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Abstract

Identifying the interaction between the drug and the target proteins plays a very important role in the
drug discovery process. Because prediction experiments of this process are time consuming, costly
and tedious, Computational prediction can be a good way to reduce the search space to examine
the interaction between drug and target instead of using costly experiments. In this paper, a new
solution based on known drug-target interactions based on bilateral local models is introduced. In this
method, a hybrid support vector machine based on the decision tree is used to decide and optimize the
two-class classification. Using this machine to manage data related to this application has performed
well. The proposed method on four criteria datasets including enzymes (Es), ion channels (IC),
G protein coupled receptors (GPCRs) and nuclear receptors (NRs), based on AUC, AUPR, ROC
and running time has been evaluated. The results show an improvement in the performance of the
proposed method.
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1. Introduction

The study of drug-target interaction (DTI) has attracted the attention of many researchers in the
field of pharmaceutical science in recent years [16, 2]. In this regard, many efforts have been made to
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investigate the reuse of existing drugs to discover the interaction between new targets and existing
drugs. In fact, the purpose of DTI is to find the interaction between the drug and the targets that
leads to a change in drug behavior / use. On the other hand, identifying these interactions minimizes
the adverse side effects of the drug [16]. Web-lab experiments have a major challenge in terms of cost
and time [6]. In this regard, computational prediction (CP) methods have been used in recent years
[3]. Despite the synthesis of a large number of compounds, their target profiles and drug effects are
still unknown. In addition, there is no cure for many diseases and many new diseases are reported
each year. Due to the importance of this issue, many efforts have been made by researchers to
gather information about the various properties of drug compounds, properties, responses and target
proteins which has created a large dataset on the interaction between drugs and proteins. Creating
large datasets has led to the use of CP with problems such as data complexity and large dimensions,
which indicates the need for efficient and powerful algorithms in predicting DTI.

In general, three categories can be introduced for computational methods in DTI [3]. The first
category is called ligand-based methods, in which similar drugs tend to share similar properties and
usually bind similar proteins [11], which this method predicts interaction using similarities between
similar protein ligands. Since these methods do not use proteins sequence information for prediction,
it is possible that a new interaction is limited to the relation between known ligands and protein
families. On the other hand, the performance of these methods is highly depended on known ligands
and if their number is low for a candidate protein, the performance of these methods is greatly
reduced [14]. The second category uses three-dimensional structures of drugs and proteins using
simulations to predict interaction. These methods are introduced as connection approaches. The
main problem of these methods is the lack of known three-dimensional structure of some proteins
and their high computational complexity [13, 24]. The third category is chemical-based methods.
These methods use information about the drug and the target at the same time. These methods have
been considered by many researchers in recent years and can be widely used on biological data that
are more accessible [23]. In fact, these methods use data that contains information about processes
to predict simultaneously. Process information refers to diagrams of chemical structure and genomic
sequences for drugs and targets. This general method can be divided into two categories: feature-
based methods and similarity-based methods. In the feature-based method, supervised machine
learning methods are used. In fact, in these methods, feature vectors use a set of drug-target pairs
with a class label that indicates the presence of interaction (positive sample) or lack of interaction
(negative sample) [5, 9]. Of course, it should be noted that negative samples are samples without
the drug-target or unknown interaction. In similarity-based methods, two similarity matrices related
to drugs and similarity of targets along with the interaction matrix are used respectively, which
represents the interaction between drug and targets pairs [20, 1].

In this paper, a bilateral local model based method is used to identify drug-target interaction.
In this regard, the drug-drug, target-target matrices and similarity between them have been used.
An important phase in local models is decision and classification based on rules extraction. In the
proposed method, a combined support vector machine (SVM) based on the decision tree is used.
This method focuses on hard data that is close to the decision boundary. In fact, a combined SVM
based on the decision tree is used to classify data that is close to the decision boundary. Since the
data related to drug-target interaction are unknown in many cases and also these data are difficult
data, the use of this method improves performance, on the other hand, since only this type of data by
SVM is categorized in the test and for the rest of the data the decision tree is used for classification,
the running time of the algorithm is reduced. The details of the proposed method and the steps of
the algorithm are described in the following sections.

In the following of this article, in the second section, the proposed method is briefly introduced.
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In this section, the bilateral local model and decision based on the combined support vector machine
based on the decision tree are described in detail. In the next section, experiments and analysis of
the proposed method results which includes the introduction of the database, evaluation criteria and
analysis of results in terms of running time is described in detail. Finally, the conclusions and future
works are introduced in the fourth section.

2. The proposed method

In this paper, a new approach to predicting new edges (interactions) by a bilateral network is
presented. In this method, information about the target-drug (graph vertices) is used. For more
precise expression, Vd = {d1, d2, · · · , dm}andVt = {t1, t2, · · · , tn} were assumed to be a set of drugs
(or potential drugs) and a set of target proteins (or potential targets), respectively. In addition, it
is assumed that each drug di and target tj is characterized by a set of related biological properties.
Putting the eij edge between the drug di and the target tj represents the drug’s interaction with that
target protein which is seen throughout the drug-target interactions set, thus it creates a bilateral
graph, a graph in which the edges only allow to pass from one class of vertices (drugs) to another
class (targets).

2.1. Bilateral graph inference with local models

This paper presents a solution to the bilateral graph inference problem by training several local
models to predict new edges that connect the drug vertices (Vd) to the target vertices (Vt). More
precisely, in fact, the presence or absence of the eij edge between the drug di and the target tj is
predicted by algorithm (1).

Algorithm (1) - A bilateral algorithm to check for the presence or absence of an edge
between the drug and the target
Input: Drug vertices (Vd), target vertices (Vt), known interaction of (Vd) and (Vt)
1. With the exception of target tj,

a. Preparing a list of other known targets di in a bilateral network

b. Preparing a separate list of unknown targets as target by di

c. Known targets are labeled +1 and other targets are labeled −1.

2. Using classification to distinguish between data of two classes based on the genomic
sequence of targets.
3. Using classification to predict tj label. In fact, with this process, the presence or absence
of the edge between di and tj is checked.
4. The same target is considered constant tj and then, with the exception of the drug di,

a. Preparing a list of other known drugs by targeting tj in a bilateral network

b. Preparing a list of drugs that are not known to targeting tj.

c. Similar to the previous steps, known drugs for the tj target are labeled +1 and other
drugs are labeled −1.
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5. Using classification to distinguish between data of two classes based on the chemical
structure of drugs.
6. Using classification to predict di label. In fact, in this process, the presence or absence
of the edge between di and tj is checked.
Output: Bilateral graph of interaction between drug vertices (Vd), target vertices (Vt)

In Algorithm 1, steps 4 to 6 of this method are very important. The purpose of these steps is to
make a second independent prediction of the same edge, if possible. Even if asked to predict exactly
one edge in both modes, this is done with a different data set in each mode and using a different
classification rule (or a class of rules). This makes two independent predictions for the same edge.
In practice, two conditions may occur: in the first mode, the drug may have no known target or in
the second mode, the target has no known drug for targeting.

In general, three modes can be considered for the interaction between the drug and the target:

- The drug has no known target and target has at least one known drug for targeting.

- The target has no known drug for targeting and the drug has at least one known target.

- The drug has at least one known target and the target has at least one known drug to target.

The first two modes reflect a situation in which predict unknown interactions involving new combi-
nations of candidate drugs or candidate target proteins out of the training dataset. The third mode
is a kind of dual usage of the algorithm that aims at two independent predictions for the same edge.
Basically, after two predictions, a function is used to aggregate two predicted values for the same
edge. In this paper, the maximum function is used for aggregation.

Since SVM is a local classification, a combination SVM based on the decision tree of the new
approach has been used for classification. Based on biological data about the vertices (drugs or
targets), the combination SVM based on the decision tree is learned through the labels of these
vertices, a function with real values that can assign a score to the drug or the remaining target.
In this local model, this process is equivalent to allocating scores to the left edge. Although the
prediction -1, +1 is usually obtained by not considering the sign of this score, but the value of the
score itself includes a kind of confidence to the prediction. In this paper, all candidate edges are
ranked according to the value of the combined SVM prediction based on the decision tree. In cases
where there are two scores for the candidate edges, first a rule is chosen to convert these two scores
into one score and then this score is ranked.

2.2. Combined SVM based on decision tree

In this paper, a combined SVM method based on the decision tree is used. This fast method is
used in the training stage for binary classification. In this method, the focus is on reducing the number
of test data points that are classified by SVM, thus the total time consumed in the test is reduced.
It is first categorized by the data point tree into data points that are near or far to the SVM decision
boundary. Far nodes are classified only by the direct decision tree, while more accurate points require
SVM for high accuracy, so the problem involves both univariate and multivariate (SVM) nodes. The
combined tree uses SVM only to classify important data points near the decision boundary. The less
important points given by the quick univariate nodes are classified without any compromise on the
accuracy of the classification. Details of the proposed method are explained below.

The time complexity of SVM can be represented by equation (1):

ComplexitySVM = dnumXO(nNsv) (1)
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n this regard, dnumX is the total number of data points, n is the input dimension, and Nsv is the
number of support vector hyper planes. Most methods try to reduce the number of SVs which at
most can be reduced to some extent; otherwise they will reduce the accuracy. As mentioned above,
the combined SVM method focuses on reducing the number of classified data by SVM, and this can
achieve high speed without losing accuracy.

The SVM decision function can be considered as equation (2):

f(x) =
Nsv∑
i=1

αiDiK(x,Xi) + b (2)

n this equation,Xi ∈ Rn is a support vector, Di is related to the target values (if Di = 1 , it is related
to class 1 data points, otherwise if Di = −1 , it is related to class −1 data points ), αi Lagrangian
coefficient, b Bias, Nsv the number of support vectors, K the kernel function, and x ∈ Rn the new
data point being tested.

f(x) is a SVM decision function which decision boundary is defined by f(x) = 0. This decision
boundary divides the feature space into two distinct unique regions, the positive region f(x) > 0
(consisting of all predicted points of the training data as class 1) and the negative region f(x) < 0
(consisting of all predicted points of the training data as class 2). Based on this decision boundary,
closeness measurement S(x) is defined in which calculates small values for data points close to
f(x) = 0 and large values for data points far from f(x) = 0. By selecting a threshold parameter δ, a
region is defined around the decision boundary, so that this region includes all training data points
by measuring the closeness of S(x) ≤ δ. In this section, predictions for all training data points in
the δ-region are labeled as class 3. The feature space now has training data points along with its
predictions, which represent three different regions in Figure (1).

Figure 1: regions related to the three classes based on the decision function f(x) and the closeness and threshold
criteria

When training data points with their predictions are available to represent these three regions,
the combined SVM decision method based on the decision tree can be used in two steps. First,
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a decision tree is trained with this 3-class dataset to identify approximately these three regions.
After the decision tree training, the second step is to replace each leaf of class 3 by a sub tree with
binary SVM and two leaves. In fact, in this method a once trained binary SVM can be used in
several leaves of decision tree (DT). This method consists of both conventional variable decision
nodes and multivariate decision nodes (SVM). Univariate decision nodes help make quick decisions
for less valuable test data points without the use of multivariate SVM. On the other hand, if the test
data points are very important, the univariate decision nodes lead them to the multivariate SVM.
Therefore, only a small portion of the test data points are classified with SVM nodes, and the rest
are classified much faster using univariate decision nodes, thus the complexity of the total time is
reduced.

2.2.1. Measuring closeness and threshold

To identify the δ region, the criterion of closeness between the training data points and the decision
boundary f(x) = 0 is defined. In this paper, the proposed probable output of the SVM method [12] is
used as an adjacent measurement. In general, the SVM decision function f(x) produces uncalibrated
values and can be converted to posterior probability estimation by placing a sigmoid function at its
output.

P (Class1|f(x)) =
1

(1 + exp(−f(x)))
(3)

The above phrase can be modified as follows:

∆P (x) = P (Class1|f(x))− 0.5 =
1

(1 + exp(−f(x)))
− 0.5 (4)

Where ∆P (x) shows the closeness criterion S(x) between the training data points and the decision
boundary f(x) = 0. It can be noted that, for f(x) = 0; S(x) = 0, when f(x)→∞; S(x)→ 0.5 and
f(x)→ −∞; S(x)→ −0.5. So we have a reasonable threshold parameter δ.

The training step of this method is stated in Algorithm (2).

Algorithm (2) - Combined SVM training with decision tree
Input: Binary dataset, δ threshold

1. SVM training with train data and obtaining decision function f(x)

2. Classify train data with f(x) in class 1 or class 2, saving predictions in new target

3. Specify data points in the train data with S(x) ≤ δ and changing the predictions of
these points in the new target to class 3

4. Decision tree training with train data with new target labels (3 classes) Replacing
all leaves of class 3 from the decision tree with a sub tree with SVM and two leaves

The steps of the proposed method are shown in Figure (2).
It should be noted that in this paper the δ threshold value is considered 0.25 according to the

validation set.
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Figure 2: Steps for classification based on the proposed method

3. Experiments and analysis of results

In this section, the experiments and results of the proposed method are analyzed separately. In
the first step, the dataset and how to divide it into training and experimental sets are introduced.
All experiments and extracted parameters are performed for each dataset under different Cross-
Validation Settings (CVS). Then, the proposed method is compared with other new methods based
on the Area Under Receiver Operating Characteristic Curve (AUC), the Area Under Precision Recall
Curve (AUPR), the Receiver Operating Characteristic (ROC) and the running time.

3.1. Data set

Yamanishi et al. reviewed information on drugs and target proteins interactions for public
databases [23] such as KEGG BRITE [10], RENDA [18], SuperTarget [7] and DrugBank [22]. In this
paper, four benchmark datasets are used [14, 23, 15] which are from four different classes of target
protein. In fact, these criteria are simulated from public databases. The following is a description of
this dataset:

• Enzymes (Es): In this dataset, 445 drugs, 664 targets and 2926 interactions have been extracted.

• Ion channels (IC): In this dataset, 201 drugs, 204 targets and 1476 interactions have been
extracted.

• G-protein-coupled receptors (GPCRs): In this dataset, 223 drugs, 95 targets and 635 interac-
tions were extracted.

• Nuclear Receptors (NRs): In this dataset, 54 drugs, 26 targets and 90 interactions have been
extracted.

It should be reminded that these datasets are simulated from public databases that are publicly
available at: http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.

In this paper, a similarity matrix between drug-drug and target-target has been used to extract
the feature. The similarity of SIMCOMP [8] which is based on the chemical structure of drugs has
been used for the drug. Protein sequence information has been used for the target and also the
Smith–Waterman scoring method [19] has been used for similarity of targets.
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In this paper, Leave-One-Out (LOO) cross-validation setting is used to classify the data. As
mentioned in the previous sections, the proposed method is a bilateral way, one side for drug pre-
diction and the other side for target prediction, the combination of these predictions represents the
drug-target interaction. In this regard, in the results section, the dataset is considered in three
modes. In the article, CVS for drug prediction, CVS for target prediction and interaction prediction
are introduced as CVS1, CVS2 and CVS3, respectively [3]. This division is as follows:

• CVS1 / Drug Prediction: All drug profiles are discarded for use as an experiment datasets. It
tests the algorithm’s ability to predict interactions of new drugs which no cross-information is
available.

• CVS2 / Target Prediction: All target profiles are discarded for use as an experiment datasets.
It tests the algorithm’s ability to predict interactions for new targets.

• CVS3 / Pair Prediction: Random drug-target pairs are discarded as an experiment datasets
for prediction. This is a common setting for validation and evaluation.

3.2. Evaluation criteria

To evaluate the performance of the proposed method, the Area Under ROC Curve (AUC) and the
Area Under Precision Recall Curve (AUPR) criteria have been used [3]. The criteria are introduced
in the following:

• The ROC curve has received more attention in supervised machine learning. One of the ways
of checking and evaluating performance is binary classification. The performance of binary
classification algorithms is usually measured by indicators called sensitivity or recovery.

But in the ROC graph, both of these indicators are combined and displayed as a curve. ROC curve
is often used to evaluate the performance of classification algorithms or to generate classified data.
In the case of DTI, this curve is usually used to extract the AUC criterion.

• AUC is a criterion for evaluating the performance of the proposed method in ranking. It uses
the ROC curve, which is a graphical graph that shows the ability to detect a positive rate for
a method as a function of a false positive rate.

The AUC measures all two-dimensional areas under the ROC curve. Summary of decision thresholds
is often used as a measure criterion of classification performance. The AUC interpretation shows a
better model in that a random positive example is more than a random negative example.

• AUPR is another criterion used to evaluate the performance of DTI methods in this paper
which uses the Precision Recall Curve. This criterion is a ratio of real positive graphs that
show positive predictions for each recall rate. AUPR performance evaluation shows that this
area under the Precision-Recall Curve punishes more false positives than AUC. AUPR shows a
quantitative evaluation of the separation of real interactions from real non-interactions among
the predicted scores. Due to the low presence of real drug-target interactions, AUPR is a
more important qualitative criterion than AUC that finds real drug-target interactions among
predicted scores.
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Figure 3: Results obtained based on the ROC curve in four benchmark datasets (a) Es, (b) IC, (c) GPCRs and (d)
NRs criteria. In each chart, red is LOO for drug prediction (CVS1), green is LOO for target prediction (CVS2), and
blue is LOO for interaction prediction (CVS3).

3.3. Analysis of experiment results

In this section, the results are analyzed based on the ROC curve criterion which indicates the
performance of the proposed method in four benchmark datasets.

In the following the ROC curve criterion is used for more detailed analysis.
Figure (3) shows the performance of the proposed method in four benchmark datasets. In this

figure, the results obtained in the three CVS are shown separately. According to the results shown,
the proposed method has the best performance in all four benchmark datasets in CVS3 (interactions).
This point is very valuable because it shows that the combination of two edges related to drug-drug
prediction and target-target prediction has had a significant impact on predicting interactions in
the proposed method. In general, according to the results, the proposed method shows appropriate
performance based on this criterion.

In the following, to evaluate the running time of the algorithm, the proposed method is compared
with the standard SVM. In fact, in this method, instead of using a combination SVM based on the
decision tree, the standard SVM is used. In the bilateral local model, SVM is used for classification.
Table (1) reports the results obtained from running time for four benchmark datasets considering
different CVS. The results show an appropriate speed of the proposed method than SVM. The average
of running time for each sample is given in seconds.
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Table 1: Comparison of the running time of the proposed method based on the combined SVM based on the decision
tree and SVM

CVS1 CVS2 CVS3
Proposed Method SVM Proposed Method SVM Proposed Method SVM

Es 0.43 1.53 0.65 1.4 1.80 2.9
IC 0.55 1.86 0.87 1.6 1.42 3.5

GPCRs 0.63 2.25 0.88 2.4 1.51 4.70
NRs 0.96 3.50 1.05 2.8 2.01 6.3

Figure (4) provides a comparison of the proposed method based on the AUC and AUPR criteria
with the standard SVM. It should be noted that all the parameters used in the SVM of proposed
method and the standard SVM are considered similar. As it can be shown from the results obtained
from Table (1), Figure (4-a) and Figure (4-b), the proposed method has better performance than
the standard SVM method in terms of running time and AUC and AUPR evaluation criteria. This
is due to the use of data training based on adjacent to the decision boundary as well as the use of
the DT classifier with the SVM classifier.

Figure 4: Comparison of the proposed method based on the combined SVM based on the decision tree and the base
SVM, a) Comparison based on the AUC criterion and b) Comparison based on the AUPR criterion
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Figure (5) shows part of the predicted output for NRs data. In this graph, the edges represent
the interaction between the drug and the target. Solid edges represent known interactions, and the
dashed line edge is for interactions that are unknown in the dataset and the proposed method is
recognized as interaction. Using these prediction edges can be suggesting new potential drug-target
interactions. In this graph, the circles represent the drugs and the rectangles represent the target
proteins. The values inside the vertex of the rectangle and the vertex of the circle are the target
number and the drug number, respectively.

Figure 5: Examples of drug-target interactions in the NRs benchmark datasets, circles represent drugs and rectangles
represent target proteins. The solid lines indicate known interactions that the proposed method has correctly identified,
dashed lines are unknown interactions detected by the proposed method that may exist between interactive drug and
target. The values inside the vertex of the rectangle and the vertex of the circle are the target number and the drug
number, respectively
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3.4. Comparison with the others methods

In this section, a comparison of the proposed method with the state-of-the-art methods in recent
years is presented. In this paper, some methods have been used for comparison [14, 26, 21]. It
should be noted that all methods are done from the same dataset and the same CVS. The results of
others’ study are extracted from articles. The method presented by Mongia et al. [14] has reported
the best results based on similarity criteria in four benchmark datasets in 2020. The results based
on AUC and AUPR criteria are shown in the following tables. Table (2), Table (3) and Table (4)
show the comparison of methods based on AUC criteria. Table (2) shows the results obtained from
the methods in four benchmark datasets with CVS1. Similarly, Table (3) and Table (4) show the
results based on CVS2 and CVS3, respectively. As can be observed from the results, the proposed
method has had an acceptable performance in evaluating DTI in the same dataset compared to other
new methods. A very important point in these tables is related to the prediction of the target-drug
pair that is shown in CVS3. In Table (4), the proposed method has the best performance in three
datasets and the results are very close to Mongia et al. results [14] in the NRs dataset.

Table 2: Comparison of the proposed method with other methods based on AUC criteria in four datasets in CVS1

CVS1 [7] [25] [26] Proposed Method
Es 0.9683 0.9272 0.9067 0.9508
IC 0.9541 0.9368 0.9286 0.9526

GPCRs 0.8975 0.8966 0.8694 0.9824
NRs 0.7502 0.8373 0.8124 0.8477

Table 3: Comparison of the proposed method with other methods based on AUC criteria in four datasets in CVS2

CVS2 [7] [25] [26] Proposed Method
Es 0.9460 0.7755 0.7952 0.9597
IC 0.9714 0.7669 0.7576 0.9751

GPCRs 0.9567 0.8800 0.8067 0.9078
NRs 0.9533 0.8615 0.8124 0.9201

Table 4: Comparison of the proposed method with other methods based on AUC criteria in four datasets in CVS2

CVS3 [7] [25] [26] Proposed Method
Es 0.9955 0.9705 0.9635 0.9989
IC 0.9947 0.9832 0.9786 0.9969

GPCRs 0.9785 0.9493 0.9458 0.9902
NRs 0.9660 0.8679 0.9329 0.9339

Table (5), Table (6) and Table (7) show a comparison of methods based on the AUPR criterion.
Table (5) shows the results obtained from the methods in the four benchmark datasets in CVS1.
Similarly, Table (6) and Table (7) show the results based on CVS2 and CVS3, respectively. As
can be observed from the results, the proposed method has had an acceptable performance in the
evaluation of DTI (CVS3) in three benchmark datasets of Es, GPSRs and NRs compared to other
new methods. In the IC dataset, the results are very close to Mongia et al. [14].



Predicting drug-target interaction based on bilateral local models ... 12 (2021) No. 2, 133-142 145

Table 5: Comparison of the proposed method with other methods based on AUPR criteria in four datasets in CVS1

CVS1 [7] [25] [26] Proposed Method
Es 0.9041 0.7808 0.5465 0.8918
IC 0.9541 0.7786 0.7437 0.8258

GPCRs 0.8975 0.5989 0.5397 0.9170
NRs 0.7502 0.4774 0.4907 0.7812

Table 6: Comparison of the proposed method with other methods based on AUPR criteria in four datasets in CVS2

CVS2 [7] [25] [26] Proposed Method
Es 0.8603 0.3848 0.2409 0.8664
IC 0.9026 0.3538 0.3090 0.9050

GPCRs 0.8538 0.4059 0.3463 0.7209
NRs 0.8773 0.5203 0.5373 0.8574

Table 7: Comparison of the proposed method with other methods based on AUPR criteria in four datasets in CVS3

CVS3 [7] [25] [26] Proposed Method
Es 0.9660 0.8837 0.8093 0.9754
IC 0.9585 0.9373 0.8459 0.9484

GPCRs 0.8515 0.7543 0.6933 0.8922
NRs 0.8791 0.6383 0.7072 0.8821

4. Conclusion

In this paper, a new approach to identifying drug-target interaction is introduced. In the proposed
method, a bilateral local model method using combined SVM based on the decision tree is presented.
This local method actually considers both drug-drug and target-target effects simultaneously using
similarities between these matrices. The use of a combination SVM based on the decision tree
improves the reduction of running time in the test phase. Four benchmark datasets have been used
to evaluate the proposed method. For accurate evaluation of the method and similar comparison
with other methods, different modes of the dataset have been considered in order to predict drugs,
predict targets, and predict drug-target interaction. The results obtained in the proposed method
show an improvement in the performance of the proposed method based on AUC, AUPR and running
time.
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