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Abstract

In this paper, a new iterative method of successive approximations based on Haar wavelets is proposed
for solving three-dimensional nonlinear Fredholm integral equations. The convergence of the method
is verified. The error estimation and numerical stability of the proposed method are provided in
terms of Lipschitz condition. Conducting numerical experiments confirm the theoretical results of
the proposed method and endorse the accuracy of the method.
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1. Introduction

In this research, the three-dimensional (3-D) Haar wavelets constructed on I = [a, b]×[c, d]×[e, h]
are applied to solve the 3-D nonlinear Fredholm integral equations of the second kind (3D-NFIEs):

U(s, t, r)− λ
∫ h

e

∫ d

c

∫ b

a

H(s, t, r, x, y, z)ϕ(U(x, y, z))dxdydz = f(s, t, r), (s, t, r) ∈ I, (1.1)
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where U(s, t, r) is an unknown function on I and , f(s, t, r), H(s, t, r, x, y, z) are known functions.
The multidimensional integral equations provide important tools for modeling a wide range of phe-
nomena and processes as well as solving boundary problems for differential equations [40, 38, 35, 17,
18, 36, 24]. Analytical solutions of integral equations with two or more variables are not available or
difficult to acquire, especially in the nonlinear cases. Therefore, in many cases, it is necessary to use
numerical methods to approximate the solution. The Galerkin and collocation methods are the two
commonly numerical methods applied for solving integral equations [23, 41, 16, 8]. Numerical solu-
tions of three-dimensional linear and nonlinear integral equations have been introduced, including
differential tranform methods (DTM)[11, 42], block-pulse functions (BPFs)[35], degenerate kernel
method [12], triangular functions (TFs)[37], Jacobi polynomials[39], Chebyshev polynomials [34, 21],
Bernstein’s polynomials [29, 33], Legendre Gauss-Lobatto collocation (L- GL- C) [1], radial basis
functions (RBFs) [20],wavelet method [9], operational matrices [6], neural network method [5], Ado-
mian decomposition method [4] and successive approximations methods [13, 15, 26]. The theorems
on the existence and uniqueness of the solution for the multidimentional integral equations can be
found in [2, 38, 3, 27, 28, 32].
The Haar wavelet is one of the simple and popular wavelets which its function was introduced by
Alfred Haar in 1910 [22] and then developed by other researchers. The wavelet methods are efficient
in providing tools for solving mathematical problems including differential and integral equations
[30].
In this research, an iterative method based on successive approximations employing the Haar wavelet
methods is presented for generating a numerical solution for solving Eq. 1.1. This approach is pro-
posed to solve the integral equations, in contrast with the current available numerical methods which
are generally ended up with linear systems and might have the singularity problem. Some reseach-
ers, [25, 10], applied uniform Haar wavelets for integration of triple real integrals. Here, we aim
to extend the proposed numerical method to solve (3D-NFIEs). The presented research, in this
paper is new and can be more efficient than current suggested methods proposed by the authors of
[11, 42, 35, 12, 37, 39, 1, 33, 20, 19].
The organization of the paper is as follows: Approximating of any three variable function f(x, y, z)
by 3-D Haar wavelet and quadrature formula for triple integral by Haar wavelet are described in
Section 2. In Section 3, a sequence of successive approximations is introduced by using the explained
quadrature formula. Also convergence of suggested iterative method is analyzed and numerical sta-
bility of method is studied by considering the small change in the first iteration. In Section 4, the
convergence and stability of the proposed method is numerically confirmed. Finally, conclusions are
provided in Section 5.

2. Haar wavelet method

Definition 2.1. [14] The Haar scaling function, so-called as the father wavelet, is defined on the
interval [a, b) as follows

φ(x) =

{
1 , a 6 x < b,
0 , otherwise.

Definition 2.2. [14] The mother wavelet for the Haar wavelets family is also defined on the interval
[a, b) as follows

ψ(x) =


1 , a 6 x < a+b

2
,

−1 , a+b
2
6 x < b,

0 , otherwise.
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All the other functions in the Haar wavelets family are defined on subintervals of [a, b) and are
generated from ψ(x) by the operations of dilation and translation. Each function in the Haar wavelets
family defined for x ∈ [a, b) except the scaling function can be expressed as

hi(x) = Ψ(2j − k) =


1 , α 6 x < β,
−1 , β 6 x < γ,
0 , otherwise,

where

α = a+ (b− a)
k

n
, β = a+ (b− a)

k + 0.5

n
, γ = a+ (b− a)

k + 1

n
, , i = 2, 3, ..., 2N

In the above definition the integer n = 2j, j = 0, 1, ..., J shows the level of the wavelet and
k = 0, 1, ..., n− 1 is the translation parameter. The maximal level of resolution is the integer J .
The wavelet number i is calculated according the formula i = n+k+1. In the case of minimal values
n = 1, k = 0, we have i = 2. The maximum of i is i = 2N = 2J+1.
For i = 1, 2, the function h1(x) is called scaling function whereas h2(x) is the mother wavelet for the
Haar wavelet family.

2.1. Three-dimensional Haar wavelet

Consider (x, y, z) ∈ I. We will define N1 = 2J1 , N2 = 2J2 and N3 = 2J3 where J1, J2 and J3
are the maximal levels of resolution. Now, divide the interval [a, b], [c, d] and [e, h] respectively
into 2N1, 2N2 and 2N3 subintervals, each of length δx = b−a

2N1
, δy = d−c

2N2
and δz = h−e

2N3
respectively.

Similar to the 1D case, a set of 3D Haar wavelets functions {hi1,i2,i3(x, y, z)| i1 = 1, 2, .., 2N1, i2 =
1, 2, .., 2N2, i3 = 1, 2, .., 2N3} are defined on the region x ∈ [a, b), y ∈ [c, d) and z ∈ [e, h) as:

hi1,i2,i3(x, y, z) = hi1(x)hi2(y)hi3(z) = Ψ(2j1 − k1)Ψ(2j2 − k2)Ψ(2j3 − k3)

where

hi1(x) =


1 , ξ1 6 x < ξ2,
−1 , ξ2 6 x < ξ3,
0 , otherwise,

hi2(y) =


1 , ζ1 6 y < ζ2,
−1 , ζ2 6 y < ζ3,
0 , otherwise,

hi3(z) =


1 , η1 6 z < η2,
−1 , η2 6 z < η3,
0 , otherwise,

with

ξ1 = a+ 2k1
N1

n1

δx, ξ2 = a+ (2k1 + 1)
N1

n1

δx, ξ3 = a+ 2(k1 + 1)
N1

n1

δx

ζ1 = c+ 2k2
N2

n2

δy, ζ2 = c+ (2k2 + 1)
N2

n2

δy, ζ3 = c+ 2(k2 + 1)
N2

n2

δy

η1 = e+ 2k3
N3

n3

δz, η2 = e+ (2k3 + 1)
N3

n3

δz, η3 = e+ 2(k3 + 1)
N3

n3

δz

The integers j1 = 0, 1, ..., J1, j2 = 0, 1, ..., J2 and j3 = 0, 1, ..., J3 show the levels of the wavelet.
Therefore, k1 = 0, 1, ..., n1 − 1, k2 = 0, 1, ..., n2 − 1 and k3 = 0, 1, ..., n3 − 1 are the translation
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parameters, where n1 = 2j1 , n2 = 2j2 and n3 = 2j3 . The indexes i1, i2 and i3 are determined by
i1 = n1 + k1 + 1, i2 = n2 + k2 + 1 and i3 = n3 + k3 + 1 respectively.
Any function f(x, y, z) defined on [a, b]× [c, d]× [e, h] can be expressed in terms of 3-D Haar wavelets
as follows

f(x, y, z) =

2N3∑
i3=1

2N2∑
i2=1

2N1∑
i1=1

ai1i2i3hi1(x)hi2(y)hi3(z),

where the wavelet coefficients ai1i2i3 , i1 = 1, 2, ..., 2N1, i2 = 1, 2, ..., 2N2, i3 = 1, 2, ..., 2N3 are to be
determined.
In this paper, it is assumed N1 = N2 = N3 = N , for the Haar wavelets approximations in which the
collocation points are as follow

(xi, yj, zk), i, j, k = 1, 2, ...2N, (2.1)

where

xi = a+ (b− a)
2i− 1

4N
, yj = c+ (d− c)2j − 1

4N
, zk = e+ (h− e)2k − 1

4N
. (2.2)

Definition 2.3. For L1, L2, L3 ≥ 0, the function f : I → R is L1, L2, L3-Lipschitz if

|f(x1, y1, z1)− f(x2, y2, z2)| ≤ L1|x1 − x2|+ L2|y1 − y2|+ L3|z1 − z2|,

∀x1, x2 ∈ [a, b], y1, y2 ∈ [c, d] and z1, z2 ∈ [e, h].

Theorem 2.4. Consider the triple integral∫ h

e

∫ d

c

∫ b

a

f(x, y, z)dxdydz, (2.3)

where f : I → R is continuous integrable function of L1, L2, L3-Lipschitz type. Using the quadrature
formula with respect to Haar wavelets the above triple integral can be approximated as follows:

SN(f) =
(b− a)(d− c)(h− e)

8N3

2N∑
k=1

2N∑
j=1

2N∑
i=1

f

(
a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1)

)
, (2.4)

where N = 2J is the maximal level of resolution of Haar wavelets [25]. Also, for 3D continuous
integrable functions of L1, L2, L3-Lipschitz type, the following error estimate is true:

|
∫ h

e

∫ d

c

∫ b

a

f(x, y, z)dxdydz − SN(f)| ≤ L(b− a)(d− c)(h− e)
(
δx + δy + δz

)
, (2.5)

where
L = max{L1, L2, L3}.
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Proof .∣∣∣∣ ∫ h

e

∫ d

c

∫ b

a

f(x, y, z)dxdydz − SN(f)

∣∣∣∣
=

∣∣∣∣ ∫ h

e

∫ d

c

∫ b

a

(
f(x, y, z)− 1

8N3

2N∑
i,j,k=1

f(a+
δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1))

)
dxdydz

∣∣∣∣
≤ 1

8N3

∫ h

e

∫ d

c

∫ b

a

2N∑
k=1

2N∑
j=1

2N∑
i=1

∣∣∣∣f(x, y, z)− f
(
a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1)
)∣∣∣∣dxdydz

≤ 1

8N3

∫ h

e

∫ d

c

∫ b

a

2N∑
k=1

2N∑
j=1

2N∑
i=1

(
L1|x− (a+

δx
2

(2i− 1))|+ L2|y − (c+
δy
2

(2j − 1))|

+ L3|z − (e+
δz
2

(2k − 1))|
)
dxdydz

According to the given relation

(x, y, z) ∈ [a+
δx
2

(2i−1), a+
δx
2

(2i+1))×[c+
δy
2

(2j−1), c+
δy
2

(2j+1))×[e+
δz
2

(2k−1), e+
δz
2

(2k+1))

we get ∣∣∣∣ ∫ h

e

∫ d

c

∫ b

a

f(x, y, z)dxdydz − SN(f)

∣∣∣∣ ≤ L(b− a)(d− c)(h− e)
(
δx + δy + δz

)
.

Thus, the proof is complete. �

3. Main results

3.1. The sequence of successive approximations

Here, we consider the three-dimensional nonlinear Eq. (1.1), where λ > 0, H(s, t, r, x, y, z) is
kernel function on I × I and U, f are continuous functions and also ϕ : R → R is a continuous
function. We assume that H is continuous and therefore it is uniformly continuous with respect to
(s, t, r). This attribute mentions implies that there exists MH > 0 such that

MH = max{
∣∣H(s, t, r, x, y, z)

∣∣; s, x ∈ [a, b], t, y ∈ [c, d], r, z ∈ [e, h]}.

Let X = {f : [a, b]×[c, d]×[e, h]→ R; f is continuous} be the space of three-dimensional continuous
functions with the metric

d(f, g) =
∥∥f − g∥∥ = sup{

∣∣f(s, t, r)− g(s, t, r)
∣∣; s ∈ [a, b], t ∈ [c, d], r ∈ [e, h]}, (3.1)

Theorem 3.1. Let H(s, t, r, x, y, z) be continuous for s, x ∈ [a, b], t, y ∈ [c, d], r, z ∈ [e, h] and
f ∈ X . Furthermore, suppose that there is ρ > 0, such that

|ϕ(Φ1(ξ, η, ζ))− ϕ(Φ2(ξ, η, ζ))| ≤ ρ|Φ1(ξ, η, ζ)− Φ2(ξ, η, ζ)|, ∀(ξ, η, ζ) ∈ I, ∀Φ1,Φ2 ∈ X. (3.2)
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If σ = ρλMH(b − a)(d − c)(h − e) < 1, then Eq. (1.1) has a unique solution U∗ ∈ X, which can be
accessed by the following successive approximations method

U0(s, t, r) = f(s, t, r),

Um(s, t, r) = f(s, t, r) + λ

∫ h

e

∫ d

c

∫ b

a

H(s, t, r, x, y, z)ϕ(Um−1(x, y, z))dxdydz, m ≥ 1 (3.3)

Also, (Um)m≥1 converges to U∗. Moreover, the following error estimates hold

d(U∗, Um) ≤ σm

1− σ
d(U0, U1), (3.4)

d(U∗, Um) ≤ σ

1− σ
d(Um−1, Um) (3.5)

and choosing U0 ∈ X, U0 = f , the inequality (3.4) becomes

d(U∗, Um) ≤ σm+1

ρ(1− σ)
M0 (3.6)

where
M0 = sup{|ϕ(f(s, t, r))|; s ∈ [a, b], t ∈ [c, d], r ∈ [e, h]}.

Proof . First of all, we define the operators Γ : X→ X by

Γ(U)(s, t, r) = f(s, t, r) + λ

∫ h

e

∫ d

c

∫ b

a

H(s, t, r, x, y, z)ϕ
(
U(x, y, z)

)
dxdydz, ∀(s, t, r) ∈ I, ∀U ∈ X.

We prove that Γ maps X into X. To this purpose, we see that for all ε > 0 there are ε1, ε2 > 0 such
that ε1 +MUλ(b− a)(d− c)(h− e)ε2 < ε . Since f is continuous on compact set of I, we infer that
it is uniformly continuous and therefore for ε1 > 0 exists δ1 > 0 such that

| f(s′, t′, r′)− f(s′′, t′′, r′′) |< ε1 ∀(s′, t′, r′), (s′′, t′′, r′′) ∈ I,

with sqrt
(
(s′ − s′′)2 + (t′ − t′′)2 + (r′ − r′′)2

)
< δ1.

As mentioned above, H also is uniformly continuous thus, for ε2 > 0 exists δ2 > 0 such that

|H(s′, t′, r′, x, y, z)−H(s′′, t′′, r′′, x, y, z)| < ε2 ∀(s′, t′, r′), (s′′, t′′, r′′) ∈ I,

with sqrt
(
(s′ − s′′)2 + (t′ − t′′)2 + (r′ − r′′)2

)
< δ2.

Let δ = min{δ′ , δ′′} and (s′, t′, r′), (s′′, t′′, r′′) ∈ I, with sqrt
(
(s′ − s′′)2 + (t′ − t′′)2 + (r′ − r′′)2

)
< δ.
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We obtain

| Γ(U)(s′, t′, r′)− Γ(U)(s′′, t′′, r′′) |≤| f(s′, t′, r′)− f(s′′, t′′, r′′) |

+ | λ
∫ h

e

∫ d

c

∫ b

a

H(s′, t′, r′, x, y, z)ϕ
(
U(x, y, z)

)
dxdydz |

− λ

∫ h

e

∫ d

c

∫ b

a

H(s′′, t′′, r′′, x, y, z)ϕ
(
U(x, y, z)

)
dxdydz |

< ε1 + λ

∫ h

e

∫ d

c

∫ b

a

| H(s′, t′, r′, x, y, z)ϕ
(
U(x, y, z)

)
− H(s′′, t′′, r′′, x, y, z)ϕ

(
U(x, y, z)

)
|dxdydz

= ε1 + λ

∫ h

e

∫ d

c

∫ b

a

|H(s′, t′, r′, x, y, z)−H(s′′, t′′, r′′, x, y, z)|. | ϕ
(
U(x, y, z)

)
| dxdydz

< ε1 + λε2

∫ h

e

∫ d

c

∫ b

a

sup
a≤x≤b, c≤y≤d, e≤z≤h

| ϕ
(
U(x, y, z)

)
| dxdydz

≤ ε1 +MUλ(b− a)(d− c)(h− e)ε2 < ε,

where
MU = sup

a≤x≤b, c≤y≤d, e≤z≤h
| ϕ
(
U(x, y, z)

)
|,

we derive
| Γ(U)(s′, t′, r′)− Γ(U)(s′′, t′′, r′′) |< ε.

This shows that Γ(U) is uniformly continuous for any U ∈ X, and so continuous on I, and hence Γ
maps X into X. Let set U0 ∈ X, and define Picard iterative sequence Um = Γ(Um−1),m ∈ N. We
show that the operator Γ is, for any f ∈ X, a contraction with respect to the norm (3.1). So, for
U,G ∈ X and (s, t, r) ∈ I, we have

|Γ(U)(s, t, r)− Γ(G)(s, t, r)|

≤
∣∣λ∫ h

e

∫ d

c

∫ b

a

H(s, t, r, x, y, z)ϕ
(
U(x, y, z)

)
dxdydz

− λ

∫ h

e

∫ d

c

∫ b

a

H(s, t, r, x, y, z)ϕ
(
G(x, y, z)

)
dxdydz

∣∣
≤ λ

∫ h

e

∫ d

c

∫ b

a

| H(s, t, r, x, y, z)ϕ
(
U(x, y, z)

)
− H(s, t, r, x, y, z)ϕ

(
G(x, y, z)

)
| dxdydz

= λ

∫ h

e

∫ d

c

∫ b

a

| H(s, t, r, x, y, z) || ϕ
(
U(x, y, z)

)
− ϕ

(
G(x, y, z)

)
| dxdy

≤ λMH

∫ h

e

∫ d

c

∫ b

a

| ϕ
(
U(x, y, z)

)
− ϕ

(
G(x, y, z)

)
| dxdydz

≤ ρλMH(b− a)(d− c)(h− e) ‖ U −G ‖ .

Consequently
‖ Γ(U)− Γ(G) ‖≤ σ ‖ U −G ‖ .

In view of the Banach fixed point theorem and crucial condition σ < 1, we infer that integral equation
Eq. (1.1) has an unique solution U∗ in X. Also, the same Banach’s fixed point principle leads to the
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estimates (3.4) and (3.5). Choosing U0 = f , we have

‖ U0 − U1 ‖

= sup
a≤s≤b
c≤t≤d
e≤r≤h

| f(s, t, r)− f(s, t, r)− λ
∫ h

e

∫ d

c

∫ b

a

H(s, t, r, x, y, z)ϕ
(
U0(x, y, z)dxdydz |

≤ sup
a≤s≤b
c≤t≤d
e≤r≤h

λ

∫ h

e

∫ d

c

∫ b

a

| H(s, t, r, x, y, z)ϕ
(
U0(x, y, z)

)
| dxdydz

≤ MHλ

∫ h

e

∫ d

c

∫ b

a

sup
a≤x≤b,c≤y≤d,e≤z≤h

| ϕ
(
f(x, y, z)

)
| dxdydz

= λMH(b− a)(d− c)(h− e)M0.

In this way we obtain the inequality (3.6), which completes the proof.
� Now, we propose the numerical method to solve (1.1). We consider a uniform partition D =
(Dx, Dy, Dz) of [a, b]× [c, d]× [e, h] with

Dx : a = s0 < s1 < s2 < ... < s2n−1 < s2N = b,

Dy : c = t0 < t1 < t2 < ... < t2n−1 < t2N = d,

Dz : e = r0 < r1 < r2 < ... < r2n−1 < r2N = h,

and also si = a+ iδx, tj = c+ jδy, rk = e+ kδz,where δx = b−a
2N

, δy = d−c
2N

, δz = h−e
2N
, i, j, k = 0, 2N .

Applying the quadrature rule (2.4) and (2.5) to approximate of the integrals in (3.3) we obtain,

U0(s, t, r) = f(s, t, r)

Um(s, t, r) = f(s, t, r) + δxδyδz

2N∑
k=1

2N∑
j=1

2N∑
i=1

H

(
s, t, r, a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1)

)
ϕ(Um−1(a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1))). (3.7)

3.2. Convergence Analysis

Here, we examine the convergence of the suggested iterative method to obtain the numerical
solution of equation (1.1) under the following conditions:

(i) there is β > 0 such that
| f(s, t, r)− f(s

′
, t

′
, r

′
) |6 β

(
|(s− s′|+ |t− t′ |+ |r − r′ |

)
, ∀(s, t, r), (s′ , t′ , r′) ∈ I,

(ii) there exist µ, ν > 0 such that
| H(s, t, r, x, y, z)−H(s, t, r, x

′
, y

′
, z

′
) |6 µ

(
|x− x′|+ |y − y′|+ |z − z′ |

)
| H(s, t, r, x, y, z)−H(s

′
, t

′
, r

′
, x, y, z) |6 ν

(
|(s− s′ |+ |t− t′ |+ |r − r′ |

)
∀(s, t, r), (s′ , t′ , r′), (x, y, z), (x

′
, y

′
, z

′
) ∈ I

(iii) | ϕ(u)− ϕ(v) |< α | u− v |,∀u, v ∈ R.

Lemma 3.2. Consider the iterative procedure 3.3. Under all assumptions of Theorem 3.1 and the
conditions (i)-(iii), the functions H(s, t, , r, x, y, z)ϕ(Um(x, y, z)) are Lipschitzian.



A new method for solving three-dimensional nonlinear Fredholm ... 12 (2021) No. 2, 115-133 123

Proof . Using the conditions (ii) and (iii) we obtain

| H(s, t, r, x, y, z)ϕ(Um(x, y, z))−H(s, t, r, x
′
, y

′
, z

′
)ϕ(Um(x

′
, y

′
, z

′
)) |

≤ | H(s, t, r, x, y, z)ϕ(Um(x, y, z))−H(s, t, r, x, y, z)ϕ(Um(x
′
, y

′
, z

′
)) |

+ | H(s, t, r, x, y, z)ϕ(Um(x
′
, y

′
, z

′
))−H(s, t, r, x

′
, y

′
, z

′
)ϕ(Um(x

′
, y

′
, z

′
)) |

= | H(s, t, r, x, y, z) || ϕ(Um(x, y, z))− ϕ(Um(x
′
, y

′
, z

′
)) |

+ | H(s, t, r, x, y, z)−H(s, t, r, x
′
, y

′
, z

′
) || ϕ(Um(x

′
, y

′
, z

′
)) |

≤ MH | ϕ(Um(x, y, z))− ϕ(Um(x
′
, y

′
, z

′
)) | +Bmµ

(
|x− x′ |+ |y − y′ |+ |z − z′|

)
≤ MHα | Um(x, y, z)− Um(x

′
, y

′
, z

′
) | +µM

(
|x− x′|+ |y − y′ |+ |z − z′ |

)
,

where

Bk = sup{| ϕ
(
Uk(s, t, r)

)
|, a ≤ s ≤ b, c ≤ t ≤ d, e ≤ r ≤ h}, M = max

i=1,2,...,m
{Bi},

and ∀m ≥ 1

| Um(x, y, z)− Um(x
′
, y

′
, z

′
) |

≤ β
(
|x− x′|+ |y − y′ |+ |z − z′|

)
+ λ(b− a)(d− c)(h− e)Bm−1ν

(
|x− x′|+ |y − y′|+ |z − z′ |

)
≤ (β + λ(b− a)(d− c)(h− e)Mν)

(
|x− x′|+ |y − y′|+ |z − z′ |

)
.

Then, for any x, x
′ ∈ [a, b], y, y

′ ∈ [c, d], z, z
′ ∈ [e, h] we have

| H(s, t, r, x, y, z)ϕ(Um(x, y, z))−H(s, t, r, x
′
, y

′
, z

′
)ϕ(Um(x

′
, y

′
, z

′
)) |

≤
(
MHα(β + λ(b− a)(d− c)(h− e)Mν) +Mµ

)(
|x− x′ |+ |y − y′ |+ |z − z′|

)
.

On the other hand,

| H(s, t, r, x, y, z)ϕ(U0(x, y, z))−H(s, t, r, x
′
, y

′
, z

′
)ϕ(U0(x

′
, y

′
, z

′
)) |

≤ MHα | f(x, y, z)− f(x
′
, y

′
, z

′
) | +M0µ

(
|x− x′ |+ |y − y′|+ |z − z′|

)
≤ MHαβ

(
|x− x′|+ |y − y′ |+ |z − z′ |

)
+M0µ

(
|x− x′|+ |y − y′ |+ |z − z′ |

)
≤ (MHαβ +M0µ)

(
|x− x′ |+ |y − y′|+ |z − z′ |

)
.

Supposing

L = max{αMH(β + λ(b− a)(d− c)νM) + µM,MHαβ +M0µ},

we have

| H(s, t, r, x, y, z)ϕ(Um(x, y, z))−H(s, t, r, x
′
, y

′
, z

′
)ϕ(Um(x

′
, y

′
, z

′
)) |≤

L
(
|x− x′ |+ |y − y′|+ |z − z′|

)
Thus, the function H(s, t, , r, x, y, z)ϕ(Um(x, y, z)) for all m are Lipschitzian. �
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Theorem 3.3. Consider the 3D-NFIEs (1.1) with the hypotheses of Theorem 3.1. If σ < 1, then
the iterative procedure (3.7) converges to the unique solution of Eq. (1.1), U∗, and its error estimate
is as follows

d(U∗, Um) ≤ σm+1

ρ(1− σ)
M0 +

(δx + δy + δz)LP

(1− σ)

where

L = max{αMH(β + λ(b− a)(d− c)νM) + µM,MHαβ +M0µ},

and
P = (b− a)(d− c)(h− e). (3.8)

Proof. Using (3.6) we have

d(U∗, Um) ≤ d(U∗, Um) + d(Um, Um) ≤ σm+1

ρ(1− σ)
M0 + d(Um, Um), (3.9)

therefore, we shall to obtain the estimates for | Um(s, t, r) − Um(s, t, r) |. From (2.5) and (3.3) we
get

U0(s, t, r) = f(s, t, r)

Um(s, t, r) = f(s, t, r) + δxδyδz

2N∑
k=1

2N∑
j=1

2N∑
i=1

H
(
s, t, r, a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1)
)

ϕ(Um−1(a+
δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1))) + Em(s, t, r). (3.10)

with

| Em(s, t, r) |≤ L(b− a)(d− c)(h− e)
(
δx + δy + δz

)
= (δx + δy + δz)LP. (3.11)

Form (3.7),(3.10) and (3.11), for m = 1, we obtain

| U1(s, t, r)− U1(s, t, r) |≤| E1(s, t, r) |≤ (δx + δy + δz)LP

(3.12)

Using (3.7) and (3.10) we obtain∣∣Um(s, t, r)− Um(s, t, r)
∣∣ ≤∣∣Em(s, t, r)

∣∣+ δxδyδz

2N∑
k=1

2N∑
j=1

2N∑
i=1

ρ
∣∣H(s, t, r, a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1))
∣∣

∣∣Um−1(a+
δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1))

− Um−1
(
a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1)
)∣∣

(3.13)
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Now, from (3.12) and (3.13) for m = 2 it follows that

| U2(s, t, r)− U2(s, t, r) |
≤ (δx + δy + δz)LP

+ λρMHδxδyδz

2N∑
k=1

2N∑
j=1

2N∑
i=1

| U1

(
a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1)
)

− U1

(
a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1)
)
|

≤ (δx + δy + δz)LP + ρλMHδxδyδz

2N∑
k=1

2N∑
j=1

2N∑
i=1

(δx + δy + δz)LP

=
(
1 + ρλMH(b− a)(d− c)(h− e)

)
(δx + δy + δz)LP.

By induction, for m ∈ N , m ≥ 3, we obtain

| Um(s, t, r)− Um(s, t, r) |
≤ [1 + λρMH(b− a)(d− c)(h− e) + ...+ (λρMH(b− a)(d− c)(h− e))m−1](δx + δy + δz)LP

=
1− (λρMH(b− a)(d− c)(h− e)

)m
1− λρMH(b− a)(d− c)(h− e)

(δx + δy + δz)LP

≤ (δx + δy + δz)LP

1− λρMH(b− a)(d− c)(h− e)
=

(δx + δy + δz)LP

(1− σ)
.

(3.14)

Hence, from (3.9), (3.12 and (3.14) we conclude that

d(U∗, Um) ≤ σm+1

ρ(1− σ)
M0 +

(δx + δy + δz)LP

(1− σ)

Remark 9. Since σ < 1, it is easy to see that

lim
m→∞

δx,δy ,δz→0

d(U∗, Um) = 0.

3.3. The numerical stability analysis
With the purpose of studying the numerical stability of the iterative method (3.7), considering

the small change in the first iteration, another first iteration term V0(s, t, r) = g(s, t, r) ∈ C(I, R) is
considered in such a way that there exists ε > 0 for which

∣∣V0(s, t, r) − U0(s, t, r)
∣∣ < ε,∀s, t, r ∈ I.

The new sequence of successive approximations is:

Vm(s, t, r) = g(s, t, r) + λ

∫ h

e

∫ d

c

∫ b

a

H(s, t, r, x, y, z)ϕ(Vm−1(x, y, z))dxdydz, m ≥ 1.(3.15)

Applying the same numerical method (2.4) to solve (1.1) we have

V 0(s, t, r) = V0(s, t, r)

V m(s, t, r) = g(s, t, r) + δxδyδz

2N∑
k=1

2N∑
j=1

2N∑
i=1

H

(
s, t, r, a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1)

)
ϕ(V m−1(a+

δx
2

(2i− 1), c+
δy
2

(2j − 1), e+
δz
2

(2k − 1))). (3.16)



126 Kazemi, Torkashvand, Ezzati

Theorem 3.4. Let the conditions of Theorem 3.3 are fulfilled. Then the iterative approach (3.7) is
numerically stable with respect to the selection of the first iteration.

Proof . We reintroduce the proof of Theorem (3.3) and we obtain,

| Vm(s, t, r)− V m(s, t, r) |≤ (δx + δy + δz)L
′
P

(1− σ)
.

(3.17)

where

L
′
= max{αMH(β + λM

′
(b− a)(d− c)ν) +M

′
µ,MHαβ +M

′

0µ},

and

B
′

k = sup{| ϕ
(
Vk(s, t, r)

)
|, a ≤ s ≤ b, c ≤ t ≤ d, e ≤ r ≤ h}, M

′
= max

i=1,2,...,m
{B′

i},

M
′

0 = sup{| ϕ
(
V0(s, t, r)

)
|, a ≤ s ≤ b, c ≤ t ≤ d, e ≤ r ≤ h},

we have

| Um(s, t, r)− V m(s, t, r) | 6 | Um(s, t, r)− Um(s, t, r) | + | Um(s, t, r)− Vm(s, t) |
+ | Vm(s, t)− V m(s, t) |

6 | Um(s, t)− Vm(s, t) | +(δx + δy + δz)LP

(1− σ)
+

(δx + δy + δz)L
′
P

(1− σ)
.

We have
| U0(s, t, r)− V0(s, t, r) |< ε, ∀(s, t, r) ∈ D,

and ∣∣U1(s, t, r)− V1(s, t, r)
∣∣ ≤ ∣∣U0(s, t, r) + λ

∫ h

e

∫ d

c

∫ b

a

H(s, t, r, x, y, z)ϕ
(
U0(x, y, z)

)
dxdydz

− V0(s, t, r)− λ
∫ h

e

∫ d

c

∫ b

a

H(s, t, r, x, y, z)ϕ
(
V0(x, y, z)

)
dxdydz

∣∣
< ε+ ρλMH

∫ h

e

∫ d

c

∫ b

a

| U0(s, t, r)− V0(s, t, r) | dxdy

< (1 + ρλMH(b− a)(d− c)(h− e))ε = (1 + σ)ε,
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for m ≥ 2, by induction, we have∣∣Um(s, t, r)− Vm(s, t, r)

∣∣∣∣ ≤ ∣∣U0(s, t, r)− V0(s, t, r)
∣∣

+ λ

∫ h

e

∫ d

c

∫ b

a

∣∣H(s, t, r, x, y, z)ϕ
(
Um−1(x, y, z)

)
−H(s, t, r, x, y, z)ϕ

(
Vm−1(x, y, z)

)∣∣dxdydz
< ε+ ρλMH

∫ h

e

∫ d

c

∫ b

a

| Um−1(s, t, r)− Vm−1(s, t, r) | dxdy

< (1 + σ + ...+ σm)ε,

for all (s, t, r) ∈ I and m ≥ 0. Then,

d(Um(s, t, r), Vm(s, t, r)) <
1

1− σ
ε,

Now, we get,

| Um(s, t)− V m(s, t) | < 1

1− σ
ε+

(δx + δy + δz)(L+ L
′
)P

1− σ

�

Remark 3.5. Since σ < 1, it is easy to see that

lim
δx,δy ,δzε→0

d(Um, V m) = 0.

this shows the stability of the method.

Remark 3.6. The posteriori error estimate is fruitful to get the stopage criterion.
For given ε

′
> 0 (previously chosen) there is determined the first natural number m for which

| Um(s, t, r)− Um−1(s, t, r) |< ε
′

and we stop to this m retaining the approximations Um(s, t, r) of the solution. We can give a short
proof of this criterion as follows:

d(U∗, Um) ≤ d(U∗, Um) + d(Um, Um)

≤ σ

1− σ
d(Um, Um−1) +

(δx + δy + δz)LP

(1− σ)

and

d(Um, Um−1) ≤ d(Um − Um) + d(Um, Um−1) + d(Um−1, Um−1)

≤ 2(δx + δy + δz)LP

(1− σ)
+ d(Um, Um−1)
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So,

d(U∗, Um) ≤ σ

1− σ
d(Um, Um−1) +

2σ

1− σ
(δx + δy + δz)LP

(1− σ)
+

(δx + δy + δz)LP

(1− σ)

and therefore, in order to obtain | U∗(s, t, r)− Um(s, t, r) |< ε we require

σ + 1

(1− σ)2
(δx + δy + δz)LP <

1

2
ε (3.18)

and

σ

1− σ
d(Um, Um−1) <

ε

2

We can select the least natural number N, for which inequality (3.18) is kept. Finally, we find the
lowest natural number m ∈ N for which,

d(Um − Um−1) <
ε

2
.
1− σ
σ

= ε
′
.

With these, the inequality | Um(s, t, r)−Um−1(s, t, r) |< ε
′

ended up with | U∗(s, t, r)−Um(s, t, r) |< ε,
and the desired accuracy ε is achieved.

3.4. Algorithm of the method

The iterative procedure 3.7 gives the following algorithm of computation for the solution of
Eq.(1.1) :

Step 0: Input the values a, b, c, d, e, δx, δy, δz, λ, ε
′
, N and the functions H, f, ϕ.

Step 1: For p1 = 0, 2N , p2 = 0, 2N and p3 = 0, 2N set U0(sp1 , tp2 , rp3) = f(sp1 , tp2 , rp3).

Step 2: For p1 = 0, 2N , p2 = 0, 2N , p3 = 0, 2N compute Um(sp1 , tp2 , rp3) by (3.7).

Step 3: If | Um(sp1 , tp2 , rp3) − Um−1(sp1 , tp2 , rp3) |< ε
′
, Print ” m ” and Print Um(sp1 , tp2 , rp3) ,

p1 = 0, 2N , p2 = 0, 2N and p3 = 0, 2N . STOP.; otherwise, set m = m+ 1 and go to step 2.

Remark 3.7. The above algorithm has practical stoppage criterion explained in Remark 3.6. Also,
according to the Remark 3.6, the inequality | Um(sp1 , tp2 , rp3) − Um−1(sp1 , tp2 , rp3) |< ε

′
, leads to

| U∗(sp1 , tp2 , rp3) − Um(sp1 , tp2 , rp3) |< ε, ∀p1 = 0, 2N , p2 = 0, 2N , p3 = 0, 2N , and the desired
accuracy ε is achieved.

4. Numerical experiments

The presented iterative method was evaluted on some examples. The evluated results confirmed
the accuracy and the convergence of the method as well as theoretical conclusions. We introduce the
following notation in order to interpret the error of the method:

‖eN‖∞ := ‖U∗ − U (N)

m ‖∞ = max{| U∗(sp1 , tp2 , rp3)− Um(sp1 , tp2 , rp3) | p1, p2, p3 = 0, 2N} (4.1)

The experimental rate of convergence for the following examples is also calculated which is difined
as (Chapter 2, [7]):

Ratio =
‖U∗ − U (N)

m ‖∞
‖U∗ − U (2N)

m ‖∞
,
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. where, U∗ is the exact solution and Um is the approximate solution of the Eq. (1.1) , which is
computed by the numerical method described in Section 3.
Moreover, the following formula can be used to estimate the order of convergence of the values Ri

[31]:

Li = log

(
Ri−2 −Ri−1

Ri−1 −Ri

)/
log(2) (4.2)

where Ri = ‖eN‖∞ with step size hi. In other words, the approximate solutions Ri have error with
higher order in relation to h than Fi = F (hi). Here F (h) denote the value obtained by any numerical
method with step size h. In Table 4 and Table 6 the J is the value of resolution (see Section 2,
N = 2J). Here, we suppose that [a, b]× [c, d]× [e, h] = [0, 1]3 and λ = 1 .

Example 4.1. Consider the following three-dimensional nonlinear Fredholm integral equation [12]:

U(s, t, r)−
∫ 1

0

∫ 1

0

∫ 1

0

H(s, t, r, x, y, z)(U(x, y, z))2dxdydz = f(s, t, r), (s, t, r) ∈ [0, 1]3, (4.3)

where

f(s, t, r) = s2t2r − 1

16800
s2r − 1

12000
s2tr,

H(s, t, r, x, y, z) =
1

100
s2x(y2 + t)zr,

the exact solution is given by

U(s, t, r) = s2t2r.

Applying the numerical method for 2N = 8, and ε
′

= 10−20, the number of iterations is m = 7 and
the results ep1,p2,p3 = |U∗(sp1 , tp2 , rp3) − U7(sp1 , tp2 , rp3)|, for p1, p2, p3 = 0, 10 can be viewed in Table
1. In order to illustrate the numerical stability, in the fifth column we include the differences between
the effective computed values dp1,p2,p3 = |U7(sp1 , tp2 , rp3)−V 7(sp1 , tp2 , rp3)| for p1, p2, p3 = 0, 10, where
the perturbation of the first term of the sequence of successive approximations is 0.1 (f(s, t, r) :=
f(s, t, r) + 0.1).
In order to test the convergence, we put 2N = 16, ε

′
= 10−15 and we can see how ep1,p2,p3, decrease

when δx, δy, δz decreases. The number of iterations is m = 7 and the results are presented in Table
2. For 2N = 32, ε

′
= 10−15, we have m = 8 iterations and the results are listed in Table 3. For

ε
′

= 10−20 and N ∈ {2, 4, 8, 16, 32, 64} we test the rate of convergence and the numerical results are
in Table 4. The order of convergence given in last column of the Table 4 is equal to 2 (see Eq. (4.2)).
Note that the errors ‖eN‖∞ are decreasing by factor of approximately 4 whenever N is doubled, which
is consistent with (2.5).

Table 1. The results for Example 4.1 with 2N = 8 or δx = δy = δz = 1
8
.
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(sp1 , tp2 , rp3) U∗(sp1 , tp2 , rp3) U7(sp1 , tp2 , rp3) ep1,p2,p3 dp1,p2,p3
(0.0,0.0,0.0) 0. 0. 0. 0.100000000
(0.1,0.1,0.1) 0.00001 0.000009996486574 3.513425711 ×10−9 0.100000051
(0.2,0.2,0.2) 0.00032 0.000319969243491 3.075653759 ×10−8 0.100000480
(0.3,0.3,0.3) 0.00243 0.002429887255854 1.127441345 ×10−7 0.100001843
(0.4,0.4,0.4) 0.01024 0.010239711561588 2.884384112 ×10−7 0.100004897
(0.5,0.5,0.5) 0.03125 0.031249395251045 6.047489575 ×10−7 0.100010595
(0.6,0.6,0.6) 0.07776 0.077758883467240 1.116532759 ×10−6 0.100010595
(0.7,0.7,0.7) 0.16807 0.168068113405800 1.886594200 ×10−6 0.100020088
(0.8,0.8,0.8) 0.32768 0.327677014314946 2.985685054 ×10−6 0.100054765
(0.9,0.9,0.9) 0.59049 0.590485507495503 4.492504497 ×10−6 0.100083882
(1.0,1.0,1.0) 1.00000 0.999993506300903 6.493699097 ×10−6 0.100123167

Table 2. The results for Example 4.1 with 2N = 16.
(sp1 , tp2 , rp3) U∗(sp1 , tp2 , rp3) U7(sp1 , tp2 , rp3) ep1,p2,p3
(0.0,0.0,0.0) 0. 0. 0.
(0.1,0.1,0.1) 0.00001 0.000009999106814 8.93185232 ×10−10

(0.2,0.2,0.2) 0.00032 0.000319992184165 7.81583453 ×10−9

(0.3,0.3,0.3) 0.00243 0.002429971359118 2.86408818 ×10−8

(0.4,0.4,0.4) 0.01024 0.010239926747680 7.32523191 ×10−8

(0.5,0.5,0.5) 0.03125 0.031249846454803 1.53545196 ×10−7

(0.6,0.6,0.6) 0.07776 0.077759716574378 2.83425621 ×10−7

(0.7,0.7,0.7) 0.16807 0.168069521189240 4.78810760 ×10−7

(0.8,0.8,0.8) 0.32768 0.327679242371163 7.57628837 ×10−7

(0.9,0.9,0.9) 0.59049 0.590488860180866 1.13981913 ×10−6

(1.0,1.0,1.0) 1.00000 0.999998352668009 1.64733199 ×10−6

Table 3. The results for Example 4.1 with 2N = 32.
(sp1 , tp2 , rp3) U∗(sp1 , tp2 , rp3) U8(sp1 , tp2 , rp3) ep1,p2,p3
(0.0,0.0,0.0) 0. 0. 0.
(0.1,0.1,0.1) 0.00001 0.00000999977577 2.242335569 ×10−10

(0.2,0.2,0.2) 0.00032 0.00031999803803 1.961964776 ×10−9

(0.3,0.3,0.3) 0.00243 0.00242999281104 7.188956207 ×10−9

(0.4,0.4,0.4) 0.01024 0.01023998161474 1.838525935 ×10−8

(0.5,0.5,0.5) 0.03125 0.03124996146478 3.853521470 ×10−8

(0.6,0.6,0.6) 0.07776 0.07775992887254 7.112745169 ×10−8

(0.7,0.7,0.7) 0.16807 0.16806987984511 1.201548887 ×10−7

(0.8,0.8,0.8) 0.32768 0.32767980988526 1.901147331 ×10−7

(0.9,0.9,0.9) 0.59049 0.59048971399151 2.860084813 ×10−7

(1.0,1.0,1.0) 1.00000 0.99999958665808 4.133419186 ×10−7

Table 4. Rate of convergence and order of convergence for iteration (3.7), in example 4.1.
J N 2N m Ri = ‖eN‖∞ Ratio Li
1 2 4 7 2.45× 10−5 − −
2 4 8 7 6.49× 10−6 3.775 −
3 8 16 7 1.65× 10−6 3.933 1.896
4 16 32 8 4.13× 10−7 3.995 1.968
5 32 64 9 1.02× 10−7 4.043 1.992
6 64 128 9 2.51× 10−8 4.076 2.013



A new method for solving three-dimensional nonlinear Fredholm ... 12 (2021) No. 2, 115-133 131

Example 4.2. The 3D-NFIEs (1.1) with

f(s, t, r) = tr cos2(s) +
1

140
s2cos(r)(cos7(1)− 1)

H(s, t, r, x, y, z) = s2ycos(r)sin(x),

ϕ(β) = β3,

has the exact solution

U(s, t, r) = tr cos2(s).

or 2N = 8, 2N = 16, 2N = 32 and ε
′

= 10−25 we test the convergence and the results are listed in
Table 5. Also, for N ∈ {2, 4, 8, 16, 32, 64} we test the rate of convergence, the order of convergence
and computational results are given in Table 6.

Table 5. The results for Example 4.2 with 2N = 8, 2N = 16, 2N = 32.
(sp1 , tp2 , rp3) U∗(sp1 , tp2 , rp3) ep1,p2,p3 , 2N = 8 ep1,p2,p3 , 2N = 16 ep1,p2,p3 , 2N = 32
(0.0,0.0,0.0) 0. 0. 0. 0.
(0.1,0.1,0.1) 0.0099003 1.7928993932 ×10−7 4.4948148910 ×10−8 1.12448859 ×10−8

(0.2,0.2,0.2) 0.0384212 7.0639333343 ×10−7 1.7709344350 ×10−7 4.43042846 ×10−8

(0.3,0.3,0.3) 0.0821401 1.5492799370 ×10−6 3.8840587214 ×10−7 9.71692908 ×10−8

(0.4,0.4,0.4) 0.1357365 2.6554577436 ×10−6 6.6572564270 ×10−7 1.66547658 ×10−7

(0.5,0.5,0.5) 0.1925378 3.9532931057 ×10−6 9.9109413431 ×10−7 2.47946596 ×10−7

(0.6,0.6,0.6) 0.2452244 5.3538242244 ×10−6 1.3422085443 ×10−6 3.35786510 ×10−7

(0.7,0.7,0.7) 0.2866419 6.7530339998 ×10−6 1.6929916925 ×10−6 4.23543550 ×10−7

(0.8,0.8,0.8) 0.3106561 8.0345394645 ×10−6 2.0142662641 ×10−6 5.03918293 ×10−7

(0.9,0.9,0.9) 0.3129831 9.0726469376 ×10−6 2.2745207406 ×10−6 5.69027358 ×10−7

(1.0,1.0,1.0) 0.2919266 9.7357147854 ×10−6 2.4407524459 ×10−6 6.10614311 ×10−7

Table 6. Rate of convergence and order of convergence for iteration (3.7), in example 4.2.
J N 2N m Ri = ‖eN‖∞ Ratio Li
1 2 4 6 3.850× 10−5 − −
2 4 8 6 9.736× 10−6 3.955 −
3 8 16 6 2.441× 10−6 3.978 1.979
4 16 32 6 6.106× 10−7 3.997 1.995
5 32 64 7 1.526× 10−7 4.001 2.009
6 64 128 8 3.814× 10−8 4.000 2.000

5. Conclusions

A numerical method of the successive approximations based on the Haar wavelet methods is
investigated to obtain the numerical solution of 3D-NFIEs. The proposed method is simple, involves
lower computations. In Theorem 3.1 sufficient conditions for the existence and uniqueness solution
of the 3D-NFIEs are presented. Proof of the convergence and the error estimation of the proposed
method in terms of Lipschitz condition are provided in Theorem 3.3. The method merely requires
Lipschitz properties for the convergence and smoothness conditions are not necessary. Analysis of
numerical stability of the iterative method with repect to selecting the first iteration was verified in
Theorem 3.4.
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