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Abstract

In this paper, we study monotonicity for the first eigenvalue of a class of (p, q)-Laplacian. We find
the first variation formula for the first eigenvalue of (p, q)-Laplacian on a closed Riemannian manifold
evolving by the Ricci-harmonic flow and construct various monotonic quantities by imposing some
conditions on initial manifold.
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1. Introduction

The study on eigenvalue problem has received remarkable attention. Recently, many mathe-
maticians considered the eigenvalue problem of geometric operators under various geometric flows,
because it is a very powerful tool for the understanding Riemannain manifold. The fundamental
study of this works began when Perelman [10] showed that the functional

F =

∫
M

(R + |∇f |2)e−f dµ

is nondecreasing along the Ricci flow coupled to a backward heat-type equation, where R is the
scalar curvature with respect to the metric g(t) and dµ denotes the volume form of the metric g(t).
The nondecreasing of the functional F implies that the first eigenvalue of the geometric operator
−4∆ + R is nondecreasing under the Ricci flow. Then, Li [7] and Zeng et al [12] extended the
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geometric operator −4∆ +R to the operator −∆ + cR and studied the monotonicity of eigenvalues
of the operator −∆ + cR along Ricci flow and the Ricci-Bourguignon flow, respectively.

Also, in [1, 11, 13] has been investigated the evolution for the first eigenvalue of p-Laplacian along
the Ricci-harmonic flow, Ricci flow and mth mean curvature flow, respectively. A generalization of
p-Laplacian is a class of (p, q)-Laplacian which has applications in physics and related sciences such
as non-Newtonnian fluids, pseudoplastics [4, 5] that we introduce it in later section.

On the other hand, geometric flows for instance, Ricci-harmonic flow have been a topic of active
research interest in mathematics and physics. A geometric flow is an evolution of a geometric
structure. Let M be a closed m-dimensional Riemannian manifold with a Riemannian metric g0.
Hamilton for the first time in 1982 introduced the Ricci flow as follows

∂g(t)

∂t
= −2Ric(g(t)), g(0) = g0,

where Ric is the Ricci tensor of g(t). The Ricci flow has been proved to be a very useful tool
to improve metrics in Riemannian geometry, when M is compact. Now, let (Mm, g) and (Nn, γ)
be closed Riemannain manifolds. By Nash’s embedding theorem, assume that N is isometrically
embedded into Euclidean space eN : (Nn, γ) ↪→ Rd for a sufficiently large d. We identify map
φ : M → N with eN ◦ φ : M → Rd. Müller [9] considered a generalization of Ricci flow as{

∂g(t)
∂t

= −2Ric(g(t)) + 2η∇φ⊗∇φ, g(0) = g0,
∂φ
∂t

= τgφ φ(0) = φ0,
(1.1)

where η is a positive coupling constant, φ(t) is a family of smooth maps from M to some closed target
manifold N and τgφ is the intrinsic Laplacian of φ which denotes the tension field of φ with respect
to the evolving metric g(t). This evolution equation system called Ricci flow coupled with harmonic
map flow or (RH)η flow for short. Müller in [9] shown that system (1.1) has unique solution with
initial data (g(0), φ(0)) = (g0, φ0). Also, the normalized (RH)η flow defined as{

∂g(t)
∂t

= −2Ric(g(t)) + 2η∇φ⊗∇φ+ 2
m
rg(t), g(0) = g0,

∂φ
∂t

= τgφ φ(0) = φ0,
(1.2)

where r =
∫
M (R−η|∇φ|2)dµ∫

M dµ
is the average of R − η|∇φ|2. Under this normalized flow, the volume of

the solution metrics remains constant in time.

2. Preliminaries

2.1. Eigenvalues of p-Laplacian

Let (M, g) be a closed Riemannian manifold and f : M −→ R be a smooth function on M or
f ∈ W 1,p(M). The Laplace-Beltrami operator acting on a smooth function f on M is the divergence
of gradient of f , written as

∆f = div(grad f) =
1√

det g
∂i(
√

det g ∂jf),

where ∂if = ∂f
∂xi

. The p-Laplacian of f for 1 < p <∞ is defined as

4pf = div(|∇f |p−2∇f) (2.1)

= |∇f |p−2∆f + (p− 2)|∇f |p−4(Hessf)(∇f,∇f),
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where
(Hessf)(X, Y ) = ∇(∇f)(X, Y ) = X.(Y.f)− (∇XY ).f, X, Y ∈ X (M)

and in local coordinate, we get

(Hessf)(∂i, ∂j) = ∂i∂jf − Γkij∂kf.

Notice that when p = 2, p-Laplacian is the Laplace-Beltrami operator. Let (Mn, g) be a closed
Riemannian manifold. In this paper, we consider the nonlinear system introduced in [6], that is

∆pu = −λ|u|α|v|βv in M

∆qv = −λ|u|α|v|βu in M

(u, v) ∈ W 1,p(M)×W 1,q(M)

(2.2)

where p > 1, q > 1 and α, β are real numbers satisfying

α > 0, β > 0,
α + 1

p
+
β + 1

q
= 1. (2.3)

In (2.2), we say that λ is an eigenvalue whenever for some u ∈ W 1,p
0 (M) and v ∈ W 1,q

0 (M),∫
M

|∇u|p−2 < ∇u,∇φ > dµ = λ

∫
M

|u|α|v|βvφdµ, (2.4)∫
M

|∇v|q−2 < ∇v,∇ψ > dµ = λ

∫
M

|u|α|v|βuψdµ, (2.5)

where φ ∈ W 1,p(M), ψ ∈ W 1,q(M) and W 1,p
0 (M) is the closure of C∞0 (M) in Sobolev space W 1,p(M).

The pair (u, v) is called a eigenfunction corresponding to eigenvalue λ. A first positive eigenvalue of
(2.2) obtained as

inf{A(u, v) : (u, v) ∈ W 1,p
0 (M)×W 1,q

0 (M), B(u, v) = 1}

where

A(u, v) =
α + 1

p

∫
M

|∇u|pdµ+
β + 1

q

∫
M

|∇v|qdµ,

B(u, v) =

∫
M

|u|α|v|βuvdµ.

Let (Mm, g(t), φ(t)) be a solution of the (RH)η flow (1.1) on the smooth manifold (Mm, g0, φ0)
in the interval [0, T ) then

λ(t) =
α + 1

p

∫
M

|∇u|pdµt +
β + 1

q

∫
M

|∇v|qdµt, (2.6)

defines the evolution of an eigenvalue of (2.2), under the variation of (g(t), φ(t)) where the eigenfunc-
tion associated to λ(t) is normalized that is B(u, v) = 1. Motivated by the above works, in this paper
we will study the first eigenvalue of a class of (p, q)-Laplacian (2.2) whose metric satisfies the (RH)η
flow. Throughout of paper we write ∂u

∂t
= ∂tu = u′, S = Ricg − η∇φ⊗∇φ, Sij = Ricij − η∇iφ∇jφ

and S = R− η|∇φ|2.
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3. Variation of λ(t)

In this section, we will give some useful evolution formulas for λ(t) under the Ricci-harmonic
flow. Now, we give a useful statement about the variation of the first eigenvalue of (2.2) under the
(RH)η flow.

Lemma 3.1. If g1 and g2 are two metrics on Riemannian manifold Mm which satisfy (1 + ε)−1g1 <
g2 < (1 + ε)g1 then for any p ≥ q > 1, we have

λ(g2)− λ(g1) ≤
(

(1 + ε)
p+m

2 − (1 + ε)−
m
2

)
λ(g1)

in particular, λ(t) is a continues function respect to t-variable.

Proof . By direct computation we complete the proof of lemma. In local coordinate we have
dµ =

√
det g dx1 ∧ ... ∧ dxm, therefore

(1 + ε)−
m
2 dµg1 < dµg2 < (1 + ε)

m
2 dµg1 .

Let

G(g, u, v) =
α + 1

p

∫
M

|∇u|pgdµg +
β + 1

q

∫
M

|∇v|qgdµg, (3.1)

then ∫
M

|u|α|v|βuvdµg1G(g2, u, v)−
∫
M

|u|α|v|βuvdµg2G(g1, u, v)

=
α + 1

p

∫
M

|u|α|v|βuvdµg1
(∫

M

|∇u|pg2dµg2 −
∫
M

|∇u|pg1dµg1
)

+
α + 1

p

(∫
M

|u|α|v|βuvdµg1 −
∫
M

|u|α|v|βuvdµg2
)∫

M

|∇u|pg1dµg1

+
β + 1

q

∫
M

|u|α|v|βuvdµg1
(∫

M

|∇v|qg2dµg2 −
∫
M

|∇v|qg1dµg1
)

+
β + 1

q

(∫
M

|u|α|v|βuvdµg1 −
∫
M

|u|α|v|βuvdµg2
)∫

M

|∇v|qg1dµg1

≤ α + 1

p

(
(1 + ε)

p+m
2 − (1 + ε)−

m
2

)∫
M

|u|α|v|βuvdµg1
∫
M

|∇u|pg1dµg1

+
β + 1

q

(
(1 + ε)

q+m
2 − (1 + ε)−

m
2

)∫
M

|u|α|v|βuvdµg1
∫
M

|∇v|qg1dµg1

≤
(

(1 + ε)
p+m

2 − (1 + ε)−
m
2

)
G(g1, u, v)

∫
M

|u|α|v|βuvdµg1 .

Since the eigenfunction corresponding to λ(t) are normalized, thus we get

λ(g2)− λ(g1) ≤
(

(1 + ε)
p+m

2 − (1 + ε)−
m
2

)
λ(g1)

this completes the proof of Lemma. �



The first eigenvalue of (p, q)-Laplacian 12 (2021) No. 2, 193-204 197

Proposition 3.2. Let (g(t), φ(t)), t ∈ [0, T ), be a solution of the (RH)η flow on a closed manifold
Mm and let λ(t) be the first eigenvalue of the (p, q)-Laplacian along this flow. Then for any t0, t1 ∈
[0, T ) and t1 > t0, we have

λ(t1) ≥ λ(t0) +

∫ t1

t0

G(g(τ), u(τ), v(τ))dτ (3.2)

where

G(g(t), u(t), v(t)) = (α + 1)

∫
M

(S(∇u,∇u)+ < ∇u′,∇u >) |∇u|p−2dµ

+(β + 1)

∫
M

(S(∇v,∇v)+ < ∇v′,∇v >) |∇v|q−2dµ (3.3)

−α + 1

p

∫
M

|∇u|pSdµ− β + 1

q

∫
M

|∇v|qSdµ.

Proof . Assume that

G(g(t), u(t), v(t)) =
α + 1

p

∫
M

|∇u(t)|pg(t)dµg(t) +
β + 1

q

∫
M

|∇v(t)|qg(t)dµg(t),

at time t1 we first let (u1, v1) = (u(t1), v(t1)) be the eigenfunction for the eigenvalue λ(t1) of (p, q)-
Laplacian. We consider the following smooth functions

h(t) = u1

[
det[gij(t1)]

det[gij(t)]

] 1
2(α+β+1)

, l(t) = v1

[
det[gij(t1)]

det[gij(t)]

] 1
2(α+β+1)

,

along the (RH)η flow. We define

u(t) =
h(t)(∫

M
|h(t)|α|l(t)|βh(t)l(t)dµ

) 1
p

, u(t) =
l(t)(∫

M
|h(t)|α|l(t)|βh(t)l(t)dµ

) 1
q

which u(t), v(t) are smooth functions under the (RH)η flow, satisfy∫
M

|u|α|v|βuvdµ = 1,

and at time t1, (u(t1), v(t1)) are the eigenfunctions for λ(t1) of (p, q)-Laplacian at time t1 i.e. λ(t1) =
G(g(t1), u(t1), v(t1)). If f is a smooth function respect to time t then along the (RH)η flow we have

d

dt
(|∇f |p) =

p

2

[
∂tg

ij∇if∇jf + 2gij∇if
′∇jf

]
|∇f |p−2

by (1.1) we have ∂tg
ij = 2gikgjlSkl, therefore

d

dt
(|∇f |p) = p|∇f |p−2

(
S(∇f,∇f)+ < ∇f ′,∇f >

)
, (3.4)

and

∂tdµ =
1

2
trg(∂tg)dµ = −Sdµ.
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Since u(t) and v(t) are smooth functions, hence G(g(t), u(t), v(t)) is a smooth function with respect
to t. If we set

G(g(t), u(t), v(t)) :=
d

dt
G(g(t), u(t), v(t)), (3.5)

then

G(g(t), u(t), v(t)) = (α + 1)

∫
M

(S(∇u,∇u)+ < ∇u′,∇u >) |∇u|p−2dµ

+(β + 1)

∫
M

(S(∇v,∇v)+ < ∇v′,∇v >) |∇v|q−2dµ (3.6)

−α + 1

p

∫
M

|∇u|pSdµ− β + 1

q

∫
M

|∇v|qSdµ.

Taking integration on the both sides of (3.5) between t0 and t1, we conclude that

G(g(t1), u(t1), v(t1))−G(g(t0), u(t0), v(t0)) =

∫ t1

t0

G(g(τ), u(τ), v(τ))dτ (3.7)

where t0 ∈ [0, T ) and t1 > t0. Noticing G(g(t0), u(t0), v(t0)) ≥ λ(t0) and plugin
λ(t1) = G(g(t1), u(t1), v(t1)) in (3.7), yields (3.2) and G(g(t), u(t), v(t)) satisfies in (3.3). �

Theorem 3.3. Let (Mm, g(t), φ(t)) be a solution of the (RH)η flow on the smooth closed manifold
(Mm, g0, φ0) and λ(t) denotes the evolution of the first eigenvalue under the (RH)η flow. Suppose
that k = min{p, q} and

S − 1

k
Sg ≥ 0 in Mm × [0, T ). (3.8)

If Smin(0) ≥ 0, then λ(t) is nondecreasing and differentiable almost everywhere along the (RH)η flow
on [0, T ).

Proof . Let for any t1 ∈ [0, T ), u(t1), v(t1) be the eigenfunctions for λ(t1) of (p, q)-Laplacian. Then∫
M
|u(t1)|α|v(t1)|βu(t1)v(t1)dµg(t1) = 1 and

G(g(t1), u(t1), v(t1)) = (α + 1)

∫
M

(S(∇u,∇u)+ < ∇u′,∇u >) |∇u|p−2dµ

+(β + 1)

∫
M

(S(∇v,∇v)+ < ∇v′,∇v >) |∇v|q−2dµ (3.9)

−α + 1

p

∫
M

|∇u|pSdµ− β + 1

q

∫
M

|∇v|qSdµ.

Now, by the time derivative of the condition∫
M

|u|α|v|βuvdµ = 1

we can get

(α + 1)

∫
M

|u|α|v|βu′vdµ+ (β + 1)

∫
M

|u|α|v|βuv′dµ =

∫
M

S|u|α|v|βuvdµ. (3.10)
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On the other hand, (2.4) and (2.5) imply that∫
M

< ∇u′,∇u > |∇u|p−2dµ = λ(t1)

∫
M

|u|α|v|βu′vdµ, (3.11)∫
M

< ∇v′,∇v > |∇v|q−2dµ = λ(t1)

∫
M

|u|α|v|βuv′dµ. (3.12)

Therefore from (3.10), (3.11) and (3.12) we have

(α + 1)

∫
M

< ∇u′,∇u > |∇u|p−2dµ+ (β + 1)

∫
M

< ∇v′,∇v > |∇v|q−2dµ

= λ(t1)

∫
M

S|u|α|v|βuvdµ, (3.13)

and the replacing (3.13) in (3.9), results that

G(g(t1), u(t1), v(t1)) = λ(t1)

∫
M

S|u|α|v|βuvdµ+ (α + 1)

∫
M

S(∇u,∇u)|∇u|p−2dµ

−α + 1

p

∫
M

|∇u|pSdµ+ (β + 1)

∫
M

S(∇v,∇v)|∇v|q−2dµ (3.14)

−β + 1

q

∫
M

|∇v|qSdµ.

From (3.14) and (3.8) we have

G(g(t1), u(t1), v(t1)) ≥ λ(t1)

∫
M

S|u|α|v|βuvdµ+ (α + 1)(
1

k
− 1

p
)

∫
M

|∇u|pSdµ

+(β + 1)(
1

k
− 1

q
)

∫
M

|∇v|qSdµ. (3.15)

Since
∂

∂t
S = ∆S + 2|Sij|2 + 2η|τgφ|2

and |Sij|2 ≥ 1
m
S2, it follows that

∂

∂t
S ≥ ∆S +

2

m
S2. (3.16)

The solution to
d

dt
y(t) =

2

m
y2(t), y(t) = Smin(0),

is

y(t) =
Smin(0)

1− 2
m
Smin(0)t

, t ∈ [0, T ′), (3.17)

where T ′ = min{T, m
2Smin(0)

}. Using maximum principle to (3.16), we get S ≥ y(t) along the (RH)η
flow. If Smin(0) ≥ 0 then the nonnegativity of S preserved along the (RH)η flow. Therefore (3.15)
becomes G(g(t1), u(t1), v(t1)) ≥ 0. Thus we get G(g(t), u(t), v(t)) > 0 in any small enough neigh-
borhood of t1. Hence

∫ t1
t0
G(g(τ), u(τ), v(τ))dτ > 0 for any t0 < t1 sufficiently close to t1. Since

t1 ∈ [0, T ) is arbitrary the Proposition 3.2 completes the proof of the first part of theorem. For the
differentiability for λ(t), since λ(t) is increasing and continues on the interval [0, T ), the classical
Lebesgue’s theorem (see [8]), λ(t) is differentiable almost everywhere on [0, T ). � Motivated by the
works of X.-D. Cao [2, 3] and J. Y. Wu [11], similar to proof of Proposition 3.2 we first introduce a
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new smooth eigenvalue function along the (RH)η flow and then we give evolution formula for it. Let
M be an m-dimensional closed Riemannian manifold and g(t) be a smooth solution of the (RH)η
flow. Suppose that

λ(u, v, t) :=
α + 1

p

∫
M

|∇u|pdµ+
β + 1

q

∫
M

|∇v|qdµ

where u, v are smooth functions and satisfy∫
M

|u|α|v|βuvdµ = 1,

∫
M

|u|α|v|βvdµ = 0,

∫
M

|u|α|v|βudµ = 0.

The function λ(u, v, t) is a smooth eigenvalue function respect to t-variable. If (u, v) are the corre-
sponding eigenfunctions of the first eigenvalue λ(t1) then λ(u, v, t1) = λ(t1). As proof of Proposition
3.2 and Theorem 3.3 we have the following propositions.

Proposition 3.4. Let (Mm, g(t), φ(t)) be a solution of the (RH)η flow on the smooth closed manifold
(Mm, g0, φ0). If λ(t) denotes the evolution of the first eigenvalue under the (RH)η flow, then

dλ

dt
(u, v, t)|t=t1 = λ(t1)

∫
M

S|u|α|v|βuvdµ+ (α + 1)

∫
M

S(∇u,∇u)|∇u|p−2dµ

−α + 1

p

∫
M

|∇u|pSdµ+ (β + 1)

∫
M

S(∇v,∇v)|∇v|q−2dµ (3.18)

−β + 1

q

∫
M

|∇v|qSdµ,

where (u, v) is the associated normalized evolving eigenfunction.

Now, we give a variation of λ(t) under the normalized (RH)η flow which is similar to the previous
Proposition.

Proposition 3.5. Let (Mm, g(t), φ(t)) be a solution of the normalized (RH)η flow on the smooth
closed manifold (Mm, g0, φ0). If λ(t) denotes the evolution of the first eigenvalue under the normalized
(RH)η flow, then

dλ

dt
(u, v, t)|t=t1 = λ(t1)

∫
M

S|u|α|v|βuvdµ+ (α + 1)

∫
M

S(∇u,∇u)|∇u|p−2dµ

+(β + 1)

∫
M

S(∇v,∇v)|∇v|q−2dµ− β + 1

q

∫
M

|∇v|qSdµ (3.19)

−α + 1

p

∫
M

|∇u|pSdµ− α + 1

m
r(t1)

∫
M

|∇u|pdµ

−β + 1

m
r(t1)

∫
M

|∇v|qdµ,

where (u, v) is the associated normalized evolving eigenfunction.

Proof . In the normalized case, derivative of the integrability condition
∫
M
|u|α|v|βuvdµ = 1 respect

to t, results that

(α + 1)

∫
M

|u|α|v|βu′vdµ+ (β + 1)

∫
M

|u|α|v|βuv′dµ = −r(t1) +

∫
M

S|u|α|v|βuvdµ. (3.20)
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On the other hand

d

dt
(dµt) =

1

2
trg(

∂g

∂t
)dµ =

1

2
trg(

2

m
rg − 2S)dµ = (r − S)dµ, (3.21)

hence we can then write

dλ

dt
(u, v, t)|t=t1 =

α + 1

p

(
p

2

∫
M

{
− 2

m
r|∇u|2 + 2S(∇u,∇u) + 2 < ∇u′,∇u >

}
|∇u|p−2dµ

)
+
β + 1

q

(
q

2

∫
M

{
− 2

m
r|∇v|2 + 2S(∇v,∇v) + 2 < ∇v′,∇v >

}
|∇v|q−2dµ

)
+
α + 1

p

∫
M

|∇u|p(r − S)dµ+
β + 1

q

∫
M

|∇v|q(r − S)dµ,

but

(α + 1)

∫
M

< ∇u′,∇u > |∇u|p−2dµ + (β + 1)

∫
M

< ∇v′,∇v > |∇v|q−2dµ

= −λ(t1)r(t1) + λ(t1)

∫
M

S|u|α|v|βuvdµ. (3.22)

Therefore the proposition is obtained by replacing (3.22) in previous relation. �

Theorem 3.6. Let (Mm, g(t), φ(t)) be a solution of the (RH)η flow on the smooth closed manifold
(Mm, g0, φ0) and λ(t) denotes the evolution of the first eigenvalue under the (RH)η flow. If k =
min{p, q},

S − S

k
g > 0 in Mm × [0, T ) (3.23)

and Smin(0) > 0, then the quantity λ(t)(1− 2
m
Smin(0)t)

m
2 is nondecreasing along the (RH)η flow on

[0, T ′), where T ′ := min{ m
2Smin(0)

, T}.

Proof . According to (3.18) and (3.23) we have

dλ

dt
(u, v, t)|t=t1 > λ(t1)

∫
M

S|u|α|v|βuvdµ+ (α + 1)(
1

k
− 1

p
)

∫
M

|∇u|pSdµ

+(β + 1)(
1

k
− 1

q
)

∫
M

|∇v|qSdµ. (3.24)

If Smin(0) > 0, then (3.17) results that the positive of S remains under the (RH)η flow, therefore

dλ

dt
(u, v, t)|t=t1 ≥ λ(t1)

Smin(0)

1− 2
m
Smin(0)t1

. (3.25)

Then in any small enough neighborhood of t1 as I, we get

dλ

dt
(u, v, t) ≥ λ(u, v, t)

Smin(0)

1− 2
m
Smin(0)t

. (3.26)

Integrating the last inequality with respect to t on [t0, t1] ⊂ I, we have

ln
λ(u(t1), v(t1), t1)

λ(u(t0), v(t0), t0)
≥ ln

(
1− 2

m
Smin(0)t1

1− 2
m
Smin(0)t0

)−m
2

. (3.27)
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Since λ(u(t1), v(t1), t1) = λ(t1) and λ(u(t0), v(t0), t0) ≥ λ(t0) we conclude that

ln
λ(t1)

λ(t0)
≥ ln

(
1− 2

m
Smin(0)t1

1− 2
m
Smin(0)t0

)−m
2

, (3.28)

that is the quantity λ(t)(1− 2
m
Smin(0)t)

m
2 is nondecreasing in any sufficiently small neighborhood of

t1. Since t1 is arbitrary, hence λ(t)(1− 2
m
Smin(0)t)

m
2 is nondecreasing along the (RH)η flow on [0, T ′).

� Now, if in the (RH)η flow, we suppose that η = 0, then the (RH)η flow reduce to the Ricci flow
and we have the following corollary

Corollary 3.7. Let g(t), t ∈ [0, T ) be a solution of the Ricci flow on a closed Riemannain manifold
M and λ(t) denotes the first eigenvalue of the (p, q)-Laplacian (2.2). Suppose that k = min{p, q}
and Ric− R

k
g ≥ 0 along the Ricci flow.

(1) If Rmin(0) ≥ 0, then λ(t) is nondecreasing along the Ricci flow for any t ∈ [0, T ).
(2) If Rmin(0) > 0, then the quantity (1−Rmin(0)t)λ(t) is nondecreasing along the Ricci flow for any
t ∈ [0, T ′) where T ′ = min{T, 1

Rmin(0)
}.

In dimension two we have

Proposition 3.8. Let (g(t), φ(t)), t ∈ [0, T ) be a solution of the (RH)η flow on a closed Rieman-
nian surface M and λ(t) denotes the first eigenvalue of the (p, q)-Laplacian (2.2).
(1) Suppose that Ric ≥ ε∇φ⊗∇φ where ε ≥ 2η k−1

k−2 and 2 ≤ k = min{p, q}.
(1− 1) If Smin(0) ≥ 0, then λ(t) is nondecreasing along the (RH)η for any t ∈ [0, T ).
(1− 2) If Smin(0) > 0, then the quantity (1−Smin(0)t)λ(t) is nondecreasing along the (RH)η flow on
[0, T ′) where T ′ = min{T, 1

Smin(0)
}.

(2) Suppose that k = min{p, q} and |∇φ|2 ≥ k∇φ⊗∇φ.
(2− 1) If Smin(0) ≥ 0, then λ(t) is nondecreasing along the (RH)η for any t ∈ [0, T ).
(2− 2) If Smin(0) > 0, then the quantity (1−Smin(0)t)λ(t) is nondecreasing along the (RH)η flow on
[0, T ′) where T ′ = min{T, 1

Smin(0)
}.

Proof . In the case of surface, we have Rij = R
2
gij. Then

Tij := Sij −
S

k
gij =

R

2
gij − η∇iφ∇jφ−

1

k
(R− η|∇φ|2)gij

= (
1

2
− 1

k
)Rgij − η∇iφ∇jφ+

α

k
|∇φ|2gij.

For any vector V = (V i) we get

TijV
iV j = (

1

2
− 1

k
)R|V |2 − η(∇iφV

i)2 +
η

k
|∇φ|2|V |2

≥ (
1

2
− 1

k
)R|V |2 + η(

1

k
− 1)|∇φ|2|V |2.

If Ric ≥ ε∇φ⊗∇φ where ε ≥ 2η k−1
k−2 then R ≥ ε|∇φ|2 and

TijV
iV j ≥

[
(
1

2
− 1

k
)ε+ η(

1

k
− 1)

]
|∇φ|2|V |2 ≥ 0.
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For second case, we have

TijV
iV j = RijViV

j − η∇iV
i∇jV

j − R

k
|V |2 +

η

k
|∇φ|2|V |2

≥ RijV
iV j − η

k
|∇φ|2|V |2 − R

k
|V |2 +

η

k
|∇φ|2|V |2 = 0.

Hence the corresponding results follows by Theorems 3.3 and 3.6. � When we restrict the (RH)η
flow to the Ricci flow, we obtain

Corollary 3.9. Let g(t), t ∈ [0, T ) be a solution of the Ricci flow on a closed Riemannain surface
M and λ(t) denotes the first eigenvalue of the (p, q)-Laplacian (2.2).
(1) If Rmin(0) ≥ 0, then λ(t) is nondecreasing along the Ricci flow for any t ∈ [0, T ).
(2) If Rmin(0) > 0, then the quantity (1−Rmin(0)t)λ(t) is nondecreasing along the Ricci flow for any
t ∈ [0, T ′) where T ′ = min{T, 1

Rmin(0)
}.

Example 3.10. Let (Mm, g0) be an Einstein manifold i.e. there exists a constant such that Ric(g0) =
ag0. Assume that (N, γ) = (M, g0), then φ0 is the identity map. With the assumption g(t) =
c(t)g0, c(0) = 1 and the fact that φ(t) = φ(0) is harmonic map for all g(t), the (RH)η flow reduces
to

∂c(t)

∂t
= −2a+ 2η, c(0) = 1,

then the solution of the initial value problem is given by

c(t) = (−2a+ 2η)t+ 1.

Therefore the solution of the (RH)η flow remains Einstein and we have

S = Ricg(t) − η∇φ⊗∇φ = (a− η)g0 =
a− η

−2(a− η)t+ 1
g(t),

S = R− η|∇φ|2 =
am

−2(a− η)t+ 1
− η m

−2(a− η)t+ 1
=

(a− η)m

−2(a− η)t+ 1
.

Using equation (3.18), we have

dλ

dt
(u, v, t)|t=t1 =

a− η
−2(a− η)t+ 1

(
(α + 1)

∫
M

|∇u|pdµ+ (β + 1)

∫
M

|∇v|qdµ
)
.

Now if assume that p ≤ q then for η < a and t1 ∈ [0, T ′′) where T ′′ = min{ 1
2(a−η) , T}, we have

dλ

dt
(u, v, t)|t=t1 ≥

a− η
−2(a− η)t1 + 1

λ(t1).

This results that in any sufficiently small neighborhood of t1 as I1, we get

dλ

dt
(u, v, t) ≥ a− η

−2(a− η)t+ 1
λ(u, v, t).

Integrating the last inequality with respect to t on [t0, t1] ⊂ I1 we have

ln
λ(u(t1), v(t1), t1)

λ(u(t0), v(t0), t0)
≥ ln

(
−2(a− η)t1 + 1

−2(a− η)t0 + 1

)− p
2

,

but t1 ∈ [0, T ′′) is arbitrary, λ(u(t1), v(t1), t1) = λ(t1) and λ(u(t0), v(t0), t0) ≥ λ(t0), then λ(t)(−2(a−
η)t+ 1)

p
2 is nondecreasing along the (RH)η flow on [0, T ′′).
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[6] A. E. Khalil, S. E. Manouni, M. Ouanan, Simplicity and stablity of the first eigenvalue of a nonlinear elliptic

system, Int. J. Math. Math. Sci. 10 (2005) 1555–1563.
[7] J. F. Li, Eigenvalues and energy functionals with monotonicity formula under Ricci flow, Math. Ann. 338 (2007)

927–946.
[8] A. Mukherjea and K. Pothoven, Real and Functional Analysis, 2nd, Plenum Press, New York and London, 1984.
[9] R. Müller, Ricci flow coupled with harmonic map flow, Ann. Sci. de l’École Normale Sup. 45 (2012) 101–142.
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