding
Kronecker product system associated with (1.1), i.e. of the differential system

z′ =
(
Id ⊗ A(t) +BT (t)⊗ Id

)
z + f(t, z) +

∫ t

0

g(t, s, z(s))ds, (3.1)

where f(t, z) = Vec(F (t, Z)) and g(t, s, z) = Vec(G(t, s, Z)), for t ≥ s ≥ 0 and Z ∈Md×d.
From Lemmas 6 and 7, [9], the trivial solution of (1) is Ψ− stable over R+ if and only if the trivial
solution of (5) is Id ⊗Ψ− stable over R+.
Without loss generality, we may assume that X(0) = Y (0) = Id. We choose z0 ∈ Rd2 , z0 6= θ, such

that (Id ⊗ P1) z0 = θ and 0 <‖ (Id ⊗Ψ(0)) z0 ‖Rd2<
δ(ε,0)
d
.

Let z(t) the solution of (3.1) such that z(0) = z0. From the above results and Lemma 6, [9], we have
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2< ε, for t ≥ 0 (and | Ψ(t)Z(t) |< ε for all t ≥ 0, where Z(t) = Vec−1(z(t)) is
the corresponding solution of (1)).
Let w(t) the vector function

w(t) = z(t)−
∫ t
0

(
Y T (t)⊗X(t)

)
(Id ⊗ P1)

((
Y T
)−1

(s)⊗X−1(s)
)
H(s)ds+

+
∫∞
t

(
Y T (t)⊗X(t)

)
(Id ⊗ P2)

((
Y T
)−1

(s)⊗X−1(s)
)
H(s)ds, t ≥ 0,

where

H(s) = f(s, z(s)) +

∫ s

0

g(s, u, z(u))du, s ≥ 0,

or, in other form (see Lemma 1, [9]),

w(t) = z(t)−
∫ t
0

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (X(t)P1X

−1(s))
]
H(s)ds+

+
∫∞
t

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (X(t)P2X

−1(s))
]
H(s)ds, t ≥ 0.
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For v ≥ t ≥ 0,

‖
∫ v
t

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (X(t)P2X

−1(s))
]
H(s)ds ‖Rd2=

=‖ (Id ⊗Ψ−1(t))
∫ v
t

Φ2(t, s)(Id ⊗Ψ(s))H(s)ds ‖Rd2≤

≤| Ψ−1(t) |
∫ v
t
| Φ2(t, s) |‖ (Id ⊗Ψ(s))H(s) ‖Rd2 ds ≤

≤ ε (γ +M) | Ψ−1(t) |
∫ v
t
| Φ2(t, s) | ds,

(where Φi(t, s) =
(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (Ψ(t)X(t)PiX

−1(s)Ψ−1(s)) , i = 1, 2)

because, for t ≥ 0 and the solution Z(t) = Vec−1(z(t)),

‖ (Id ⊗Ψ(t))H(t) ‖Rd2=‖ (Id ⊗Ψ(t))Vec
(
F (t, Z(t)) +

∫ t
0
G(t, s, Z(s))ds

)
‖Rd2

≤| Ψ(t)F (t, Z(t)) | +
∫ t
0
| Ψ(t)G(t, s, Z(s)) | ds

≤ γ | Ψ(t)Z(t) | +
∫ t
0
g(t, s) | Ψ(s)Z(s) | ds ≤ ε (γ +M) .

It follows that ∫ ∞
t

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗
(
X(t)P2X

−1(s)
)]
H(s)ds, t ≥ 0,

is an absolutely convergent integral. It is easy to see that w(t) exists on R+ and is a continuously
differentiable function on R+. For t ∈ R+, with the notation C(t) = Id⊗A(t) +BT (t)⊗ Id and with
Lemma 9, [9],

w′(t) = z′(t)−
∫ t
0

(
Y T (t)⊗X(t)

)′
(Id ⊗ P1)

((
Y T
)−1

(s)⊗X−1(s)
)
H(s)ds−

−
(
Y T (t)⊗X(t)

)
(Id ⊗ P1)

((
Y T
)−1

(t)⊗X−1(t)
)
H(t)+

+
∫∞
t

(
Y T (t)⊗X(t)

)′
(Id ⊗ P2)

((
Y T
)−1

(s)⊗X−1(s)
)
H(s)ds−

−
(
Y T (t)⊗X(t)

)
(Id ⊗ P2)

((
Y T
)−1

(t)⊗X−1(t)
)
H(t) =

= C(t)z(t) + f(t, z(t)) +
∫ t
0
g(t, s, z(s))ds−

−C(t)
∫ t
0

(
Y T (t)⊗X(t)

)
(Id ⊗ P1)

((
Y T
)−1

(s)⊗X−1(s)
)
H(s)ds+

+C(t)
∫∞
t

(
Y T (t)⊗X(t)

)
(Id ⊗ P2)

((
Y T
)−1

(s)⊗X−1(s)
)
H(s)ds−

−
(
Y T (t)⊗X(t)

)
[Id ⊗ (P1 + P2)]

((
Y T
)−1

(t)⊗X−1(t)
)
H(t) =

= C(t)z(t) + f(t, z(t)) +
∫ t
0
g(t, s, z(s))ds+ C(t) (w(t)− z(t))−H(t) = C(t)w(t).
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Thus, w(t) is a solution on R+ of the linear equation u′ = C(t)u.
On the other hand, from Lemma 6, [9], for t ≥ 0,

‖ (Id ⊗Ψ(t))w(t) ‖Rd2≤‖ (Id ⊗Ψ(t)) z(t) ‖Rd2 +

+
∫ t
0
| Φ1(t, s) |‖ (Id ⊗Ψ(s))H(s) ‖Rd2 ds+

+
∫∞
t
| Φ2(t, s) |‖ (Id ⊗Ψ(s))H(s) ‖Rd2 ds ≤

≤ ε+ ε (γ +M)K.

This shows that the solution w(t) is Id ⊗Ψ(t)− bounded on R+.
From Lemma 9, [9],

w(t) =
(
Y T (t)⊗X(t)

) ((
Y T
)−1

(0)⊗X−1(0)
)
w(0) =

=
(
Y T (t)⊗X(t)

)
[Id ⊗ (P1 + P2)]w(0) =

=
(
Y T (t)⊗X(t)

)
(Id ⊗ P2)w(0).

If (Id ⊗ P2)w(0) 6= θ, from hypothesis (1) and Lemma 11, [9], it follows that

lim sup
t→∞

‖ (Id ⊗Ψ(t))w(t) ‖Rd2= +∞.

This contradicts the Id ⊗Ψ(t)− boundedness of w(t) on R+.
Thus, (Id ⊗ P2)w(0) = θ and then w(t) = θ on R+.
Therefore, for t ≥ 0,

z(t) =
∫ t
0

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (X(t)P1X

−1(s))
]
H(s)ds−

−
∫∞
t

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ (X(t)P2X

−1(s))
]
H(s)ds, t ≥ 0.

From this, for t ≥ 0,
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2≤

≤
∫ t
0
| Φ1(t, s) |‖ (Id ⊗Ψ(s))H(s) ‖Rd2 ds+

+
∫∞
t
| Φ2(t, s) |‖ (Id ⊗Ψ(s))H(s) ‖Rd2 ds ≤

≤ (γ +M)Ksup
t≥0
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2

and then
sup
t≥0
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2≤ (γ +M)Ksup

t≥0
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2 ,

which contradicts the hypothesis (4) (because sup
t≥0
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2 6= 0).

This contradiction shows that the trivial solution of the equation (1) is Ψ− unstable over R+. �
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Remark 3.4. 1. In particular case G = Od, one obtain Theorem 4, [9].
2. For F = Od, one obtain a new result in connection with Ψ− instability of trivial solution of
nonlinear Lyapunov matrix differential equation with integral term as right side

Z ′ = A(t)Z + ZB(t) +

∫ t

0

G(t, s, Z(s))ds,

in which the equation Z ′ = A(t)Z + ZB(t) is Ψ− unstable over R+.
3. One know that the condition (1) of Theorem is a sufficient condition for Ψ− instability of the
equation (4) – see Theorems 2 and 3, [9].
If the linear Lyapunov matrix differential equation (4) is only Ψ− unstable over R+ (see Theorem 1,
[9]), then equation (1) can not be Ψ− unstable over R+. This is shown by the next example, adapted
from an example due to O. Perron, [18], and Example 3, [3].

Example 3.5. Consider equation (1) with

A(t) =

(
sin ln(t+ 1) + cos ln(t+ 1) be−

1
2
(t+1)

0 1
2

)
, F (t, Z) =

(
0 −be− 1

2
(t+1)

0 1
2

)
B(t) = −I2, G(t, s, Z) = O2,

where b ∈ R, b 6= 0.
Consider

Ψ(t) =

(
1
2

0 e
1
2
(t+1)

)
.

The equation (4) becomes

Z ′ =

(
sin ln(t+ 1) + cos ln(t+ 1)− 1 be−

1
2
(t+1)

0 −1
2

)
Z.

From Example 3, [3], this equation is Ψ− unstable over R+.
On the other hand, the functions F and G satisfy the hypotheses of Theorem:

| Ψ(t)F (t, Z) |=| Ψ(t)F (t, Z)Ψ−1(t)Ψ(t)Z |=

=|
(

0 b
2
e−(t+1)

0 0

)
Ψ(t)Z |≤

≤ b
2
e−(t+1) | Ψ(t)Z |≤ b

2e
| Ψ(t)Z |, for t ≥ 0.

Now, the equation (1.1) becomes

Z ′ =

(
sin ln(t+ 1) + cos ln(t+ 1)− 1 0

0 −1
2

)
Z. (3.2)

A fundamental matrix for this equation is

U(t) =

(
e(t+1)(sin ln(t+1)−1) 0

0 e−
1
2
(t+1)

)
.
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It is easy to see that

| Ψ(t)U(t) |=|
(

1
2
e(t+1)(sin ln(t+1)−1) 0

0 1

)
|≤ 1, for all t ≥ 0.

From Theorem 1, [9], the equation (3.2) is not Ψ− unstable over R+.

Case 3. We start from Ψ− instability of equation Z ′ = ZB(t).

Theorem 3.6. Suppose that:
(1). There exist supplementary projections P1 and P2, P2, 6= Od, and a positive constant K such that
the fundamental matrices Y (t) for (3) satisfies for all t ≥ 0 the condition∫ t

0

∣∣∣(Y T (t)
(
Y T
)−1

(s)
)
⊗ (Ψ(t)P1Ψ

−1(s))
∣∣∣ ds+

+
∫∞
t

∣∣∣(Y T (t)
(
Y T
)−1

(s)
)
⊗ (Ψ(t)P2Ψ

−1(s))
∣∣∣ ds ≤ K,

(2). The matrix function F (t, Z) satisfies the inequality

| Ψ(t)F (t, Z) |≤ γ | Ψ(t)Z |,

for all t ∈ R+ and Z ∈Md×d, where γ is a positive constant;
(3). The matrix function A(t) satisfies the inequality

| Ψ(t)A(t)Ψ−1(t) |≤ a

for all t ∈ R+, a being a positive constant;
(4). The matrix function G(t, s, Z) satisfies the inequality

| Ψ(t)G(t, s, Z) |≤ g(t, s) | Ψ(s)Z |,

for t ≥ s ≥ 0 and Z ∈ Md×d, where g(t, s) is a continuous nonnegative function for t ≥ s ≥ 0 such
that ∫ t

0

g(t, s)ds ≤M,

for all t > 0, M being a positive constant;
(5). (a+ γ +M)K < 1.
Then, the trivial solution of (1.1) is Ψ− unstable over R+.

Proof . We may reason by reduction to absurdity. Suppose the contrary. Then by Definition,
it results that the trivial solution of the equation (1) is Ψ− stable over R+. Therefore, for each
ε > 0 and each t0 ∈ R+, there is a a corresponding δ = δ(ε, t0) > 0 such that any solution Z(t) of
the equation (1) which satisfies the inequality | Ψ(t0)Z(t0) |< δ, exists and satisfies the inequality
| Ψ(t)Z(t) |< ε for all t ≥ t0.
Let z(t) = Vec(Z(t)), t ≥ 0. From Lemma 5, [9], the function z(t) is a solution of the differential
system

z′ =
(
BT (t)⊗ Id

)
z +

[
(Id ⊗ A(t)) z + f(t, z) +

∫ t

0

g(t, s, z(s))ds

]
, (3.3)
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where f(t, z) = Vec(F (t, Z)) and g(t, s, z) = Vec(G(t, s, Z)), for t ≥ s ≥ 0 and Z ∈Md×d.
From Lemmas 6 and 7, [9], the trivial solution of (1) is Ψ− stable over R+ if and only if the trivial
solution of (7) is Id ⊗Ψ− stable over R+.
Without loss generality, we may assume that Y (0) = Id. We choose z0 ∈ Rd2 , z0 6= θ, such that

(Id ⊗ P1) z0 = θ and 0 <‖ (Id ⊗Ψ(0)) z0 ‖Rd2<
δ(ε,0)
d
.

Let z(t) the solution of (3.3) such that z(0) = z0. From the above results and Lemma 6, [9], we have
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2< ε, for t ≥ 0 (and | Ψ(t)Z(t) |< ε for all t ≥ 0, where Z(t) = Vec−1(z(t)) is
the corresponding solution of (1)).
Let w(t) the vector function

w(t) = z(t)−
∫ t
0

(
Y T (t)⊗ Id

)
(Id ⊗ P1)

((
Y T
)−1

(s)⊗ Id
)
H(s)ds+

+
∫∞
t

(
Y T (t)⊗ Id

)
(Id ⊗ P2)

((
Y T
)−1

(s)⊗ Id)
)
H(s)ds, t ≥ 0,

where

H(s) = (Id ⊗ A(s)) z(s) + f(s, z(s)) +

∫ s

0

g(s, u, z(u))du, s ≥ 0,

or, in other form (see Lemma 1, [9]),

w(t) = z(t)−
∫ t
0

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ P1

]
H(s)ds+

+
∫∞
t

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ P2

]
H(s)ds, t ≥ 0.

For v ≥ t ≥ 0,

‖
∫ v
t

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ P2

]
H(s)ds ‖Rd2=

=‖ (Id ⊗Ψ−1(t))
∫ v
t

[(Y T (t)
(
Y T
)−1

(s))⊗ (Ψ(t)P2Ψ
−1(s))](Id ⊗Ψ(s))H(s)ds ‖≤

≤| Ψ−1(t) |
∫ v
t
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)P2Ψ
−1(s)) |‖ (Id ⊗Ψ(s))H(s) ‖ ds ≤

≤ ε (a+ γ +M) | Ψ−1(t) |
∫ v
t
| (Y T (t)

(
Y T
)−1

(s))⊗Ψ(t)P2Ψ
−1(s) | ds,

(3.4)

because, for s ≥ 0 and the solution z(t) = Vec(Z(t)) of (3.3),

‖ (Id ⊗Ψ(s))H(s) ‖Rd2=

=‖ (Id ⊗Ψ(s))Vec
(
A(s)Z(s) + F (s, Z(s)) +

∫ s
0
G(s, u, Z(u))du

)
‖Rd2≤

≤| Ψ(s)A(s)Ψ−1(s) || Ψ(s)Z(s) | +γ | Ψ(s)Z(s) | +

≤
∫ s
0
g(s, u) | Ψ(u)Z(u) | du ≤ ε (a+ γ +M)

(see Lemma 4, [9]).
It follows that ∫ ∞

t

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ P2

]
H(s)ds, t ≥ 0,



On the Ψ-instability of a nonlinear Lyapunov matrix differential ... 12 (2021) No. 2, 99–113 111

is an absolutely convergent integral.
It is easy to see that w(t) exists on R+ and is a continuously differentiable function on R+.
For t ∈ R+ and with the help of Lemma 9, [9],

w′(t) = z′(t)−
∫ t
0

(
Y T (t)⊗ Id

)′
(Id ⊗ P1)

((
Y T
)−1

(s)⊗ Id
)
H(s)ds−

−
(
Y T (t)⊗ Id

)
(Id ⊗ P1)

((
Y T
)−1

(t)⊗ Id
)
H(t)+

+
∫∞
t

(
Y T (t)⊗ Id

)′
(Id ⊗ P2)

((
Y T
)−1

(s)⊗ Id
)
H(s)ds−

−
(
Y T (t)⊗ Id

)
(Id ⊗ P2)

((
Y T
)−1

(t)⊗ Id
)
H(t) =

=
(
BT (t)⊗ Id

)
z(t) + (Id ⊗ A(t)) z(t) + f(t, z(t)) +

∫ t
0
g(t, s, z(s))ds−

−
(
BT (t)⊗ Id

) ∫ t
0

(
Y T (t)⊗ Id

)
(Id ⊗ P1)

((
Y T
)−1

(s)⊗ Id
)
H(s)ds+

+
(
BT (t)⊗ Id

) ∫∞
t

(
Y T (t)⊗ Id

)
(Id ⊗ P2)

((
Y T
)−1

(s)⊗ Id
)
H(s)ds−

−
(
Y T (t)⊗ Id

)
[Id ⊗ (P1 + P2)]

((
Y T
)−1

(t)⊗ Id
)
H(t) =

=
(
BT (t)⊗ Id

)
z(t) +

(
BT (t)⊗ Id

)
(w(t)− z(t)) =

(
BT (t)⊗ Id

)
w(t).

Thus, w(t) is a solution on R+ of the linear equation u′ =
(
BT (t)⊗ Id

)
u.

On the other hand, from Lemma 6, [9], we have, for t ≥ 0,

‖ (Id ⊗Ψ(t))w(t) ‖Rd2≤‖ (Id ⊗Ψ(t)) z(t) ‖Rd2 +

+
∫ t
0
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)P1Ψ
−1(s)) |‖ (Id ⊗Ψ(s))H(s) ‖ ds+

+
∫∞
t
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)P2Ψ
−1(s)) |‖ (Id ⊗Ψ(s))H(s) ‖ ds ≤

≤ ε+ ε (a+ γ +M)K.

This shows that the solution w(t) is Id ⊗Ψ(t)− bounded on R+.
From Lemma 9, [9],

w(t) =
(
Y T (t)⊗ Id

) ((
Y T
)−1

(0)⊗ Id
)
w(0) =

=
(
Y T (t)⊗ Id

)
[Id ⊗ (P1 + P2)]w(0) =

=
(
Y T (t)⊗ Id

)
(Id ⊗ P2)w(0).

If (Id ⊗ P2)w(0) 6= 0, from hypothesis (1) and Lemma 11, [9], it follows that

lim sup
t→∞

‖ (Id ⊗Ψ(t))w(t) ‖Rd2= +∞.
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This contradicts the Id⊗Ψ(t)-boundedness of w(t) on R+. Thus, (Id ⊗ P2)w(0) = 0 and then w(t) = 0
on R+. Therefore, for t ≥ 0,

z(t) =
∫ t
0

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ P1

]
H(s)ds−

−
∫∞
t

[(
Y T (t)

(
Y T
)−1

(s)
)
⊗ P2

]
H(s)ds, t ≥ 0.

From this, for t ≥ 0,

‖ (Id ⊗Ψ(t)) z(t) ‖Rd2≤

≤
∫ t
0
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)P1Ψ
−1(s)) |‖ (Id ⊗Ψ(s))H(s) ‖Rd2 ds+

+
∫∞
t
| (Y T (t)

(
Y T
)−1

(s))⊗ (Ψ(t)P2Ψ
−1(s)) |‖ (Id ⊗Ψ(s))H(s) ‖Rd2 ds ≤

≤ (a+ γ +M)Ksup
t≥0
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2

and then
sup
t≥0
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2≤ (a+ γ +M)Ksup

t≥0
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2 ,

which contradicts the hypothesis (5) (because sup
t≥0
‖ (Id ⊗Ψ(t)) z(t) ‖Rd2 6= 0). This contradiction

shows that the trivial solution of the equation (1) is Ψ-unstable over R+. �

Remark 3.7. For F = Od, one obtain a new result in connection with Ψ− instability of trivial
solution of the Lyapunov nonlinear matrix differential equation with integral term as right side

Z ′ = A(t)Z + ZB(t) +

∫ t

0

G(t, s, Z(s))ds,

in which the equation Z ′ = ZB(t) is Ψ− unstable over R+.

Remark 3.8. The above Theorems have very useful corollaries in the particular cases when g(t, s) =
h(t)g(s) or g(t, s) = k(t− s).
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