# Variation of the first eigenvalue of $(p, q)$-Laplacian along the Ricci-harmonic flow 

Shahroud Azami<br>Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.<br>(Communicated by Hamid Khodaei)


#### Abstract

In this paper, we study monotonicity for the first eigenvalue of a class of $(p, q)$-Laplacian. We find the first variation formula for the first eigenvalue of $(p, q)$-Laplacian on a closed Riemannian manifold evolving by the Ricci-harmonic flow and construct various monotonic quantities by imposing some conditions on initial manifold.


Keywords: Laplace, Ricci flow, Harmonic map
2010 MSC: Primary 58C40; Secondary 53C43.

## 1. Introduction

The study on eigenvalue problem has received remarkable attention. Recently, many mathematicians considered the eigenvalue problem of geometric operators under various geometric flows, because it is a very powerful tool for the understanding Riemannain manifold. The fundamental study of this works began when Perelman [10] showed that the functional

$$
F=\int_{M}\left(R+|\nabla f|^{2}\right) e^{-f} d \mu
$$

is nondecreasing along the Ricci flow coupled to a backward heat-type equation, where $R$ is the scalar curvature with respect to the metric $g(t)$ and $d \mu$ denotes the volume form of the metric $g(t)$. The nondecreasing of the functional $F$ implies that the first eigenvalue of the geometric operator $-4 \Delta+R$ is nondecreasing under the Ricci flow. Then, Li [7] and Zeng et al [12] extended the

[^0]geometric operator $-4 \Delta+R$ to the operator $-\Delta+c R$ and studied the monotonicity of eigenvalues of the operator $-\Delta+c R$ along Ricci flow and the Ricci-Bourguignon flow, respectively.

Also, in [1, 11, 13] has been investigated the evolution for the first eigenvalue of $p$-Laplacian along the Ricci-harmonic flow, Ricci flow and mth mean curvature flow, respectively. A generalization of $p$-Laplacian is a class of $(p, q)$-Laplacian which has applications in physics and related sciences such as non-Newtonnian fluids, pseudoplastics [4, 5] that we introduce it in later section.

On the other hand, geometric flows for instance, Ricci-harmonic flow have been a topic of active research interest in mathematics and physics. A geometric flow is an evolution of a geometric structure. Let $M$ be a closed $m$-dimensional Riemannian manifold with a Riemannian metric $g_{0}$. Hamilton for the first time in 1982 introduced the Ricci flow as follows

$$
\frac{\partial g(t)}{\partial t}=-2 \operatorname{Ric}(g(t)), \quad g(0)=g_{0}
$$

where Ric is the Ricci tensor of $g(t)$. The Ricci flow has been proved to be a very useful tool to improve metrics in Riemannian geometry, when $M$ is compact. Now, let $\left(M^{m}, g\right)$ and $\left(N^{n}, \gamma\right)$ be closed Riemannain manifolds. By Nash's embedding theorem, assume that $N$ is isometrically embedded into Euclidean space $e_{N}:\left(N^{n}, \gamma\right) \hookrightarrow \mathbb{R}^{d}$ for a sufficiently large $d$. We identify map $\phi: M \rightarrow N$ with $e_{N} \circ \phi: M \rightarrow \mathbb{R}^{d}$. Müller [9] considered a generalization of Ricci flow as

$$
\begin{cases}\frac{\partial g(t)}{\partial t}=-2 \operatorname{Ric}(g(t))+2 \eta \nabla \phi \otimes \nabla \phi, & g(0)=g_{0}  \tag{1.1}\\ \frac{\partial \phi}{\partial t}=\tau_{g} \phi & \phi(0)=\phi_{0}\end{cases}
$$

where $\eta$ is a positive coupling constant, $\phi(t)$ is a family of smooth maps from $M$ to some closed target manifold $N$ and $\tau_{g} \phi$ is the intrinsic Laplacian of $\phi$ which denotes the tension field of $\phi$ with respect to the evolving metric $g(t)$. This evolution equation system called Ricci flow coupled with harmonic map flow or $(R H)_{\eta}$ flow for short. Müller in [9] shown that system (1.1) has unique solution with initial data $(g(0), \phi(0))=\left(g_{0}, \phi_{0}\right)$. Also, the normalized $(R H)_{\eta}$ flow defined as

$$
\begin{cases}\frac{\partial g(t)}{\partial t}=-2 \operatorname{Ric}(g(t))+2 \eta \nabla \phi \otimes \nabla \phi+\frac{2}{m} r g(t), & g(0)=g_{0}  \tag{1.2}\\ \frac{\partial \phi}{\partial t}=\tau_{g} \phi & \phi(0)=\phi_{0}\end{cases}
$$

where $r=\frac{\int_{M}\left(R-\eta|\nabla \phi|^{2}\right) d \mu}{\int_{M} d \mu}$ is the average of $R-\eta|\nabla \phi|^{2}$. Under this normalized flow, the volume of the solution metrics remains constant in time.

## 2. Preliminaries

### 2.1. Eigenvalues of $p$-Laplacian

Let $(M, g)$ be a closed Riemannian manifold and $f: M \longrightarrow \mathbb{R}$ be a smooth function on $M$ or $f \in W^{1, p}(M)$. The Laplace-Beltrami operator acting on a smooth function $f$ on $M$ is the divergence of gradient of $f$, written as

$$
\Delta f=\operatorname{div}(\operatorname{grad} f)=\frac{1}{\sqrt{\operatorname{det} g}} \partial_{i}\left(\sqrt{\operatorname{det} g} \partial_{j} f\right)
$$

where $\partial_{i} f=\frac{\partial f}{\partial x^{i}}$. The $p$-Laplacian of $f$ for $1<p<\infty$ is defined as

$$
\begin{align*}
\triangle_{p} f & =\operatorname{div}\left(|\nabla f|^{p-2} \nabla f\right)  \tag{2.1}\\
& =|\nabla f|^{p-2} \Delta f+(p-2)|\nabla f|^{p-4}(\text { Hess } f)(\nabla f, \nabla f),
\end{align*}
$$

where

$$
(H e s s f)(X, Y)=\nabla(\nabla f)(X, Y)=X .(Y . f)-\left(\nabla_{X} Y\right) . f, \quad X, Y \in \mathcal{X}(M)
$$

and in local coordinate, we get

$$
(H e s s f)\left(\partial_{i}, \partial_{j}\right)=\partial_{i} \partial_{j} f-\Gamma_{i j}^{k} \partial_{k} f
$$

Notice that when $p=2$, $p$-Laplacian is the Laplace-Beltrami operator. Let $\left(M^{n}, g\right)$ be a closed Riemannian manifold. In this paper, we consider the nonlinear system introduced in [6], that is

$$
\left\{\begin{array}{l}
\Delta_{p} u=-\lambda|u|^{\alpha}|v|^{\beta} v \text { in } M  \tag{2.2}\\
\Delta_{q} v=-\lambda|u|^{\alpha}|v|^{\beta} u \text { in } M \\
(u, v) \in W^{1, p}(M) \times W^{1, q}(M)
\end{array}\right.
$$

where $p>1, q>1$ and $\alpha, \beta$ are real numbers satisfying

$$
\begin{equation*}
\alpha>0, \beta>0, \quad \frac{\alpha+1}{p}+\frac{\beta+1}{q}=1 . \tag{2.3}
\end{equation*}
$$

In (2.2), we say that $\lambda$ is an eigenvalue whenever for some $u \in W_{0}^{1, p}(M)$ and $v \in W_{0}^{1, q}(M)$,

$$
\begin{align*}
\int_{M}|\nabla u|^{p-2}<\nabla u, \nabla \phi>d \mu & =\lambda \int_{M}|u|^{\alpha}|v|^{\beta} v \phi d \mu,  \tag{2.4}\\
\int_{M}|\nabla v|^{q-2}<\nabla v, \nabla \psi>d \mu & =\lambda \int_{M}|u|^{\alpha}|v|^{\beta} u \psi d \mu, \tag{2.5}
\end{align*}
$$

where $\phi \in W^{1, p}(M), \psi \in W^{1, q}(M)$ and $W_{0}^{1, p}(M)$ is the closure of $C_{0}^{\infty}(M)$ in Sobolev space $W^{1, p}(M)$. The pair $(u, v)$ is called a eigenfunction corresponding to eigenvalue $\lambda$. A first positive eigenvalue of (2.2) obtained as

$$
\inf \left\{A(u, v):(u, v) \in W_{0}^{1, p}(M) \times W_{0}^{1, q}(M), B(u, v)=1\right\}
$$

where

$$
\begin{aligned}
A(u, v) & =\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p} d \mu+\frac{\beta+1}{q} \int_{M}|\nabla v|^{q} d \mu \\
B(u, v) & =\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu .
\end{aligned}
$$

Let $\left(M^{m}, g(t), \phi(t)\right)$ be a solution of the $(R H)_{\eta}$ flow (1.1) on the smooth manifold ( $M^{m}, g_{0}, \phi_{0}$ ) in the interval $[0, T)$ then

$$
\begin{equation*}
\lambda(t)=\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p} d \mu_{t}+\frac{\beta+1}{q} \int_{M}|\nabla v|^{q} d \mu_{t}, \tag{2.6}
\end{equation*}
$$

defines the evolution of an eigenvalue of $(2.2)$, under the variation of $(g(t), \phi(t))$ where the eigenfunction associated to $\lambda(t)$ is normalized that is $B(u, v)=1$. Motivated by the above works, in this paper we will study the first eigenvalue of a class of $(p, q)$-Laplacian (2.2) whose metric satisfies the $(R H)_{\eta}$ flow. Throughout of paper we write $\frac{\partial u}{\partial t}=\partial_{t} u=u^{\prime}, \mathcal{S}=R i c_{g}-\eta \nabla \phi \otimes \nabla \phi, \mathcal{S}_{i j}=R i c_{i j}-\eta \nabla_{i} \phi \nabla_{j} \phi$ and $S=R-\eta|\nabla \phi|^{2}$.

## 3. Variation of $\lambda(t)$

In this section, we will give some useful evolution formulas for $\lambda(t)$ under the Ricci-harmonic flow. Now, we give a useful statement about the variation of the first eigenvalue of 2.2 under the $(\mathrm{RH})_{\eta}$ flow.

Lemma 3.1. If $g_{1}$ and $g_{2}$ are two metrics on Riemannian manifold $M^{m}$ which satisfy $(1+\epsilon)^{-1} g_{1}<$ $g_{2}<(1+\epsilon) g_{1}$ then for any $p \geq q>1$, we have

$$
\lambda\left(g_{2}\right)-\lambda\left(g_{1}\right) \leq\left((1+\epsilon)^{\frac{p+m}{2}}-(1+\epsilon)^{-\frac{m}{2}}\right) \lambda\left(g_{1}\right)
$$

in particular, $\lambda(t)$ is a continues function respect to $t$-variable.
Proof . By direct computation we complete the proof of lemma. In local coordinate we have $d \mu=\sqrt{\operatorname{det} g} d x^{1} \wedge \ldots \wedge d x^{m}$, therefore

$$
(1+\epsilon)^{-\frac{m}{2}} d \mu_{g_{1}}<d \mu_{g_{2}}<(1+\epsilon)^{\frac{m}{2}} d \mu_{g_{1}} .
$$

Let

$$
\begin{equation*}
G(g, u, v)=\frac{\alpha+1}{p} \int_{M}|\nabla u|_{g}^{p} d \mu_{g}+\frac{\beta+1}{q} \int_{M}|\nabla v|_{g}^{q} d \mu_{g} \tag{3.1}
\end{equation*}
$$

then

$$
\begin{aligned}
& \int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{1}} G\left(g_{2}, u, v\right)-\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{2}} G\left(g_{1}, u, v\right) \\
= & \frac{\alpha+1}{p} \int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{1}}\left(\int_{M}|\nabla u|_{g_{2}}^{p} d \mu_{g_{2}}-\int_{M}|\nabla u|_{g_{1}}^{p} d \mu_{g_{1}}\right) \\
& +\frac{\alpha+1}{p}\left(\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{1}}-\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{2}}\right) \int_{M}|\nabla u|_{g_{1}}^{p} d \mu_{g_{1}} \\
& +\frac{\beta+1}{q} \int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{1}}\left(\int_{M}|\nabla v|_{g_{2}}^{q} d \mu_{g_{2}}-\int_{M}|\nabla v|_{g_{1}}^{q} d \mu_{g_{1}}\right) \\
& +\frac{\beta+1}{q}\left(\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{1}}-\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{2}}\right) \int_{M}|\nabla v|_{g_{1}}^{q} d \mu_{g_{1}} \\
\leq & \frac{\alpha+1}{p}\left((1+\epsilon)^{\frac{p+m}{2}}-(1+\epsilon)^{-\frac{m}{2}}\right) \int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{1}} \int_{M}|\nabla u|_{g_{1}}^{p} d \mu_{g_{1}} \\
& +\frac{\beta+1}{q}\left((1+\epsilon)^{\frac{q+m}{2}}-(1+\epsilon)^{-\frac{m}{2}}\right) \int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{1}} \int_{M}|\nabla v|_{g_{1}}^{q} d \mu_{g_{1}} \\
\leq & \left((1+\epsilon)^{\frac{p+m}{2}}-(1+\epsilon)^{-\frac{m}{2}}\right) G\left(g_{1}, u, v\right) \int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu_{g_{1}} .
\end{aligned}
$$

Since the eigenfunction corresponding to $\lambda(t)$ are normalized, thus we get

$$
\lambda\left(g_{2}\right)-\lambda\left(g_{1}\right) \leq\left((1+\epsilon)^{\frac{p+m}{2}}-(1+\epsilon)^{-\frac{m}{2}}\right) \lambda\left(g_{1}\right)
$$

this completes the proof of Lemma.

Proposition 3.2. Let $(g(t), \phi(t)), t \in[0, T)$, be a solution of the $(R H)_{\eta}$ flow on a closed manifold $M^{m}$ and let $\lambda(t)$ be the first eigenvalue of the $(p, q)$-Laplacian along this flow. Then for any $t_{0}, t_{1} \in$ $[0, T)$ and $t_{1}>t_{0}$, we have

$$
\begin{equation*}
\lambda\left(t_{1}\right) \geq \lambda\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} \mathcal{G}(g(\tau), u(\tau), v(\tau)) d \tau \tag{3.2}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{G}(g(t), u(t), v(t))= & (\alpha+1) \int_{M}\left(\mathcal{S}(\nabla u, \nabla u)+\left\langle\nabla u^{\prime}, \nabla u>\right)|\nabla u|^{p-2} d \mu\right. \\
& +(\beta+1) \int_{M}\left(\mathcal{S}(\nabla v, \nabla v)+\left\langle\nabla v^{\prime}, \nabla v>\right)|\nabla v|^{q-2} d \mu\right.  \tag{3.3}\\
& -\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p} S d \mu-\frac{\beta+1}{q} \int_{M}|\nabla v|^{q} S d \mu .
\end{align*}
$$

Proof . Assume that

$$
G(g(t), u(t), v(t))=\frac{\alpha+1}{p} \int_{M}|\nabla u(t)|_{g(t)}^{p} d \mu_{g(t)}+\frac{\beta+1}{q} \int_{M}|\nabla v(t)|_{g(t)}^{q} d \mu_{g(t)},
$$

at time $t_{1}$ we first let $\left(u_{1}, v_{1}\right)=\left(u\left(t_{1}\right), v\left(t_{1}\right)\right)$ be the eigenfunction for the eigenvalue $\lambda\left(t_{1}\right)$ of $(p, q)$ Laplacian. We consider the following smooth functions

$$
h(t)=u_{1}\left[\frac{\operatorname{det}\left[g_{i j}\left(t_{1}\right)\right]}{\operatorname{det}\left[g_{i j}(t)\right]}\right]^{\frac{1}{2(\alpha+\beta+1)}}, \quad l(t)=v_{1}\left[\frac{\operatorname{det}\left[g_{i j}\left(t_{1}\right)\right]}{\operatorname{det}\left[g_{i j}(t)\right]}\right]^{\frac{1}{2(\alpha+\beta+1)}},
$$

along the $(R H)_{\eta}$ flow. We define

$$
u(t)=\frac{h(t)}{\left(\int_{M}|h(t)|^{\alpha}|l(t)|^{\beta} h(t) l(t) d \mu\right)^{\frac{1}{p}}}, \quad u(t)=\frac{l(t)}{\left(\int_{M}|h(t)|^{\alpha}|l(t)|^{\beta} h(t) l(t) d \mu\right)^{\frac{1}{q}}}
$$

which $u(t), v(t)$ are smooth functions under the $(R H)_{\eta}$ flow, satisfy

$$
\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu=1
$$

and at time $t_{1},\left(u\left(t_{1}\right), v\left(t_{1}\right)\right)$ are the eigenfunctions for $\lambda\left(t_{1}\right)$ of $(p, q)$-Laplacian at time $t_{1}$ i.e. $\lambda\left(t_{1}\right)=$ $G\left(g\left(t_{1}\right), u\left(t_{1}\right), v\left(t_{1}\right)\right)$. If $f$ is a smooth function respect to time $t$ then along the $(R H)_{\eta}$ flow we have

$$
\frac{d}{d t}\left(|\nabla f|^{p}\right)=\frac{p}{2}\left[\partial_{t} g^{i j} \nabla_{i} f \nabla_{j} f+2 g^{i j} \nabla_{i} f^{\prime} \nabla_{j} f\right]|\nabla f|^{p-2}
$$

by (1.1) we have $\partial_{t} g^{i j}=2 g^{i k} g^{j l} \mathcal{S}_{k l}$, therefore

$$
\begin{equation*}
\frac{d}{d t}\left(|\nabla f|^{p}\right)=p|\nabla f|^{p-2}\left(\mathcal{S}(\nabla f, \nabla f)+<\nabla f^{\prime}, \nabla f>\right) \tag{3.4}
\end{equation*}
$$

and

$$
\partial_{t} d \mu=\frac{1}{2} \operatorname{tr}_{g}\left(\partial_{t} g\right) d \mu=-S d \mu .
$$

Since $u(t)$ and $v(t)$ are smooth functions, hence $G(g(t), u(t), v(t))$ is a smooth function with respect to $t$. If we set

$$
\begin{equation*}
\mathcal{G}(g(t), u(t), v(t)):=\frac{d}{d t} G(g(t), u(t), v(t)), \tag{3.5}
\end{equation*}
$$

then

$$
\begin{align*}
\mathcal{G}(g(t), u(t), v(t))= & (\alpha+1) \int_{M}\left(\mathcal{S}(\nabla u, \nabla u)+\left\langle\nabla u^{\prime}, \nabla u>\right)|\nabla u|^{p-2} d \mu\right. \\
& +(\beta+1) \int_{M}\left(\mathcal{S}(\nabla v, \nabla v)+\left\langle\nabla v^{\prime}, \nabla v>\right)|\nabla v|^{q-2} d \mu\right.  \tag{3.6}\\
& -\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p} S d \mu-\frac{\beta+1}{q} \int_{M}|\nabla v|^{q} S d \mu
\end{align*}
$$

Taking integration on the both sides of (3.5) between $t_{0}$ and $t_{1}$, we conclude that

$$
\begin{equation*}
G\left(g\left(t_{1}\right), u\left(t_{1}\right), v\left(t_{1}\right)\right)-G\left(g\left(t_{0}\right), u\left(t_{0}\right), v\left(t_{0}\right)\right)=\int_{t_{0}}^{t_{1}} \mathcal{G}(g(\tau), u(\tau), v(\tau)) d \tau \tag{3.7}
\end{equation*}
$$

where $t_{0} \in[0, T)$ and $t_{1}>t_{0}$. Noticing $G\left(g\left(t_{0}\right), u\left(t_{0}\right), v\left(t_{0}\right)\right) \geq \lambda\left(t_{0}\right)$ and plugin $\lambda\left(t_{1}\right)=G\left(g\left(t_{1}\right), u\left(t_{1}\right), v\left(t_{1}\right)\right)$ in (3.7), yields (3.2) and $\mathcal{G}(g(t), u(t), v(t))$ satisfies in (3.3).

Theorem 3.3. Let $\left(M^{m}, g(t), \phi(t)\right)$ be a solution of the $(R H)_{\eta}$ flow on the smooth closed manifold $\left(M^{m}, g_{0}, \phi_{0}\right)$ and $\lambda(t)$ denotes the evolution of the first eigenvalue under the $(R H)_{\eta}$ flow. Suppose that $k=\min \{p, q\}$ and

$$
\begin{equation*}
\mathcal{S}-\frac{1}{k} S g \geq 0 \text { in } M^{m} \times[0, T) \tag{3.8}
\end{equation*}
$$

If $S_{\min }(0) \geq 0$, then $\lambda(t)$ is nondecreasing and differentiable almost everywhere along the $(R H)_{\eta}$ flow on $[0, T)$.

Proof. Let for any $t_{1} \in[0, T), u\left(t_{1}\right), v\left(t_{1}\right)$ be the eigenfunctions for $\lambda\left(t_{1}\right)$ of $(p, q)$-Laplacian. Then $\int_{M}\left|u\left(t_{1}\right)\right|^{\alpha}\left|v\left(t_{1}\right)\right|^{\beta} u\left(t_{1}\right) v\left(t_{1}\right) d \mu_{g\left(t_{1}\right)}=1$ and

$$
\begin{align*}
\mathcal{G}\left(g\left(t_{1}\right), u\left(t_{1}\right), v\left(t_{1}\right)\right)= & (\alpha+1) \int_{M}\left(\mathcal{S}(\nabla u, \nabla u)+\left\langle\nabla u^{\prime}, \nabla u>\right)|\nabla u|^{p-2} d \mu\right. \\
& +(\beta+1) \int_{M}\left(\mathcal{S}(\nabla v, \nabla v)+\left\langle\nabla v^{\prime}, \nabla v>\right)|\nabla v|^{q-2} d \mu\right.  \tag{3.9}\\
& -\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p} S d \mu-\frac{\beta+1}{q} \int_{M}|\nabla v|^{q} S d \mu .
\end{align*}
$$

Now, by the time derivative of the condition

$$
\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu=1
$$

we can get

$$
\begin{equation*}
(\alpha+1) \int_{M}|u|^{\alpha}|v|^{\beta} u^{\prime} v d \mu+(\beta+1) \int_{M}|u|^{\alpha}|v|^{\beta} u v^{\prime} d \mu=\int_{M} S|u|^{\alpha}|v|^{\beta} u v d \mu . \tag{3.10}
\end{equation*}
$$

On the other hand, (2.4) and (2.5) imply that

$$
\begin{align*}
& \int_{M}<\nabla u^{\prime}, \nabla u>|\nabla u|^{p-2} d \mu=\lambda\left(t_{1}\right) \int_{M}|u|^{\alpha}|v|^{\beta} u^{\prime} v d \mu  \tag{3.11}\\
& \int_{M}<\nabla v^{\prime}, \nabla v>|\nabla v|^{q-2} d \mu=\lambda\left(t_{1}\right) \int_{M}|u|^{\alpha}|v|^{\beta} u v^{\prime} d \mu \tag{3.12}
\end{align*}
$$

Therefore from (3.10), (3.11) and (3.12) we have

$$
\begin{align*}
&(\alpha+1) \int_{M}<\nabla u^{\prime}, \nabla u>|\nabla u|^{p-2} d \mu+(\beta+1) \int_{M}<\nabla v^{\prime}, \nabla v>|\nabla v|^{q-2} d \mu \\
&=\lambda\left(t_{1}\right) \int_{M} S|u|^{\alpha}|v|^{\beta} u v d \mu \tag{3.13}
\end{align*}
$$

and the replacing (3.13) in (3.9), results that

$$
\begin{align*}
\mathcal{G}\left(g\left(t_{1}\right), u\left(t_{1}\right), v\left(t_{1}\right)\right)= & \lambda\left(t_{1}\right) \int_{M} S|u|^{\alpha}|v|^{\beta} u v d \mu+(\alpha+1) \int_{M} \mathcal{S}(\nabla u, \nabla u)|\nabla u|^{p-2} d \mu \\
& -\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p} S d \mu+(\beta+1) \int_{M} \mathcal{S}(\nabla v, \nabla v)|\nabla v|^{q-2} d \mu  \tag{3.14}\\
& -\frac{\beta+1}{q} \int_{M}|\nabla v|^{q} S d \mu .
\end{align*}
$$

From (3.14) and (3.8) we have

$$
\begin{align*}
\mathcal{G}\left(g\left(t_{1}\right), u\left(t_{1}\right), v\left(t_{1}\right)\right) \geq & \lambda\left(t_{1}\right) \int_{M} S|u|^{\alpha}|v|^{\beta} u v d \mu+(\alpha+1)\left(\frac{1}{k}-\frac{1}{p}\right) \int_{M}|\nabla u|^{p} S d \mu \\
& +(\beta+1)\left(\frac{1}{k}-\frac{1}{q}\right) \int_{M}|\nabla v|^{q} S d \mu . \tag{3.15}
\end{align*}
$$

Since

$$
\frac{\partial}{\partial t} S=\Delta S+2\left|\mathcal{S}_{i j}\right|^{2}+2 \eta\left|\tau_{g} \phi\right|^{2}
$$

and $\left|\mathcal{S}_{i j}\right|^{2} \geq \frac{1}{m} S^{2}$, it follows that

$$
\begin{equation*}
\frac{\partial}{\partial t} S \geq \Delta S+\frac{2}{m} S^{2} \tag{3.16}
\end{equation*}
$$

The solution to

$$
\frac{d}{d t} y(t)=\frac{2}{m} y^{2}(t), \quad y(t)=S_{\min }(0)
$$

is

$$
\begin{equation*}
y(t)=\frac{S_{\min }(0)}{1-\frac{2}{m} S_{\min }(0) t}, \quad t \in\left[0, T^{\prime}\right) \tag{3.17}
\end{equation*}
$$

where $T^{\prime}=\min \left\{T, \frac{m}{2 S_{\min }(0)}\right\}$. Using maximum principle to 3.16 , we get $S \geq y(t)$ along the $(R H)_{\eta}$ flow. If $S_{\min }(0) \geq 0$ then the nonnegativity of $S$ preserved along the $(R H)_{\eta}$ flow. Therefore (3.15) becomes $\mathcal{G}\left(g\left(t_{1}\right), u\left(t_{1}\right), v\left(t_{1}\right)\right) \geq 0$. Thus we get $\mathcal{G}(g(t), u(t), v(t))>0$ in any small enough neighborhood of $t_{1}$. Hence $\int_{t_{0}}^{t_{1}} \mathcal{G}(g(\tau), u(\tau), v(\tau)) d \tau>0$ for any $t_{0}<t_{1}$ sufficiently close to $t_{1}$. Since $t_{1} \in[0, T)$ is arbitrary the Proposition 3.2 completes the proof of the first part of theorem. For the differentiability for $\lambda(t)$, since $\lambda(t)$ is increasing and continues on the interval $[0, T)$, the classical Lebesgue's theorem (see [8]), $\lambda(t)$ is differentiable almost everywhere on $[0, T)$. $\square$ Motivated by the works of X.-D. Cao [2, 3] and J. Y. Wu [11], similar to proof of Proposition 3.2 we first introduce a
new smooth eigenvalue function along the $(R H)_{\eta}$ flow and then we give evolution formula for it. Let $M$ be an $m$-dimensional closed Riemannian manifold and $g(t)$ be a smooth solution of the $(R H)_{\eta}$ flow. Suppose that

$$
\lambda(u, v, t):=\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p} d \mu+\frac{\beta+1}{q} \int_{M}|\nabla v|^{q} d \mu
$$

where $u, v$ are smooth functions and satisfy

$$
\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu=1, \quad \int_{M}|u|^{\alpha}|v|^{\beta} v d \mu=0, \quad \int_{M}|u|^{\alpha}|v|^{\beta} u d \mu=0 .
$$

The function $\lambda(u, v, t)$ is a smooth eigenvalue function respect to $t$-variable. If $(u, v)$ are the corresponding eigenfunctions of the first eigenvalue $\lambda\left(t_{1}\right)$ then $\lambda\left(u, v, t_{1}\right)=\lambda\left(t_{1}\right)$. As proof of Proposition 3.2 and Theorem 3.3 we have the following propositions.

Proposition 3.4. Let $\left(M^{m}, g(t), \phi(t)\right)$ be a solution of the $(R H)_{\eta}$ flow on the smooth closed manifold $\left(M^{m}, g_{0}, \phi_{0}\right)$. If $\lambda(t)$ denotes the evolution of the first eigenvalue under the $(R H)_{\eta}$ flow, then

$$
\begin{align*}
\left.\frac{d \lambda}{d t}(u, v, t)\right|_{t=t_{1}}= & \lambda\left(t_{1}\right) \int_{M} S|u|^{\alpha}|v|^{\beta} u v d \mu+(\alpha+1) \int_{M} \mathcal{S}(\nabla u, \nabla u)|\nabla u|^{p-2} d \mu \\
& -\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p} S d \mu+(\beta+1) \int_{M} \mathcal{S}(\nabla v, \nabla v)|\nabla v|^{q-2} d \mu  \tag{3.18}\\
& -\frac{\beta+1}{q} \int_{M}|\nabla v|^{q} S d \mu
\end{align*}
$$

where $(u, v)$ is the associated normalized evolving eigenfunction.
Now, we give a variation of $\lambda(t)$ under the normalized $(R H)_{\eta}$ flow which is similar to the previous Proposition.

Proposition 3.5. Let $\left(M^{m}, g(t), \phi(t)\right)$ be a solution of the normalized $(R H)_{\eta}$ flow on the smooth closed manifold $\left(M^{m}, g_{0}, \phi_{0}\right)$. If $\lambda(t)$ denotes the evolution of the first eigenvalue under the normalized $(R H)_{\eta}$ flow, then

$$
\begin{align*}
\left.\frac{d \lambda}{d t}(u, v, t)\right|_{t=t_{1}}= & \lambda\left(t_{1}\right) \int_{M} S|u|^{\alpha}|v|^{\beta} u v d \mu+(\alpha+1) \int_{M} \mathcal{S}(\nabla u, \nabla u)|\nabla u|^{p-2} d \mu \\
& +(\beta+1) \int_{M} \mathcal{S}(\nabla v, \nabla v)|\nabla v|^{q-2} d \mu-\frac{\beta+1}{q} \int_{M}|\nabla v|^{q} S d \mu  \tag{3.19}\\
& -\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p} S d \mu-\frac{\alpha+1}{m} r\left(t_{1}\right) \int_{M}|\nabla u|^{p} d \mu \\
& -\frac{\beta+1}{m} r\left(t_{1}\right) \int_{M}|\nabla v|^{q} d \mu
\end{align*}
$$

where $(u, v)$ is the associated normalized evolving eigenfunction.
Proof. In the normalized case, derivative of the integrability condition $\int_{M}|u|^{\alpha}|v|^{\beta} u v d \mu=1$ respect to $t$, results that

$$
\begin{equation*}
(\alpha+1) \int_{M}|u|^{\alpha}|v|^{\beta} u^{\prime} v d \mu+(\beta+1) \int_{M}|u|^{\alpha}|v|^{\beta} u v^{\prime} d \mu=-r\left(t_{1}\right)+\int_{M} S|u|^{\alpha}|v|^{\beta} u v d \mu \tag{3.20}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\frac{d}{d t}\left(d \mu_{t}\right)=\frac{1}{2} \operatorname{tr}_{g}\left(\frac{\partial g}{\partial t}\right) d \mu=\frac{1}{2} \operatorname{tr}_{g}\left(\frac{2}{m} r g-2 \mathcal{S}\right) d \mu=(r-S) d \mu \tag{3.21}
\end{equation*}
$$

hence we can then write

$$
\begin{aligned}
\left.\frac{d \lambda}{d t}(u, v, t)\right|_{t=t_{1}}= & \frac{\alpha+1}{p}\left(\frac{p}{2} \int_{M}\left\{-\frac{2}{m} r|\nabla u|^{2}+2 \mathcal{S}(\nabla u, \nabla u)+2<\nabla u^{\prime}, \nabla u>\right\}|\nabla u|^{p-2} d \mu\right) \\
& +\frac{\beta+1}{q}\left(\frac{q}{2} \int_{M}\left\{-\frac{2}{m} r|\nabla v|^{2}+2 \mathcal{S}(\nabla v, \nabla v)+2<\nabla v^{\prime}, \nabla v>\right\}|\nabla v|^{q-2} d \mu\right) \\
& +\frac{\alpha+1}{p} \int_{M}|\nabla u|^{p}(r-S) d \mu+\frac{\beta+1}{q} \int_{M}|\nabla v|^{q}(r-S) d \mu,
\end{aligned}
$$

but

$$
\begin{align*}
(\alpha+1) \int_{M}<\nabla u^{\prime}, \nabla u>|\nabla u|^{p-2} d \mu & +(\beta+1) \int_{M}<\nabla v^{\prime}, \nabla v>|\nabla v|^{q-2} d \mu \\
& =-\lambda\left(t_{1}\right) r\left(t_{1}\right)+\lambda\left(t_{1}\right) \int_{M} S|u|^{\alpha}|v|^{\beta} u v d \mu \tag{3.22}
\end{align*}
$$

Therefore the proposition is obtained by replacing (3.22) in previous relation.
Theorem 3.6. Let $\left(M^{m}, g(t), \phi(t)\right)$ be a solution of the $(R H)_{\eta}$ flow on the smooth closed manifold $\left(M^{m}, g_{0}, \phi_{0}\right)$ and $\lambda(t)$ denotes the evolution of the first eigenvalue under the $(R H)_{\eta}$ flow. If $k=$ $\min \{p, q\}$,

$$
\begin{equation*}
\mathcal{S}-\frac{S}{k} g>0 \text { in } M^{m} \times[0, T) \tag{3.23}
\end{equation*}
$$

and $S_{\min }(0)>0$, then the quantity $\lambda(t)\left(1-\frac{2}{m} S_{\min }(0) t\right)^{\frac{m}{2}}$ is nondecreasing along the $(R H)_{\eta}$ flow on $\left[0, T^{\prime}\right)$, where $T^{\prime}:=\min \left\{\frac{m}{2 S_{\min }(0)}, T\right\}$.

Proof . According to (3.18) and (3.23) we have

$$
\begin{align*}
\left.\frac{d \lambda}{d t}(u, v, t)\right|_{t=t_{1}}> & \lambda\left(t_{1}\right) \int_{M} S|u|^{\alpha}|v|^{\beta} u v d \mu+(\alpha+1)\left(\frac{1}{k}-\frac{1}{p}\right) \int_{M}|\nabla u|^{p} S d \mu \\
& +(\beta+1)\left(\frac{1}{k}-\frac{1}{q}\right) \int_{M}|\nabla v|^{q} S d \mu . \tag{3.24}
\end{align*}
$$

If $S_{\text {min }}(0)>0$, then 3.17 results that the positive of $S$ remains under the $(R H)_{\eta}$ flow, therefore

$$
\begin{equation*}
\left.\frac{d \lambda}{d t}(u, v, t)\right|_{t=t_{1}} \geq \lambda\left(t_{1}\right) \frac{S_{\min }(0)}{1-\frac{2}{m} S_{\min }(0) t_{1}} \tag{3.25}
\end{equation*}
$$

Then in any small enough neighborhood of $t_{1}$ as $I$, we get

$$
\begin{equation*}
\frac{d \lambda}{d t}(u, v, t) \geq \lambda(u, v, t) \frac{S_{\min }(0)}{1-\frac{2}{m} S_{\min }(0) t} . \tag{3.26}
\end{equation*}
$$

Integrating the last inequality with respect to $t$ on $\left[t_{0}, t_{1}\right] \subset I$, we have

$$
\begin{equation*}
\ln \frac{\lambda\left(u\left(t_{1}\right), v\left(t_{1}\right), t_{1}\right)}{\lambda\left(u\left(t_{0}\right), v\left(t_{0}\right), t_{0}\right)} \geq \ln \left(\frac{1-\frac{2}{m} S_{\min }(0) t_{1}}{1-\frac{2}{m} S_{\min }(0) t_{0}}\right)^{-\frac{m}{2}} \tag{3.27}
\end{equation*}
$$

Since $\lambda\left(u\left(t_{1}\right), v\left(t_{1}\right), t_{1}\right)=\lambda\left(t_{1}\right)$ and $\lambda\left(u\left(t_{0}\right), v\left(t_{0}\right), t_{0}\right) \geq \lambda\left(t_{0}\right)$ we conclude that

$$
\begin{equation*}
\ln \frac{\lambda\left(t_{1}\right)}{\lambda\left(t_{0}\right)} \geq \ln \left(\frac{1-\frac{2}{m} S_{\min }(0) t_{1}}{1-\frac{2}{m} S_{\min }(0) t_{0}}\right)^{-\frac{m}{2}} \tag{3.28}
\end{equation*}
$$

that is the quantity $\lambda(t)\left(1-\frac{2}{m} S_{\min }(0) t\right)^{\frac{m}{2}}$ is nondecreasing in any sufficiently small neighborhood of $t_{1}$. Since $t_{1}$ is arbitrary, hence $\lambda(t)\left(1-\frac{2}{m} S_{\min }(0) t\right)^{\frac{m}{2}}$ is nondecreasing along the $(R H)_{\eta}$ flow on $\left[0, T^{\prime}\right)$.and we have the following corollary

Corollary 3.7. Let $g(t), \quad t \in[0, T)$ be a solution of the Ricci flow on a closed Riemannain manifold $M$ and $\lambda(t)$ denotes the first eigenvalue of the $(p, q)$-Laplacian (2.2). Suppose that $k=\min \{p, q\}$ and Ric $-\frac{R}{k} g \geq 0$ along the Ricci flow.
(1) If $R_{\min }(0) \geq 0$, then $\lambda(t)$ is nondecreasing along the Ricci flow for any $t \in[0, T)$.
(2) If $R_{\min }(0)>0$, then the quantity $\left(1-R_{\min }(0) t\right) \lambda(t)$ is nondecreasing along the Ricci flow for any $t \in\left[0, T^{\prime}\right)$ where $T^{\prime}=\min \left\{T, \frac{1}{R_{\min }(0)}\right\}$.
In dimension two we have
Proposition 3.8. Let $(g(t), \phi(t)), \quad t \in[0, T)$ be a solution of the $(R H)_{\eta}$ flow on a closed Riemannian surface $M$ and $\lambda(t)$ denotes the first eigenvalue of the ( $p, q$ )-Laplacian (2.2).
(1) Suppose that Ric $\geq \epsilon \nabla \phi \otimes \nabla \phi$ where $\epsilon \geq 2 \eta \frac{k-1}{k-2}$ and $2 \leq k=\min \{p, q\}$.
$(1-1)$ If $S_{\min }(0) \geq 0$, then $\lambda(t)$ is nondecreasing along the $(R H)_{\eta}$ for any $t \in[0, T)$.
$(1-2)$ If $S_{\min }(0)>0$, then the quantity $\left(1-S_{\min }(0) t\right) \lambda(t)$ is nondecreasing along the $(R H)_{\eta}$ flow on $\left[0, T^{\prime}\right)$ where $T^{\prime}=\min \left\{T, \frac{1}{S_{\min }(0)}\right\}$.
(2) Suppose that $k=\min \{p, q\}$ and $|\nabla \phi|^{2} \geq k \nabla \phi \otimes \nabla \phi$.
$(2-1)$ If $S_{\min }(0) \geq 0$, then $\lambda(t)$ is nondecreasing along the $(R H)_{\eta}$ for any $t \in[0, T)$.
$(2-2)$ If $S_{\min }(0)>0$, then the quantity $\left(1-S_{\min }(0) t\right) \lambda(t)$ is nondecreasing along the $(R H)_{\eta}$ flow on $\left[0, T^{\prime}\right)$ where $T^{\prime}=\min \left\{T, \frac{1}{S_{\min (0)}}\right\}$.

Proof . In the case of surface, we have $R_{i j}=\frac{R}{2} g_{i j}$. Then

$$
\begin{aligned}
T_{i j}:=\mathcal{S}_{i j}-\frac{S}{k} g_{i j} & =\frac{R}{2} g_{i j}-\eta \nabla_{i} \phi \nabla_{j} \phi-\frac{1}{k}\left(R-\eta|\nabla \phi|^{2}\right) g_{i j} \\
& =\left(\frac{1}{2}-\frac{1}{k}\right) R g_{i j}-\eta \nabla_{i} \phi \nabla_{j} \phi+\frac{\alpha}{k}|\nabla \phi|^{2} g_{i j} .
\end{aligned}
$$

For any vector $V=\left(V^{i}\right)$ we get

$$
\begin{aligned}
T_{i j} V^{i} V^{j} & =\left(\frac{1}{2}-\frac{1}{k}\right) R|V|^{2}-\eta\left(\nabla_{i} \phi V^{i}\right)^{2}+\frac{\eta}{k}|\nabla \phi|^{2}|V|^{2} \\
& \geq\left(\frac{1}{2}-\frac{1}{k}\right) R|V|^{2}+\eta\left(\frac{1}{k}-1\right)|\nabla \phi|^{2}|V|^{2} .
\end{aligned}
$$

If Ric $\geq \epsilon \nabla \phi \otimes \nabla \phi$ where $\epsilon \geq 2 \eta \frac{k-1}{k-2}$ then $R \geq \epsilon|\nabla \phi|^{2}$ and

$$
T_{i j} V^{i} V^{j} \geq\left[\left(\frac{1}{2}-\frac{1}{k}\right) \epsilon+\eta\left(\frac{1}{k}-1\right)\right]|\nabla \phi|^{2}|V|^{2} \geq 0
$$

For second case, we have

$$
\begin{aligned}
T_{i j} V^{i} V^{j} & =R_{i j} V_{i} V^{j}-\eta \nabla_{i} V^{i} \nabla_{j} V^{j}-\frac{R}{k}|V|^{2}+\frac{\eta}{k}|\nabla \phi|^{2}|V|^{2} \\
& \geq R_{i j} V^{i} V^{j}-\frac{\eta}{k}|\nabla \phi|^{2}|V|^{2}-\frac{R}{k}|V|^{2}+\frac{\eta}{k}|\nabla \phi|^{2}|V|^{2}=0
\end{aligned}
$$

Hence the corresponding results follows by Theorems 3.3 and 3.6 . $\square$ When we restrict the $(R H)_{\eta}$ flow to the Ricci flow, we obtain

Corollary 3.9. Let $g(t), \quad t \in[0, T)$ be a solution of the Ricci flow on a closed Riemannain surface $M$ and $\lambda(t)$ denotes the first eigenvalue of the $(p, q)$-Laplacian (2.2).
(1) If $R_{\min }(0) \geq 0$, then $\lambda(t)$ is nondecreasing along the Ricci flow for any $t \in[0, T)$.
(2) If $R_{\min }(0)>0$, then the quantity $\left(1-R_{\min }(0) t\right) \lambda(t)$ is nondecreasing along the Ricci flow for any $t \in\left[0, T^{\prime}\right)$ where $T^{\prime}=\min \left\{T, \frac{1}{R_{\min }(0)}\right\}$.
Example 3.10. Let $\left(M^{m}, g_{0}\right)$ be an Einstein manifold i.e. there exists a constant such that $\operatorname{Ric}\left(g_{0}\right)=$ ago. Assume that $(N, \gamma)=\left(M, g_{0}\right)$, then $\phi_{0}$ is the identity map. With the assumption $g(t)=$ $c(t) g_{0}, c(0)=1$ and the fact that $\phi(t)=\phi(0)$ is harmonic map for all $g(t)$, the $(R H)_{\eta}$ flow reduces to

$$
\frac{\partial c(t)}{\partial t}=-2 a+2 \eta, \quad c(0)=1
$$

then the solution of the initial value problem is given by

$$
c(t)=(-2 a+2 \eta) t+1
$$

Therefore the solution of the $(R H)_{\eta}$ flow remains Einstein and we have

$$
\begin{aligned}
\mathcal{S} & =R i c_{g(t)}-\eta \nabla \phi \otimes \nabla \phi=(a-\eta) g_{0}=\frac{a-\eta}{-2(a-\eta) t+1} g(t), \\
S & =R-\eta|\nabla \phi|^{2}=\frac{a m}{-2(a-\eta) t+1}-\eta \frac{m}{-2(a-\eta) t+1}=\frac{(a-\eta) m}{-2(a-\eta) t+1} .
\end{aligned}
$$

Using equation (3.18), we have

$$
\left.\frac{d \lambda}{d t}(u, v, t)\right|_{t=t_{1}}=\frac{a-\eta}{-2(a-\eta) t+1}\left((\alpha+1) \int_{M}|\nabla u|^{p} d \mu+(\beta+1) \int_{M}|\nabla v|^{q} d \mu\right) .
$$

Now if assume that $p \leq q$ then for $\eta<a$ and $t_{1} \in\left[0, T^{\prime \prime}\right)$ where $T^{\prime \prime}=\min \left\{\frac{1}{2(a-\eta)}, T\right\}$, we have

$$
\left.\frac{d \lambda}{d t}(u, v, t)\right|_{t=t_{1}} \geq \frac{a-\eta}{-2(a-\eta) t_{1}+1} \lambda\left(t_{1}\right)
$$

This results that in any sufficiently small neighborhood of $t_{1}$ as $I_{1}$, we get

$$
\frac{d \lambda}{d t}(u, v, t) \geq \frac{a-\eta}{-2(a-\eta) t+1} \lambda(u, v, t)
$$

Integrating the last inequality with respect to $t$ on $\left[t_{0}, t_{1}\right] \subset I_{1}$ we have

$$
\ln \frac{\lambda\left(u\left(t_{1}\right), v\left(t_{1}\right), t_{1}\right)}{\lambda\left(u\left(t_{0}\right), v\left(t_{0}\right), t_{0}\right)} \geq \ln \left(\frac{-2(a-\eta) t_{1}+1}{-2(a-\eta) t_{0}+1}\right)^{-\frac{p}{2}}
$$

but $t_{1} \in\left[0, T^{\prime \prime}\right)$ is arbitrary, $\lambda\left(u\left(t_{1}\right), v\left(t_{1}\right), t_{1}\right)=\lambda\left(t_{1}\right)$ and $\lambda\left(u\left(t_{0}\right), v\left(t_{0}\right), t_{0}\right) \geq \lambda\left(t_{0}\right)$, then $\lambda(t)(-2(a-$ $\eta) t+1)^{\frac{p}{2}}$ is nondecreasing along the $(R H)_{\eta}$ flow on $\left[0, T^{\prime \prime}\right)$.

## References

[1] A. Abolarinwa, Evolution and monotonicity of the first eigenvalue of p-Laploacian under the Ricci-harmonic flow, J. Appl. Anal. 21 (2015) 147-160.
[2] X.-D. Cao, Eigenvalues of $\left(-\Delta+\frac{R}{2}\right)$ on manifolds with nonnegative curvature operator, Math. Ann. 337(2) (2007) 435-447.
[3] X.-D, Cao, First eigenvalues of geometric operators under the Ricci flows, Proc. Amer. Math. Soc. 136 (2008) 4075-4078.
[4] J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Vol. I. Elliptic Equations, Research Notes in Mathematics, vol. 106, Pitman, Massachusetts, 1985.
[5] A. E. Khalil, Autour de la premiére courbe propre du p-Laplacien, Thése de Doctorat, 1999.
[6] A. E. Khalil, S. E. Manouni, M. Ouanan, Simplicity and stablity of the first eigenvalue of a nonlinear elliptic system, Int. J. Math. Math. Sci. 10 (2005) 1555-1563.
[7] J. F. Li, Eigenvalues and energy functionals with monotonicity formula under Ricci flow, Math. Ann. 338 (2007) 927-946.
[8] A. Mukherjea and K. Pothoven, Real and Functional Analysis, 2nd, Plenum Press, New York and London, 1984.
[9] R. Müller, Ricci flow coupled with harmonic map flow, Ann. Sci. de l'École Normale Sup. 45 (2012) 101-142.
[10] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, (2002), ArXiv: 0211159.
[11] J. Y. Wu, First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow, Acta Math. Sinica, English Series, 27(8) (2011) 1591-1598.
[12] F. Zeng, Q. He and B. Chen, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Arxiv, $152.08158 \mathrm{v} 1,2016$.
[13] L. Zhao, The first eigenvalue of the p-laplacin operator under powers of the mth mean curvature flow, Results Math. 63 (2012) 937-948.


[^0]:    *Corresponding author
    Email address: azami@sci.ikiu.ac.ir, shahrood78@yahoo.com (Shahroud Azami)

