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Abstract

In this paper we have established fixed point theorems for dq-rectangular b-cyclic-Banach and dq-
rectangular b-cyclic-Kannan contraction mappings in dislocated quasi rectangular b-metric spaces.
We have also presented examples to support some of our results.
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1. Introduction

Now a days many generalizations of metric spaces and fixed point theorems for different types
contraction mappings in these spaces can be found in the literature of fixed point theory. Ini-
tially, metric space was generalized by Wilson[12] by introducing the concept of quasi-metric space.
Bakhtin[2] introduced the b-metric space which is generalizes the metric spaces and established basic
fixed point theorems in it. Hitzler et al.[10] put forth concept of dislocated metric spaces. R. George
et al.[11] introduced notion of rectangular b-metric spaces as a generalization of both metric spaces
and b-metric spaces. They also proved analogue of Banach contraction principle and Kannan type
contraction in rectangular b-metric spaces. In the literature, many generalizations of metric spaces
are found namely dislocated b-metric space, quasi b-metric space, dislocated quasi b-metric space etc.
P.G. Golhare and C.T.Aage[13] introduced the new generalization of metric spaces namely dislocated
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quasi rectangular b-metric space. We establish extensions of some well known results of fixed points
theorems of cyclic and weakly cyclic contraction mappings in dislocated quasi rectangular b-metric
spaces.

Bakhtin[2] defined the b-metric space as follows

Definition 1.1. ([2]) Let X be a non-empty set and mapping d : X ×X → [0,∞) satisfies:

(i) d(x, y) = 0 if and only if x = y for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) there exists a real number k ≥ 1 such that d(x, y) ≤ k[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then d is called b-metric on X and (X, d) is called a b-metric space with coefficient k.

Shah and Huassain[9] extended b-metric space to quasi-b-metric spaces and proved some fixed point
theorems in it. Alghamdi, Husasain and Salimi[7] defined the term b-metric-like spaces or dislocated b-
metric spaces to generalize metric-like spaces. Some of generalizations of metric spaces are mentioned
below.

Definition 1.2. ([9]) Let X be a non-empty set. Let d : X ×X → [0,∞) be a mapping and k ≥ 1
be a constant such that:

(i) d(x, y) = 0 = d(y, x) if and only if x = y for all x, y ∈ X,

(ii) d(x, y) ≤ k[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then pair (X, d) is called quasi-b-metric space.

Definition 1.3. ([7]) Let X be a non-empty set. Let d : X ×X → [0,∞) be a mapping and k ≥ 1
be a constant such that:

(i) d(x, y) = 0 then x = y for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) ≤ k[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then pair (X, d) is called dislocated b-metric space.

Chakkrid and Cholatis[4] defined the concept of dislocated quasi-b-metric space as follows

Definition 1.4. ([4]) Let X be a non-empty set. Let the mapping d : X×X → [0,∞) and constant
k ≥ 1 satisfy following conditions:

(i) d(x, y) = 0 = d(y, x) then x = y for all x, y ∈ X,

(ii) d(x, y) ≤ k[d(x, z) + d(z, y)] for all x, y, z ∈ X.

Then the pair (X, d) is called dislocated quasi-b−metric space or in short dqb-metric space.

The constant k is called coefficient of space (X, d). It is clear that b-metric spaces, quasi-b-metric
spaces and b-metric-like spaces are dqb-metric spaces but converse is not true.

Example 1.5. ([8]) Let X = R+ and for p > 1, d : X ×X → [0,∞) be defined as,

d(x, y) = |x− y|p + |x|p,∀x, y ∈ X.

Then (X, d) is dqb-metric space with k = 2p > 1. But (X, d) is not b-metric space and also not
dislocated quasi metric space.
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Example 1.6. ([4]) Let X = R and suppose,

d(x, y) = |2x− y|2 + |2x+ y|2,

then (X, d) is dqb-metric space with coefficient k = 2 but (X, d) is not a quasi-b-metric space. Also
(X, d) is not dislocated quasi metric space.

Definition 1.7. ([1]) Let X be a non-empty set and mapping d : X ×X → [0,∞) satisfies:

(i) d(x, y) = 0 if and only if x = y for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, y) ≤ [d(x, u) + d(u, v) + d(v, y)] for all x, y ∈ X and all distinct points u, v ∈ X \ {x, y}.

Then d is called a rectangular metric on X and (X, d) is called a rectangular metric space.

R. George et al.([11]) defined rectangular b-metric space as follows:

Definition 1.8. ([11]) Let X be a non-empty set and mapping d : X ×X → [0,∞) satisfies:

(i) d(x, y) = 0 if and only if x = y for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) there exist a real number s ≥ 1 such that d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] for all x, y ∈ X
and all distinct points u, v ∈ X \ {x, y}.

Then d is called a rectangular b-metric on X and (X, d) is called a rectangular b-metric space with
coefficient s.

Example 1.9. ([6]) Let A = {0, 2},B = { 1
n

: n ∈ N} and X = A ∪B define d : X ×X → [0,∞) by

d(x, y) =


0, if x = y,

1, if x 6= y and {x, y} ⊂ A or {x, y} ⊂ B,

y2, if x ∈ A and y ∈ B,
x2, if x ∈ B and y ∈ A,

then (X, d) is rectangular b-metric space with coefficient k = 3.

P.G.Golhare and C.T.Aage[13] have defined dislocated quasi rectangular b-metric space. It is also
called as dq-rectangular b-metric space as follows

Definition 1.10. [13] Let X be a non-empty set and mapping d : X ×X → [0,∞) satisfies:

(i) d(x, y) = 0 = d(y, x) then x = y for all x, y ∈ X,

(ii) there exist a real number k ≥ 1 such that d(x, y) ≤ k[d(x, u) + d(u, v) + d(v, y)] for all x, y ∈ X
and all points u, v ∈ X \ {x, y}.

Then d is called a dislocated quasi or dq-rectangular b-metric on X and (X, d) is called a dislocated
quasi or dq-rectangular b-metric space with coefficient k.
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Example 1.11. Let X = N, define d : X ×X → [0,∞) by

d(x, y) =


4α, if x = 1, y = 2,

3α, if x = 2, y = 1,
α
2
, otherwise

where α > 0 is a constant. Then (X, d) is a dislocated quasi rectangular b-metric space with coefficient
k = 3 > 1. Note that for any x ∈ N, d(x, x) = α

2
6= 0. Therefore (X, d) is not a rectangular b-metric

space. Also d(1, 2) = 4α 6= 3α = d(2, 1).

Definition 1.12. [13] An open ball Br(x) of radius r about x in dislocated quasi rectangular b-metric
space (X, d) is {

y ∈ X : max{|d(x, y)− d(x, x)|, |d(y, x)− d(x, x)|} < r
}
.

Definition 1.13. A subset G of a dislocated quasi rectangular b-metric space (X, d) is said to be
open if for every x ∈ G there exists r > 0 such that Br(x) ⊂ G.

Definition 1.14. A subset F of a dislocated quasi rectangular b-metric space (X, d) is said to be
closed if its complement X \ F is open.

Definition 1.15. A sequence {xn} in a dislocated quasi rectangular b-metric space (X, d) is said to
be convergent to x ∈ X if and only if limn→∞ d(xn, x) = limn→∞ d(x, xn) = d(x, x). In this case, we
say that x is limit of sequence {xn}.

Proposition 1.16. Every subsequence of a convergent sequence in dislocated quasi rectangular b-
metric space also converges to the same limit.

Definition 1.17. Let F be a subset of dislocated quasi rectangular b-metric space (X, d). A point
x ∈ X is said to be limit point of F if and only if for every ε > 0 there exists an open ball Bε(x) such
that Bε(x) ∩ F 6= ∅.

Proposition 1.18. A subset F of a dislocated quasi rectangular b-metric space (X, d) is closed if
and only if F contains all of its limit points.

Proposition 1.19. A subset F of a dislocated quasi rectangular b-metric space (X, d) is closed if
and only if following statement holds:
If {xn} is a sequence of points in F converging to some x ∈ X implies that x ∈ F .

Definition 1.20. Let (X, d1) and (Y, d2) be two dislocated quasi rectangular b-metric spaces. A
mapping T : X → Y is said to be continuous at u ∈ X if and only if given ε > 0 there exists
δ > 0 such that max{|d2(Tx, Tu)− d1(u, u)|, |d2(Tu, Tx)− d1(u, u)|} < ε whenever max{|d1(x, u)−
d1(u, u)|, |d1(u, x)− d1(u, u)|} < δ.

Definition 1.21. A sequence {xn} in a dislocated quasi rectangular b-metric space (X, d) is called
as Cauchy sequence if and only if limn→∞ d(xn, xn+i) and limn→∞ d(xn+i, xn) exists and is finite for
all i ∈ N.

Definition 1.22. A dislocated quasi rectangular b-metric space (X, d) is said to be complete if every
Cauchy sequence in X is convergent in X.
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2. Main Results

Definition 2.1. Let A and B be non-empty subsets of a dislocated quasi rectangular b-metric space
(X, d) with coefficient k, then a cyclic mapping T : A ∪ B → A ∪ B is called a dq -rectangular
b-cyclic-Banach mapping if there exists α ∈ [0, 1/k) such that

d(Tx, Ty) ≤ αd(x, y), (2.1)

for all x ∈ A, y ∈ B.

Our first result is given below.

Theorem 2.2. Let (X, d) be a complete dislocated quasi rectangular b-metric space with coefficient
k > 1 and A,B be two non-empty closed subsets of X. If T : A ∪ B → A ∪ B is a dq-rectangular
b-cyclic-Banach mapping then T has a unique fixed point in A ∩B.

Proof . We choose any arbitrary point x0 ∈ A. Now we can find x1 ∈ B such that x1 = Tx0.
Similarly we can find x2 ∈ A such that x2 = Tx1. Thus we get a sequence {xn} in X such that
xn = Txn−1 for all n ∈ N. Also note that xn ∈ A if n is even and xn ∈ B if n is odd. That is {x2n}
is sequence in A and {x2n−1} is sequence in B for n ∈ N. If for some n ∈ N, xn−1 = xn, then xn−1
becomes fixed point of T and we have nothing to prove. Therefore, we assume that xn−1 6= xn for
all n ∈ N. From inequality (2.1), we have

d(xn−1, xn) = d(Txn−2, Txn−1) ≤ αd(xn−2, xn−1). (2.2)

Applying inequality (2.2) repeatedly, we get,

d(xn−1, xn) ≤ αd(xn−2, xn−1) ≤ · · · ≤ αn−1d(x0, x1). (2.3)

Similarly,
d(xn, xn−1) ≤ αd(xn−1,xn−2) ≤ · · · ≤ αn−1d(x1, x0). (2.4)

We also assume that x0 6= xn for any 2 ≤ n ∈ N. If not, then for some n ≥ 2 in view of (2.3), we
have

d(x0, Tx0) = d(xn, Txn)

d(x0, x1) = d(xn, xn+1).

It implies that

d(x0, x1) ≤ αnd(x0, x1),

which is a contradiction unless d(x0, x1) = 0. Thus x0 = x1 and x0 turns out to be a fixed point of
T . So, we assume that xn 6= xm for all n 6= m ∈ N. In view of (2.1), for any n ∈ N, we can write,

d(xn−1, xn+1) = d(Txn−2, Txn) ≤ αd(xn−2, xn). (2.5)

Applying (2.1) repeatedly, we get,

d(xn−1, xn+1) ≤ αn−1d(x0, x2). (2.6)

Similarly,
d(xn+1, xn−1) ≤ αn−1d(x2, x0). (2.7)
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Now, we will prove that {xn} is a Cauchy sequence in X, equivalently, we will show

lim
n→∞

d(xn, xn+m) = 0 = lim
n→∞

d(xn+m, xn),

for all n,m ∈ N.
Case (i): Suppose m is even i.e. m = 2i for some i ∈ N and n may be even or odd. Using

inequalities (2.3), (2.4) and rectangular inequality, we get,

d(xn, xn+m) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)+] + · · ·
+ ki−1[d(xn−4+2i, xn−3+2i) + d(xn−3+2i, xn−2+2i)] + ki−1[d(xn−2+2i, xn+2i)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ ki−1[αn−4+2id(x0, x1) + αn−3+2id(x0, x1)]

+ ki−1αn−2+2id(x0, x2)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

+ ki−1αn−2+2id(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαnd(x0, x1) + ki−1αn−2+2id(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαnd(x0, x1) + αn−2d(x0, x2).

Letting n→∞ in last inequality above, we get,

lim
n→∞

d(xn, xn+m) = 0,

for all even m ∈ N.
Case (ii): Suppose m is odd i.e. m = 2i − 1 for some i ∈ N and n may be even or odd. Using

inequalities (2.3), (2.4) and rectangular inequality, we get,

d(xn, xn+m) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i−1)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i−1)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)] + · · ·
+ ki[d(xn+2i−2, xn+2i−1)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ kiαn+2i−2d(x0, x1)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

≤
[ (1 + α)

1− kα2

]
kαnd(x0, x1).

Letting n→∞ in last inequality above, we see that limit on the right hand side exist and is finite.
Therefore, limn→∞ d(xn, xn+m) exists and is finite for all odd m ∈ N. Thus from the case(i) and
case(ii), it follows that limn→∞ d(xn, xn+m) exists and,

lim
n→∞

d(xn, xn+m) = 0, ∀m ∈ N. (2.8)
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Now, we will prove that limn→∞ d(xn+m, xn) = 0, for all m,n ∈ N with m > n. We consider two
cases:

Case (a): Suppose m is even i.e. m = 2i for some i ∈ N and n may be odd or even. Then

d(xn+m, xn) ≤ ki−2d(xn+2i, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x2, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x2, x0) +
{

(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x2, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{ αn

1− α
+
αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).

It gives that
lim
n→∞

d(xn+m, xn) = 0.

Case (b): Suppose m is odd i.e. m = 2i− 1, for some i ∈ N and n may be odd or even. Then

d(xn+m, xn) ≤ ki−2d(xn+2i−1, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x1, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x1, x0) +
{

(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x1, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{ αn

1− α
+
αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).
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It gives that limn,m→∞ d(xn+m, xn) = 0. Thus from case (a) and case (b), it follows that

limn→∞d(xn+m, xn) = 0, ∀n,m ∈ N. (2.9)

Thus from (2.8) and (2.9), we conclude that limn→∞ d(xn, xn+m) = 0 = limn→∞ d(xn+m, xn) =
0, ∀n,m ∈ N. Hence {xn} is a Cauchy sequence in X. Since (X, d) is a complete dislocated quasi
rectangular b-metric space, there exists some u ∈ X such that xn → u. In view of proposition 1.16,
subsequences {x2n} in A and {x2n−1} in B also converge to u ∈ X. As A and B are closed subsets
of X, u ∈ A ∩B. We will show that u is fixed point of T . For any given n ∈ N, we can write,

d(u, Tu) ≤ k[d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= k[d(u, xn) + d(xn, xn+1) + d(Txn, Tu)]

≤ k[d(u, xn) + d(xn, xn+1) + αd(xn, u)].

Letting n→∞, using fact that xn → u and (2.6), we get d(u, Tu) = 0. Also,

d(Tu, u) ≤ k[d(Tu, xn+1) + d(xn+1, xn) + d(xn, u)]

= k[d(Tu, Txn) + d(xn+1, xn) + d(xn, u)]

≤ k[αd(u, xn) + d(xn+1, xn) + d(xn, u)].

Letting n→∞, using fact that xn → u and (2.6), we get d(Tu, u) = 0. Thus d(u, Tu) = 0 = d(Tu, u).
This gives that Tu = u. Hence u is fixed point of T in X.

Now, we prove that u is unique fixed point of T in X. Suppose u′ be another fixed point of T in
X. In view of (2.1), we have

d(u, u′) = d(Tu, Tu′) ≤ αd(u, u′) < d(u, u′).

This a contradiction unless d(u, u′) = 0.
Similarly,

d(u′, u) = d(Tu′, Tu) ≤ αd(u′, u) < d(u′, u).

This a contradiction unless d(u′, u) = 0. Thus d(u, u′) = 0 = d(u′, u). Hence u = u′. Thus uniqueness
of u is established. �

Example 2.3. Let X = A ∪ B where A = {0} ∪ {2n : n ∈ N}, B = {0} ∪ {2n − 1 : n ∈ N} define
d : X ×X → [0,∞) by

d(x, y) =


4α, if x ∈ B − {0} and y ∈ A− {0},
3α, if x ∈ A− {0} and y ∈ B − {0},
5α
4
, Otherwise

where α > 0 is a constant. Then (X, d) is a complete dislocated quasi rectangular b-metric space with
coefficient k = 6

5
> 1. If T : X → X is defined as follows:

Tx =


x− 1, if x ∈ A− {0},
x+ 1, if x ∈ B − {0},
0, Otherwise

then T is dq-rectangular b-cyclic-Banach contraction in complete dislocated quasi rectangular b-metric
space (X, d) and T has unique fixed point x = 0 ∈ X.
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Definition 2.4. Let A and B be non-empty subsets of a dislocated quasi rectangular b-metric space
(X, d) with coefficient k, then a cyclic mapping T : A ∪ B → A ∪ B is called a dq -rectangular
b-cyclic-Kannan mapping if there exists γ ∈ [0, 1/2k] such that

d(Tx, Ty) ≤ γ[d(x, Tx) + d(y, Ty)], (2.10)

for all x ∈ A, y ∈ B.

Theorem 2.5. Let (X, d) be a complete dislocated quasi rectangular b-metric space with coefficient
k > 1 and A,B be two non-empty closed subsets of X. If T : A ∪ B → A ∪ B is a dq-rectangular
b-cyclic-Kannan mapping then T has a unique fixed point in A ∩B.

Proof . We choose any arbitrary point x0 ∈ A. Now we can find x1 ∈ B such that x1 = Tx0.
Similarly we can find x2 ∈ A such that x2 = Tx1. Thus we get a sequence {xn} in X such that
xn = Txn−1 for all n ∈ N. Also note that xn ∈ A if n is even and xn ∈ B if n is odd. That is {x2n}
is sequence in A and {x2n−1} is sequence in B for n ∈ N. If for some n ∈ N, xn−1 = xn, then xn−1
becomes fixed point of T and we have nothing to prove. Therefore, we assume that xn−1 6= xn for
all n ∈ N. From inequality (2.10), we have

d(xn−1, xn) = d(Txn−2, Txn−1) ≤ γ[d(xn−2, Txn−2) + d(xn−1, Txn−1)]

= γ[d(xn−2, xn−1) + d(xn−1, xn)].

This gives that

d(xn−1, xn) ≤ γ

1− γ
d(xn−2, xn−1) = αd(xn−2, xn−1) (2.11)

where α = γ
1−γ .

Applying inequality (2.11) repeatedly we get,

d(xn−1, xn) ≤ αd(xn−2, xn−1) ≤ · · · ≤ αn−1d(x0, x1). (2.12)

We also assume that x0 6= xn for any 2 ≤ n ∈ N. If not, then for some n ≥ 2 in view of (2.12),
we have

d(x0, Tx0) = d(xn, Txn)

d(x0, x1) = d(xn, xn+1).

It implies that

d(x0, x1) ≤ αnd(x0, x1),

which is a contradiction unless d(x0, x1) = 0. Thus x0 = x1 and x0 turns out to be a fixed point of
T . Hence, we assume that xn 6= xm for all n 6= m ∈ N. In view of (2.10), for any n ∈ N, we can write

d(xn−1, xn+1) = d(Txn−2, Txn) ≤ γ[d(xn−2, Txn−2) + d(xn, Txn)]

= γ[d(xn−2, xn−1) + d(xn, xn+1)]

≤ γ[αn−2d(x0, x1) + αnd(x0, x1)]

= γαn−2[1 + α2]d(x0, x1)

= βαn−2d(x0, x1),
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where β = γ[1 + α2]. Thus
d(xn−1, xn+1) ≤ βαn−2d(x0, x1). (2.13)

In order to show {xn} is a Cauchy sequence in X, it is sufficient to show that

lim
n→∞

d(xn, xn+m) = 0 = lim
n→∞

d(xn+m, xn),

for all n,m ∈ N.
Case (i): Suppose m is even i.e. m = 2i for some i ∈ N and n may be even or odd. Then using

inequalities (2.12), (2.13) and rectangular inequality, we get

d(xn, xn+2i) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)+] + · · ·
+ ki−1[d(xn+2i−4, xn+2i−3) + d(xn+2i−3, xn+2i−2)] + ki−1[d(xn+2i−2, xn+2i)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ ki−1[αn+2i−4d(x0, x1) + αn+2i−3d(x0, x1)]

+ ki−1αn+2i−2βd(x0, x2)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

+ ki−1αn−3+2id(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαn−1d(x0, x1) + ki−1αn−3+2iβd(x0, x2)

≤
[ (1 + α)

1− kα2

]
kαn−1d(x0, x1) + αn−3βd(x0, x2).

Letting n→∞ in last inequality above, we get

lim
n→∞

d(xn, xn+m) = 0,

for all even m ∈ N.
Case (ii): Suppose m is even i.e. m = 2i − 1 for some i ∈ N and n may be even or odd. Using

inequalities (2.12), (2.13) and rectangular inequality, we get

d(xn, xn+2i−1) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i−1)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i−1)]

≤ k[d(xn−1, xn) + d(xn, xn+1)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)] + · · ·
+ ki[d(xn+2i, xn+2i−1)]

≤ k[αnd(x0, x1) + αn+1d(x0, x1)] + k2[αn+2d(x0, x1) + αn+3d(x0, x1)]

+ k3[αn+4d(x0, x1) + αn+5d(x0, x1)] + · · ·+ kiαn+2id(x0, x1)

≤ kαn[1 + kα2 + k2α4 + · · · ]d(x0, x1) + kαn+1[1 + kα2 + k2α4 + · · · ]d(x0, x1)

≤
[ (1 + α)

1− kα2

]
kαn−1d(x0, x1).
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Letting n→∞ in last inequality above, we get

lim
n→∞

d(xn, xn+m) = 0,

for all odd m ∈ N. Thus from case (i) and case (ii), it follows that for all m,n ∈ N.

lim
n,m→∞

d(xn, xn+m) = 0. (2.14)

Now, we prove that limn→∞ d(xn+m, xn) = 0 for all m,n ∈ N. We consider two cases.
Case (a): Suppose m is even i.e. m = 2i for some i ∈ N and n may be odd or even. Then

d(xn+m, xn) ≤ ki−2d(xn+2i, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x2, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x2, x0) +
{

(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x2, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{ αn

1− α
+
αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x2, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).

It gives that

lim
n→∞

d(xn+m, xn) = 0.
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Case (b): Suppose m is odd i.e. m = 2i− 1 for some i ∈ N and n may be odd or even.

d(xn+m, xn) ≤ ki−2d(xn+2i−1, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2d(x1, x0) + ki−2[αn+2i−3d(x1, x0) + αn+2i−4d(x1, x0)]

+ ki−3[αn+2i−4d(x1, x0) + αn+2i−5d(x1, x0)] + · · ·
+ k[αn+1d(x1, x0) + αnd(x1, x0)]

= (kα)2i−2αnd(x1, x0) +
{

(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
d(x1, x0)

≤ (kα)2i−2αnd(x1, x0) +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{ αn

1− α
+
αn−1

1− α

}
d(x1, x0)

= (kα)2i−2αnd(x1, x0) +
{1 + α

1− α

}
αn−1d(x1, x0).

It gives that

lim
n→∞

d(xn+m, xn) = 0.

Thus
lim
n→∞

d(xn, xn+m) = 0 = lim
n→∞

d(xn+m, xn)

for all n,m ∈ N. Hence {xn} is a Cauchy sequence in X. Since (X, d) is a complete dislocated quasi
rectangular b-metric space, there exists some u ∈ X such that xn → u. In view of proposition 1.16,
subsequences {x2n} in A and {x2n−1} in B also converge to u ∈ X. As A and B are closed subsets
of X, u ∈ A ∩B. We claim that u is fixed point of T . For any given n ∈ N, we can write

d(u, Tu) ≤ k[d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= k[d(u, xn) + d(xn, xn+1) + d(Txn, Tu)]

≤ k
{
d(u, xn) + d(xn, xn+1) + γ[d(xn, Txn) + d(u, Tu)]

}
= k

{
d(u, xn) + d(xn, xn+1) + γ[d(xn, xn+1) + d(u, Tu)]

}
,

which gives that,

d(u, Tu) ≤ 1

1− γ

{
d(u, xn) + d(xn, xn+1) + γd(xn, xn+1)

}
. (2.15)

Letting n→∞, the sequence xn → u, we get d(u, Tu) = 0. Also,

d(Tu, u) ≤ k[d(Tu, xn+1) + d(xn+1, xn) + d(xn, u)]

= k[d(Tu, Txn) + d(xn+1, xn) + d(xn, u)]

≤ k
{
γ[d(u, Tu) + d(xn, Txn)] + d(xn+1, xn) + d(xn, u)

}
= k

{
γ[d(u, Tu) + d(xn, xn+1)] + d(xn+1, xn) + d(xn, u)

}
.
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Letting n→∞, the sequence xn → u, we get d(Tu, u) = 0. Thus d(u, Tu) = 0 = d(Tu, u). It gives
that Tu = u. Hence u is fixed point of T in X.

Note that

d(u, u) = d(Tu, Tu) ≤ γ[d(u, Tu) + d(u, Tu)] = 2γd(u, u) < d(u, u) (2.16)

which is a contradiction unless d(u, u) = 0. Thus if u is fixed point of T , then we have d(v, v) = 0.
Suppose u′ be another fixed point of T in X. In view of (2.10), we have

d(u, u′) = d(Tu, Tu′) ≤ γ[d(u, Tu) + d(u′, Tu′)]

= γ[d(u, u) + d(u′, u′)] = 0.

Also,

d(u′, u) = d(Tu′, Tu) ≤ γ[d(u′, Tu′) + d(u, Tu)]

= γ[d(u′, u′) + d(u, u)] = 0.

Thus d(u, u′) = d(u′, u) = 0 i.e. u = u′. u is a unique fixed point of T . �

Example 2.6. Let A = {0, 2, 1/2}, B = { 1
n

: n ∈ N, n ≥ 2} and X = A ∪ B define d : X × X →
[0,∞) by

d(x, y) =



1
2
, if x, y ∈ A− {1

2
},

1
3
, if x, y ∈ B − {1

2
},

1
4
, if x ∈ A− {1

2
} and y ∈ B − {1

2
},

3
4
, if x ∈ B − {1

2
} and y ∈ A− {1

2
},

0, Otherwise

then (X, d) is complete dislocated quasi rectangular b-metric space with coefficient k = 3
2
> 1. If

T : X → X is defined as follows:

Tx =

{
1
2
, if x ∈ A,

0, if x ∈ B − {1
2
},

then T is dq-rectangular b-cyclic-Kannan contraction in complete dislocated quasi rectangular b-metric
space (X, d) and T has unique fixed point x = 1

2
∈ X.

We define,
Φ = {φ : [0,∞) → [0,∞)|φ is continuous, non-decreasing and φ(α) = 0 if and only if α = 0}.
Now, we define quasi-like weak cyclic φ−contraction in dislocated quasi rectangular b-metric space
(A ∪B = X, d) with coefficient k as follows:

Definition 2.7. A mapping T : A ∪ B → A ∪ B said to be a quasi-like weak cyclic φ−contraction
if,

d(Tx, Ty) ≤ αQ(x, y)− φ(Q(x, y)) (2.17)

for all x, y ∈ X, where Q(x, y) = max{d(x, y), d(Tx, x), d(y, Ty)}, 0 ≤ α < 1
k

and φ ∈ Φ.

Theorem 2.8. Let (X, d) be a complete dislocated quasi rectangular b-metric space with coefficient
k ≥ 1 such that X = A ∪ B where A and B are closed subsets of X. Let T : X → X be a quasi-like
weak cyclic φ−contraction. Then T has unique fixed point in X.
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Proof . We consider any arbitrary point x0 ∈ X. Now define sequence {xn} in X such that
xn = Txn−1 for all n ∈ N. For an obvious reason we assume that xn−1 6= xn for all n ∈ N. In the
light of inequality (2.17 ), we see that,

d(x1, x2) = d(Tx0, Tx1)

≤ αQ(x0, x1)− φ(Q(x0, x1))

≤ αQ(x0, x1)

≤ αmax{d(x0, x1), d(x1, x0)}.

Similarly,

d(x2, x1) = d(Tx1, Tx0)

≤ αQ(x1, x0)− φ(Q(x1, x0)

≤ αQ(x1, x0)

≤ αmax{d(x1, x0), d(x0, x1)}.

Let η = max{d(x1, x0), d(x0, x1)}. Then

d(x1, x2) ≤ αη (2.18)

and
d(x2, x1) ≤ αη. (2.19)

Now consider,

d(x2, x3) = d(Tx1, Tx2)

≤ αQ(x1, x2)− φ(Q(x1, x2))

≤ αQ(x1, x2)

≤ αmax{d(x1, x2), d(x2, x1)}
≤ α2η. (2.20)

Similarly,

d(x3, x2) = d(Tx2, Tx1)

≤ αQ(x2, x1)− φ(Q(x2, x1))

≤ αQ(x2, x1)

≤ αmax{d(x2, x1), d(x1, x2)}
≤ α2η. (2.21)

Applying above inequalities (2.20) and (2.21),repeatedly, we get,

d(xn, xn+1) ≤ αnη (2.22)

and
d(xn+1, xn) ≤ αnη. (2.23)

If for some n such that 2 ≤ n ∈ N, x0 = xn then in view of (2.22), we have

d(x0, Tx0) = d(xn, Txn)

d(x0, x1) = d(xn, xn+1)

d(x0, x1) ≤ αnη.



Dislocated quasi rectangular b-metric spaces... 12 (2021) No. 2, 173-191 187

If η = d(x0, x1), then we get d(x0, x1) ≤ αnd(x0, x1), which is a contradiction unless d(x0, x1) = 0.
And hence d(x1, x0) = 0. This yields that x0 = x1. And thus x0 turns out to be a fixed point of
T .Therefore we assume that x0 6= xn for any 2 ≤ n ∈ N.
Similarly,we assume that xn 6= xm, for all n 6= m ∈ N. Since, if not

d(Tx0, x0) = d(Txn, xn)

d(x1, x0) = d(xn+1, xn)

d(x1, x0) ≤ αnη.

If η = d(x1, x0), then we get d(x1, x0) ≤ αnd(x1, x0), which is a contradiction unless d(x1, x0) = 0.
And hence d(x0, x1) = 0. This yields that x0 = x1 and thus x0 turns out to be a fixed point of T .

Let β = max{d(x2, x0), d(x0, x2), η}. We claim that d(xn, xn+2) ≤ αnβ and d(xn+2, xn) ≤ αnβ,
for all n ∈ N. We first prove d(xn, xn+2) ≤ αnβ. We proceed by induction. For n = 1,

d(x1, x3) = d(Tx0, Tx2)

≤ αQ(x0, x2)− φ((x0, x2))

≤ α(x0, x2)

≤ αmax{d(x0, x2), η, α
2η}

≤ αmax{d(x0, x2), η}
= αβ.

Assume that d(xn−1, xn+1) ≤ αn−1β. Now consider

d(xn, xn+2) = d(Txn−1, Txn+1)

≤ αQ(xn−1, xn+1)− φ(Q(xn−1, xn+1))

≤ αQ(xn−1, xn+1)

≤ αmax{αn−1β, αn−1η, αn+1η}
≤ ααn−1β

= αnβ.

Thus for all n ∈ N, we have
d(xn, xn+2) ≤ αnβ. (2.24)

Now, we prove that d(xn+2, xn) ≤ αnβ. Again we proceed by induction. For n = 1,

d(x3, x1) = d(Tx2, Tx0)

≤ αQ(x2, x0)− φ(Q(x2, x0))

≤ αQ(x2, x0)

≤ αmax{d(x2, x0), α
2η, η}

≤ αmax{d(x2, x0), η}
= αβ.
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Assume that d(xn+1, xn−1) ≤ αn−1β. Now, we consider

d(xn+2, xn) = d(Txn+1, Txn−1)

≤ αQ(xn+1, xn−1)− φ(Q(xn+1, xn−1))

≤ αQ(xn+1, xn−1)

≤ αmax{αn−1β, αn+1η, αn−1η}
≤ ααn−1β

= αnβ.

Thus, for all n ∈ N, we have
d(xn+2, xn) ≤ αnβ. (2.25)

Now, we will prove, {xn} is a Cauchy sequence in X, we prove that limn→∞ d(xn, xn+m) = 0 =
limn→∞ d(xn+m, xn), for all n,m ∈ N. At first, we prove that limn→∞ d(xn, xn+m) = 0. For this
purpose, consider the following cases:

Case (i): Suppose m is even i.e. m = 2i for some i ∈ N and n may be even or odd. Using
inequalities (2.22), (2.24) and rectangular inequality, we get

d(xn, xn+2i) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)+] + · · ·
+ ki−1[d(xn+2i−4, xn+2i−3) + d(xn+2i−3, xn+2i−2)] + ki−1[d(xn+2i−2, xn+2i)]

≤ k[αnη + αn+1η] + k2[αn+2η + αn+3η]

+ k3[αn+4η + αn+5η] + · · ·+ ki−1[αn+2i−4η + αn+2i−3η]

+ ki−1αn+2i−2β

≤ kαn[1 + kα2 + k2α4 + · · · ]η + kαn+1[1 + kα2 + k2α4 + · · · ]η
+ ki−1αn−3+2iβ

≤
[ (1 + α)

1− kα2

]
kαn−1η + ki−1αn−3+2iβ

≤
[ (1 + α)

1− kα2

]
kαn−1η + αn−3β.

Letting n→∞ in last inequality above, we get limn→∞ d(xn, xn+m) = 0, for all even m ∈ N.
Case (ii): m is odd i.e. m = 2i− 1 for some i ∈ N and n may be even or odd. Using inequality
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(2.22) and rectangular inequality, we get

d(xn, xn+2i−1) ≤ k[d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2i−1)]

≤ k[d(xn, xn+1) + d(xn+1, xn+2)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, xn+2i−1)]

≤ k[d(xn−1, xn) + d(xn, xn+1)] + k2[d(xn+2, xn+3) + d(xn+3, xn+4)]

+ k3[d(xn+4, xn+5) + d(xn+5, xn+6)] + · · ·
+ ki[d(xn+2i, xn+2i−1)]

≤ k[αnη + αn+1η] + k2[αn+2η + αn+3η]

+ k3[αn+4η + αn+5η] + · · ·+ kiαn+2iη

≤ kαn[1 + kα2 + k2α4 + · · · ]η + kαn+1[1 + kα2 + k2α4 + · · · ]η

≤
[ (1 + α)

1− kα2

]
kαn−1η.

Taking limit as n→∞ in last inequality above, we get limn→∞ d(xn, xn+m) = 0, for all odd m ∈ N.
Thus from case (i) and case (ii), it follows that, for all m,n ∈ N,

lim
n→∞

d(xn, xn+m) = 0. (2.26)

we prove that limn→∞ d(xn+m, xn) = 0 for all m,n ∈ N. So, we consider two cases:
Case (a): Suppose m is even i.e. m = 2i for some i ∈ N and n may be odd or even. Using

inequalities (2.23), (2.25) and rectangular inequality, we get

d(xn+m, xn) ≤ ki−2d(xn+2i, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2β + ki−2[αn+2i−3η + αn+2i−4η]

+ ki−3[αn+2i−4η + αn+2i−5η] + · · ·
+ k[αn+1η + αnη]

= (kα)2i−2αnβ +
{

(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
η

≤ (kα)2i−2αnβ +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
η

= (kα)2i−2αnβ +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
η

= (kα)2i−2αnβ +
{ αn

1− α
+
αn−1

1− α

}
η

= (kα)2i−2αnβ +
{1 + α

1− α

}
αn−1η.

Letting n→∞, we get limn→∞ d(xn+m, xn) = 0.
Case (b): m is odd i.e. m = 2i− 1 for some i ∈ N and n may be odd or even. Using inequality
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(2.23) and rectangular inequality, we get

d(xn+m, xn) ≤ ki−2d(xn+2i−1, xn+2i−2) + ki−2[d(xn+2i−2, xn+2i−3) + d(xn+2i−3, xn+2i−4)]

+ ki−3[d(xn+2i−4, xn+2i−5) + d(xn+2i−5, xn+2i−6)] + · · ·+ k[d(xn+2, xn+1) + d(xn+1, xn)]

≤ ki−2αn+2i−2η + ki−2[αn+2i−3η + αn+2i−4η]

+ ki−3[αn+2i−4η + αn+2i−5η] + · · ·
+ k[αn+1η + αnη]

= (kα)2i−2αnη +
{

(kα)i−2αn+i−1 + (kα)i−2αn+i−2 + (kα)i−3αn+i−2 + (kα)i−3αn+i−3

+ · · ·+ (kα)αn + (kα)αn−1
}
η

≤ (kα)2i−2αnη +
{
αn+i−1 + αn+i−2 + αn+i−2 + αn+i−3 + · · ·

+ αn + αn−1
}
η

= (kα)2i−2αnη +
{
αn[αi−1 + αi−2 + · · ·+ 1] + αn−1[αi−1 + αi−2 + · · ·+ 1]

}
η

= (kα)2i−2αnη +
{ αn

1− α
+
αn−1

1− α

}
η

= (kα)2i−2αnη +
{1 + α

1− α

}
αn−1η.

Letting n→∞, we get limn→∞ d(xn+m, xn) = 0. Thus, from case(a) and case(b), it follows that, for
all m,n ∈ N,

lim
n→∞

d(xn+m, xn) = 0. (2.27)

It shows that {xn} is a Cauchy sequence in X. Since (X, d) is a complete dislocated quasi rectangular
b-metric space, there exists some u ∈ X such that xn → u. In view of proposition 1.16, subsequences
{x2n} in A and {x2n−1} in B also converge to u ∈ X. As A and B are closed subsets of X,
u ∈ A ∩ B.Since (X, d) is a complete dislocated quasi rectangular b-metric space, there exists some
u ∈ X such that xn → u. Now, we show that u is fixed point of T . For any given n ∈ N, we can
write

d(u, Tu) ≤ k[d(u, xn) + d(xn, xn+1) + d(xn+1, Tu)]

= k[d(u, xn) + d(xn, xn+1) + d(Txn, Tu)]

≤ k
{
d(u, xn) + d(xn, xn+1) + αQ(xn, u)− φ(Q(xn, u))

}
.

Letting n→∞, using fact that xn → u, and inequalities (2.22), (2.23), we get,

d(u, Tu) ≤ kαd(u, Tu),

which is a contradiction unless d(u, Tu) = 0. Also,

d(Tu, u) ≤ k[d(Tu, xn+1) + d(xn+1, xn) + d(xn, u)]

= k[d(Tu, Txn) + d(xn+1, xn) + d(xn, u)]

≤ k
{
αQ(u, xn)− φ(Q(u, xn)) + d(xn+1, xn) + d(xn, u)

}
.
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Letting n→∞, utilizing fact that xn → u, and inequalities (2.22), (2.23), we get,

d(Tu, u) ≤ kαd(Tu, u).

This is a contradiction unless d(Tu, u) = 0. Hence, we get d(u, Tu) = 0 = d(Tu, u). It yields that
Tu = u. That is, u is fixed point of T in X.

Note that,

d(u, u) = d(Tu, Tu) ≤ αQ(u, u)− φ(Q(u, u))

≤ αQ(u, u)

≤ αd(u, u) < d(u, u),

which is a contradiction unless d(u, u) = 0. Thus,in general, if v is fixed point of T then, d(v, v) = 0.
Now, we prove that u is unique fixed point of T in X. Suppose, u′ is another fixed point of T in X
such that d(u, u′) 6= 0 6= d(u′, u). Now, in view of (2.17), we have

d(u, u′) = d(Tu, Tu′) ≤ αQ(u, u′)− φ(Q(u, u′))

≤ αQ(u, u′)

≤ αd(u, u′).

This yields a contradiction, α ≥ 1, unless d(u, u′) = 0. Also,

d(u′, u) = d(Tu′, Tu) ≤ αQ(u′, u)− φ(Q(u′, u))

≤ αQ(u′, u)

≤ αd(u′, u) < d(u′, u).

This too gives same contradiction as in previous case unless d(u′, u) = 0. Hence we must have,
d(u, u′) = 0 = d(u′, u) i.e. u = u′. So u is a unique fixed point of T in X. �
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