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Abstract

We consider the following quasilinear elliptic system in a Sobolev space with variable exponent:

−div(a(|Du|)Du) = f,

where a is a C1-function and f ∈ W−1,p′(x)(Ω;Rm). We use the theory of Young measures and weak
monotonicity conditions to obtain the existence of solutions.
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1. Introduction and main results

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω. Consider the following
quasilinear elliptic system: {

−div(a(|Du|)Du) = f in Ω,
u = 0 on ∂Ω,

(1.1)

where a is a C1-function defined from [0,+∞) to [0,+∞) and f belongs to Sobolev space with
variable exponent W−1,p′(x)(Ω;Rm). When a(ξ) = |ξ|p−2, problem (1.1) is the well known p-Laplace
system. In recent years, there have been a large number of papers on the existence and regularity
of solutions of the p-Laplace system (see [13, 19, 21] and the references therein). In the case of
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degenerate p-Laplacian system where a(ξ) = |ξ − Θ(u)|p−2, Θ : Rm → Mm×n, we have proved in
[2] existence result by using the theory of Young measures and without assuming any conditions
of Leray-Lions type. Here, Mm×n is the space of m × n matrices equipped with the inner product
ξ : η =

∑m
i=1

∑n
j=1 ξijηij. The extension of [2] to the case of exponent variable p(x) can be found

in [3]. For the p(x)-Laplace equations, Cianchi and Maz’ya [11] established the Lipschitz continuity
of solutions to Dirichlet and Neumann cases. In [1], Acerbi and Mingione proved Caldéron and
Zygmund type estimates for a class of p(x)-Laplacian system whose right-hand side is under the
divergence form.

Problems of the form (1.1) were studied in [11, 12] under some conditions on the function a.
Moreover, they treated the corresponding Neumann case. Dirichlet problems of the form (1.1) are
the main objective of the present paper. When the right-hand side of (1.1) belongs to W−1,p′(Ω;Rm),
we have proved in [7] the existence of weak solutions based on the Galerkin approximation and the
theory of Young measures.

Here and after, Du denotes the gradient of a function u : Ω→ Rm, and is a matrix-valued function,
i.e., Du ∈ Mm×n. The function a : [0,+∞) → [0,+∞) is assumed to be of class C1([0,+∞)), and
to fulfill

− 1 ≤ ia ≤ sa <∞ (1.2)

where

ia = inf
t>0

ta′(t)

a(t)
and sa = sup

t>0

ta′(t)

a(t)
. (1.3)

The function a satisfies the following growth and coercivity conditions: For all ξ ∈ Mm×n, some
constants c1, c2 > 0 and l(x) ∈ L1(Ω), ∣∣a(|ξ|)ξ

∣∣ ≤ c1|ξ|p(x)−1, (1.4)

a(|ξ|)ξ : ξ ≥ c2|ξ|p(x) − l(x). (1.5)

Moreover, we assume that a satisfies one of the following conditions:

(H0) There exists a convex and C1-function b : Mm×n → R such that

a(|ξ|)ξ =
∂b(ξ)

∂ξ
:= Dξb(ξ).

(H1) For λ = 〈νx, id〉 where ν = {νx}x∈Ω is any family of Young measures generated by a sequence
in Lp(x)(Ω;Mm×n) and not a Dirac measure for almost every x ∈ Ω, we have∫

Mm×n

(
a(|λ|)λ− a(|λ|)λ

)
: (λ− λ)dν(λ) > 0.

Our objective in this paper is to study the existence of solutions for (1.1) in the framework of
Sobolev spaces with variable exponent under the above conditions and to extend the result of [7] to the
variable exponent spaces. Moreover, we will use a Galerkin method to construct the approximating
solutions and the theory of Young measures to identify weak limits and in the passage to the limit.
We refer the reader to see [4, 5, 6, 8] where the theory of Young measures finds its applications in
different nonlinear elliptic systems.

Note that, (1.3) and (1.4) will serve us to prove that the function a is monotone. The condition
(H0) allows to take a potential b, which is only convex but not strictly convex to avoid the use
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of the well known classical monotone operator theory, and to consider (1.1) with a(|ξ|)ξ = ∂b/∂ξ.
Assumption (H1) may be called strictly p(x)-quasimonotone as in the framework W 1,p(Ω;Rm) (see
[18]).

A weak solution for (1.1) is a function u ∈ W 1,p(x)
0 (Ω;Rm) such that∫

Ω

a(|Du|)Du : Dϕdx = 〈f, ϕ〉 for all ϕ ∈ W 1,p(x)
0 (Ω;Rm).

Here 〈., .〉 denotes the duality pairing of W−1,p′(x)(Ω;Rm) and W
1,p(x)
0 (Ω;Rm).

The principal result of this paper reads as follows:

Theorem 1.1. Under assumptions (1.3)-(1.5), (H0) and (H1), problem (1.1) has a weak solution

u ∈ W 1,p(x)
0 (Ω;Rm).

2. Preliminaries

We recall some necessary notations, definitions and properties for our function spaces (see [14, 20])
and an overview about Young measures (see [9, 15, 17]).

For each open bounded subset Ω of Rn (n ≥ 2), we denote C+(Ω) = {p ∈ C(Ω), p(x) >
1 for any x ∈ Ω}. We define for every p ∈ C+(Ω),

p− = inf
x∈Ω

p(x) and p+ = sup
x∈Ω

p(x).

The Sobolev space W 1,p(x)(Ω;Rm) consists of all functions u in the Lebesgue space

Lp(x)(Ω;Rm) =
{
u : Ω→ Rm measurable :

∫
Ω

|u(x)|p(x)dx <∞
}
,

such that Du ∈ Lp(x)(Ω;Mm×n). The space Lp(x)(Ω;Rm) is endowed with the norm

‖u‖p(x) = inf
{
β > 0,

∫
Ω

∣∣u(x)

β

∣∣p(x)
dx ≤ 1

}
.

It is a Banach space. Moreover, it is reflexive if and only if 1 < p− ≤ p+ <∞. Its dual is defined by
Lp
′(x)(Ω;Rm) where 1

p(x)
+ 1

p′(x)
= 1. For any u ∈ Lp(x)(Ω;Rm) and v ∈ Lp′(x)(Ω;Rm), the generalized

Hölder inequality ∣∣∣ ∫
Ω

uvdx
∣∣∣ ≤ ( 1

p−
+

1

p+

)
‖u‖p(x)‖v‖p′(x)

holds true. The space W 1,p(x)(Ω;Rm) is endowed with the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖Du‖p(x).

Proposition 2.1 ([16]). We denote ρ(u) =
∫

Ω
|u|p(x)dx, ∀u ∈ Lp(x)(Ω;Rm). If uk, u ∈ Lp(x)(Ω;Rm)

and p+ <∞, then:

(i) ‖u‖p(x) < 1 (= 1; > 1) ⇔ ρ(u) < 1 (= 1; > 1).

(ii) ‖u‖p(x) > 1⇒ ‖u‖p
−

p(x) ≤ ρ(u) ≤ ‖u‖p
+

p(x); ‖u‖p(x) < 1⇒ ‖u‖p
+

p(x) ≤ ρ(u) ≤ ‖u‖p
−

p(x).
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(iii) ‖uk‖p(x) → 0⇔ ρ(uk)→ 0; ‖uk‖p(x) → +∞⇔ ρ(uk)→ +∞.

We denote by W
1,p(x)
0 (Ω;Rm) the closure of C∞0 (Ω;Rm) in W 1,p(x)(Ω;Rm) and W−1,p′(x)(Ω;Rm) is its

dual space. We denote p∗(x) = np(x)
n−p(x)

for p(x) < n; =∞ for p(x) > n.

Proposition 2.2 ([16]). (i) Under the assumption 1 < p−, the spaces W 1,p(x)(Ω;Rm) and W
1,p(x)
0 (Ω;Rm)

are separable and reflexive Banach spaces.
(ii) If q ∈ C+(Ω) and q(x) < p∗(x) for any x ∈ Ω, then W 1,p(x)(Ω;Rm) ↪→↪→ Lq(x)(Ω;Rm) is compact

and continuous. In particular, we have W
1,p(x)
0 (Ω;Rm) ↪→↪→ Lp(x)(Ω;Rm) is compact and continuous.

(iii) There exists a constant c3 > 0, such that

‖u‖p(x) ≤ c3‖Du‖p(x) ∀u ∈ W 1,p(x)
0 (Ω;Rm),

hence ‖Du‖p(x) and ‖u‖1,p(x) are two equivalent norms on W
1,p(x)
0 (Ω;Rm).

Weak convergence is a basic tool of modern nonlinear analysis because it has the same compactness
properties as the convergence in finite-dimensional spaces (see [15]). But, this convergence sometimes
does not behave as one desire with respect to nonlinear functionals and operators. To overcome this
difficulty, one can use the technics of Young measures.

By C0(Rm) we denote the set of functions g ∈ C(Rm) satisfying lim|λ|→∞ g(λ) = 0. Its dual can
be identified with the space of signed Radon measures with finite mass denoted by M(Rm). The
related duality pairing is given by

〈ν, g〉 =

∫
Rm

g(λ)dν(λ) for ν : Ω→M(Rm).

Lemma 2.3 ([15]). Let (zk)k be a bounded sequence in L∞(Ω;Rm). Then there exists a subsequence
(still denoted zk) and a Borel probability measure νx on Rm for a.e. x ∈ Ω, such that for almost each
g ∈ C(Rm) we have

ϕ(zk) ⇀
∗ ϕ weakly in L∞(Ω;Rm),

where ϕ(x) = 〈νx, ϕ〉 =
∫
Rm ϕ(λ)dνx(λ) for a.e. x ∈ Ω.

Definition 2.4. The family ν = {νx}x∈Ω is called Young measure associated with the subsequence
(zk)k.

The fundamental theorem of Young measures can be stated in the following lemma:

Lemma 2.5 ([9]). Let Ω be Lebesgue measurable, let K ⊂ Rm be closed, and let zk : Ω → Rm,
k ∈ N, be a sequence of Lebesgue measurable functions satisfying zk → K in measure as k → ∞,
i.e., given any open neighborhood U of K in Rm

lim
k→∞
|{x ∈ Ω : uk(x) 6∈ U}| = 0.

Then there exist a subsequence denoted also (zk)k and a family {νx}x∈Ω of positive measures on Rm,
such that

(a) ‖νx‖M(Rm) :=
∫
Rm dνx(λ) ≤ 1 for a.e. x ∈ Ω.
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(b) supp νx ⊂ K for a.e. x ∈ Ω, and

(c) ϕ(zk) ⇀
∗ 〈νx, ϕ〉 =

∫
Rm ϕ(λ)dνx(λ) in L∞(Ω) for each ϕ ∈ C0(Rm).

Suppose further that (zk) satisfies the boundedness condition

∀R > 0 : lim
L→∞

sup
k∈N

∣∣{x ∈ Ω ∩BR(0) : |zk(x)| ≥ L}
∣∣ = 0. (2.1)

Then ‖νx‖M(Rm) = 1 for a.e. x ∈ Ω, and for any measurable Ω′ ⊂ Ω there holds ϕ(zk) ⇀ ϕ = 〈νx, ϕ〉
weakly in L1(Ω′) for any continuous function ϕ : Rm → R provided the sequence ϕ(zk) is weakly
precompact in L1(Ω′).

Lemma 2.5 has usefull applications, in particular in non-linear PDE theory. The following prop-
erties build the basic tools used in the sequel, and can be seen as the applications of Lemma 2.5 (see
[9, 17]):
If |Ω| <∞ (finite measure), then there holds

zk −→ z in measure⇔ νx = δz(x) for a.e. x ∈ Ω, (2.2)

where δz(x) is the Young measure associated to zk. Let ϕ : Mm×n → R be a continuous function and
zk : Ω → Rm a sequence of measurable functions such that Dzk generates the Young measure νx,
with ‖νx‖M(Mm×n) = 1 for a.e. x ∈ Ω, then

lim inf
k→∞

∫
Ω

ϕ(Dzk)dx ≥
∫

Ω

∫
Mm×n

ϕ(λ)dνx(λ)dx, (2.3)

provided that the negative part ϕ−(Dzk) is equiintegrable.

3. Approximating solutions

Now, as mentioned in the introduction, we will use the Galerkin method to construct the approx-
imating solutions. To this purpose, we consider the mapping T : W

1,p(x)
0 (Ω;Rm)→ W−1,p′(x)(Ω;Rm)

defined for ϕ ∈ W 1,p(x)
0 (Ω;Rm) as

〈T (u), ϕ〉 =

∫
Ω

a(|Du|)Du : Dϕdx− 〈f, ϕ〉. (3.1)

As a first remark, the problem (1.1) is equivalent to find such u ∈ W
1,p(x)
0 (Ω;Rm) which satisfy

〈T (u), ϕ〉 = 0 for all ϕ ∈ W 1,p(x)
0 (Ω;Rm). In the sequel, we will use a positive constant c which may

change values from line to line.

Lemma 3.1. The mapping T satisfies the following properties:

(i) T is linear, well defined and bounded.

(ii) The restriction of T to a finite linear subspace of W
1,p(x)
0 (Ω;Rm) is continuous.

(iii) T is coercive.
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Proof . (i) For arbitrary u ∈ W 1,p(x)
0 (Ω;Rm), T (u) is trivially linear. We have by (1.4)∫

Ω

∣∣a(|Du|)Du
∣∣p′(x)

dx ≤ c

∫
Ω

|Du|p(x)dx <∞

where c is a positive constant. It follows by Hölder’s inequality that∣∣〈T (u), ϕ〉
∣∣ ≤ c‖Du‖p

+−1
p(x) ‖Dϕ‖p(x) + c‖f‖−1,p′(x)‖ϕ‖1,p(x)

≤ c‖Dϕ‖p(x),

thus T is well defined and bounded.
(ii) Let W be a finite linear subspace of W

1,p(x)
0 (Ω;Rm) such that dimW = r. For simplicity, we

denote T as the restriction T |W of T to W . Let (uk = αkiwi) a sequence in W which converges to
u = αiwi in W (with conventional summation). Here {w1, .., wr} is a basis of W . We have in one
hand, Duk → Du almost everywhere and the continuity of the function a gives

a(|Duk|)Duk → a(|Du|)Du almost everywhere.

On the other hand, since uk → u strongly in W ,∫
Ω

|Duk −Du|p(x)dx −→ 0 as k →∞.

According to [10, Chap IV, Sec 3, Theorem 3] there exists a subsequence still denoted (Duk) and
g ∈ L1(Ω) such that |Duk−Du|p(x) ≤ g. We know that for 1 < p, |A+B|p ≤ 2p−1(|A|p + |B|p), thus

|Duk|p(x) = |Duk −Du+Du|p(x) ≤ 2p
+−1(g + |Du|p(x)).

This implies that ‖Duk‖p(x) is bounded by a constant c. Now, in order to apply the Vitali Convergence
Theorem, we choose Ω′ ⊂ Ω to be a measurable subset and by Hölder’s inequality∫

Ω′

∣∣a(|Duk|)Duk : Dϕ
∣∣dx ≤ c‖Duk‖p

+−1
p(x)︸ ︷︷ ︸

≤c

(∫
Ω′
|Dϕ|p(x)dx

) 1
p(x)

.

If we choose the measure of Ω′ to be small enough, then
∫

Ω′
|Dϕ|p(x)dx is arbitrary small, hence(

a(|Duk|)Duk : Dϕ
)

is equiintegrable. By vertue of the Vitali Convergence Theorem, we get
limk→∞〈T (uk), ϕ〉 = 〈T (u), ϕ〉.
(iii) From Eq. (1.5), it follows that

〈T (u), u〉 =

∫
Ω

a(|Du|)Du : Dudx− 〈f, u〉

≥ c2

∫
Ω

|Du|p(x)dx−
∫

Ω

l(x)dx− c‖f‖−1,p′(x)‖u‖1,p(x).

Hence
〈T (u), u〉
‖u‖1,p(x)

≥ c‖Du‖p(x)−1
p(x) − ‖l‖L1

‖u‖1,p(x)

− c −→∞ as ‖u‖1,p(x) →∞.

�
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Now, in order to find u ∈ W 1,p(x)
0 (Ω;Rm) such that 〈T (u), ϕ〉 = 0, we consider W1 ⊂ W2 ⊂ ... ⊂

W
1,p(x)
0 (Ω;Rm) a sequence of finite dimensional subspaces such that ∪

k≥1
Wk is dense in W

1,p(x)
0 (Ω;Rm).

The sequence (Wk) exists since W
1,p(x)
0 (Ω;Rm) is separable. Fix k and assume that dimWk = r and

w1, .., wk is a basis of Wk. We define the map

S : Rr → Rr, α 7→
(
〈T (αiwi), wj〉

)
j=1,..,r

for α = (α1, .., αr) ∈ Rr. The properties of S allow us to construct the desired approximate solutions.
Remark that for u = αiwi (with conventional summation), we have

S(α).α = 〈T (u), u〉. (3.2)

Hence S is continuous and S(α).α → ∞ as ‖α‖Rr → ∞ by Lemma 3.1, because ‖α‖Rr → ∞ is
equivalent to ‖u‖1,p(x) → ∞. Therefore, there exists R > 0 such that S(α).α > 0 for all α ∈
∂BR(0) ⊂ Rr. By vertue of the topological arguments (see e.g. [23, Proposition 2.8]), it follows that

S(x) = 0 has a solution x ∈ BR(0).

Hence, for all k ∈ N, there exists uk ∈ Wk such that

〈T (uk), ϕ〉 = 0 for all ϕ ∈ Wk. (3.3)

Corollary 3.2. The sequence constructed in (3.3) is uniformly bounded in W
1,p(x)
0 (Ω;Rm), i.e., there

is R > 0 such that
‖uk‖1,p(x) ≤ R for all k ∈ N.

Proof . We have 〈T (u), u〉 → ∞ as ‖u‖1,p(x) → ∞ by Lemma 3.1. Hence, there exists R > 0 with
the property that 〈T (u), u〉 > 1 whenever ‖u‖1,p(x) > R. This gives a contradiction with the Galerkin
approximations uk which satisfies (3.3). Therefore, (uk) is uniformly bounded. �

Now, as (uk) is uniformly bounded in W
1,p(x)
0 (Ω;Rm), it follows by Lemma 2.3 the existence of a

Young measure νx generated by Duk in Lp(x)(Ω;Mm×n). Before we proceed in the proof of the main
result, we still need some properties on the Young measure νx. The proof of the following lemma
can be found in [3], but for completeness of this work, we will present its proof.

Lemma 3.3. The Young measure νx generated by Duk in Lp(x)(Ω;Mm×n) has the following proper-
ties:

(i) νx is a probability measure, i.e. ‖νx‖M(Mm×n) = 1 for a.e. x ∈ Ω.

(ii) The weak L1-limit of Duk is given by 〈νx, id〉 =
∫
Mm×n λdνx(λ).

(iii) νx satisfies 〈νx, id〉 = Du(x) for a.e. x ∈ Ω.

Proof . (i) It is sufficient to show that Duk satisfies Eq. (2.1) in Lemma 2.5. By vertue of Corollary
3.2, there is a positive constant c such that for any R > 0

c ≥
∫

Ω

|Duk|p(x)dx ≥
∫
{x∈Ω∩BR(0): |Duk|≥L}

|Duk|p(x)dx

≥ Lp
−∣∣{x ∈ Ω ∩BR(0) : |Duk| ≥ L}

∣∣,
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which gives

sup
k∈N

∣∣{x ∈ Ω ∩BR(0) : |Duk| ≥ L}
∣∣ ≤ c

Lp−
−→ 0 as L→∞.

Hence, νx is a probability measure by Lemma 2.5.
(ii) We have 1 < p− ≤ p(x) and Mm×n can be regarded as Rmn, then Lp(x)(Ω;Mm×n) is reflexive. Then
by Corollary 3.2, there is a subsequence (still denoted by Duk) weakly convergent in Lp(x)(Ω;Mm×n),
hence weakly convergent in L1(Ω;Mm×n) since Lp(x)(Ω;Mm×n) ⊂ L1(Ω;Mm×n). By vertue of Lemma
2.5 and take ϕ ≡ id, we deduce that

Duk ⇀ 〈νx, id〉 =

∫
Mm×n

λdνx(λ) weakly in L1(Ω;Mm×n).

(iii) Corollary 3.2 allows to deduce that a subsequence of (uk) is converging weakly in W
1,p(x)
0 (Ω;Rm)

to an element denoted by u ∈ W
1,p(x)
0 (Ω;Rm). Therefore, Duk ⇀ Du in Lp(x)(Ω;Mm×n) (for a

subsequence). The uniqueness of limit implies that

〈νx, id〉 = Du(x) for a.e. x ∈ Ω.

�
To pass to the limit in the approximating equations, we will use the following usefull lemmas,

which can be seen as the key ingredient in the proof of the main result.

Lemma 3.4. The Young measure νx generated by Duk satisfies the following inequality∫
Ω

∫
Mm×n

(
a(|λ|)λ− a(|Du|)Du

)
: (λ−Du)dνx(λ)dx ≤ 0.

Proof . Consider the sequence

Ak :=
(
a(|Duk|)Duk − a(|Du|)Du

)
: (Duk −Du)

= a(|Duk|)Duk : (Duk −Du)− a(|Du|)Du : (Duk −Du)

= Ak,1 + Ak,2.

Since ∫
Ω

∣∣a(|Du|)Du
∣∣p′(x)

dx ≤ c

∫
Ω

|Du|p(x)dx <∞

for arbitrary u ∈ W 1,p(x)
0 (Ω;Rm), a(|Du|)Du ∈ Lp′(x)(Ω;Mm×n). Therefore

lim inf
k→∞

∫
Ω

Ak,2dx =

∫
Ω

a(|Du|)Du :
(∫

Mm×n

λdνx(λ)−Du
)
dx = 0 (3.4)

by Lemma 3.3. We have
(
a(|Duk|)Duk : Du

)−
is equiintegrable (see the proof of Lemma 3.1 if

necessary). The sequence
(
a(|Duk|)Duk : Duk

)
is easily seen to be equiintegrable. Indeed, by Eq.

(1.5), we have
a(|Duk|)Duk : Duk ≥ c2|Duk|p(x) − l(x),

which implies∫
Ω′

∣∣min
(
a(|Duk|)Duk : Duk, 0

)∣∣dx ≤ c2

∫
Ω′
|Duk|p(x)dx+

∫
Ω′
|l(x)|dx <∞
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by the boundedness of (uk). Now, by applying the equation (2.3) to the sequence
(
a(|Duk|)Duk :

(Duk −Du)
)
, we get

A := lim inf
k→∞

∫
Ω

Akdx = lim inf
k→∞

∫
Ω

Ak,1dx

≥
∫

Ω

∫
Mm×n

a(|λ|)λ : (λ−Du)dνx(λ)dx.

If we arrive at A ≤ 0, then the needed result follows immediately. Using the Mazur’s theorem (see

[22, Theorem 2, page 120]), it follows the existence of ϕk ∈ W
1,p(x)
0 (Ω;Rm) such that ϕk → u in

W
1,p(x)
0 (Ω;Rm), where each ϕk is a convex linear combination of {u1, .., uk}, that means ϕk ∈ Wk.

By taking uk − ϕk as a test function in (3.3), we obtain∫
Ω

a(|Duk|)Duk : (Duk −Dϕk)dx = 〈f, uk − ϕk〉. (3.5)

From the Hölder inequality, it follows that∣∣〈f, uk − ϕk〉∣∣ ≤ c‖f‖−1,p′(x)‖uk − ϕk‖1,p(x).

The right hand side of the above inequality vanishes as k → ∞, since by the construction of ϕk we
have

‖uk − ϕk‖1,p(x) ≤ ‖uk − u‖1,p(x) + ‖ϕk − u‖1,p(x) −→ 0 as k →∞.
Hence, the left hand side in (3.5) tends to zero as k →∞. Using this result and the fact that ϕk → u

in W
1,p(x)
0 (Ω;Rm), we deduce the following

A = lim inf
k→∞

∫
Ω

Akdx

= lim inf
k→∞

∫
Ω

a(|Duk|)Duk : (Duk −Du)dx

= lim inf
k→∞

(∫
Ω

a(|Duk|)Duk : (Duk −Dϕk)dx+

∫
Ω

a(|Duk|)Duk : (Dϕk −Du)dx
)

(3.5)
= lim inf

k→∞

(
〈f, uk − ϕk〉+

∫
Ω

a(|Duk|)Duk : (Dϕk −Du)dx
)

= lim inf
k→∞

∫
Ω

a(|Duk|)Duk : (Dϕk −Du)dx

≤ lim inf
k→∞

c
∥∥|a(|Duk|)Duk|

∥∥
p′(x)
‖Dϕk −Du‖p(x) = 0.

Consequently, A ≤ 0 together with (3.4) implies the needed result. �

Lemma 3.5. If a satisfies (1.2) and (1.3), then it is monotone, i.e.,(
a(|ξ|)ξ − a(|η|)η

)
: (ξ − η) ≥ 0 for all ξ, η ∈Mm×n.

Proof . For ξ, η ∈Mm×n and t ∈ [0, 1] we set θt = tξ + (1− t)η, then(
a(|ξ|)ξ − a(|η|)η

)
: (ξ − η) =

(∫ 1

0

d

dt

(
a(|θt|)θt

)
dx
)

: (ξ − η)

=
(∫ 1

0

(
a′(|θt|)|θt|+ a(|θt|)

)
dx
)

: (ξ − η)2

=
(∫ 1

0

a(|θt|)
(a′(|θt|)|θt|

a(|θt|)
+ 1
)
dx
)

: (ξ − η)2 ≥ 0
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by the equations (1.2) and (1.3). �

Lemma 3.6. The Young measure νx generated by Duk satisfies(
a(|λ|)λ− a(|Du|)Du

)
: (λ−Du) = 0 on supp νx.

Proof . According to Lemma 3.4, we have∫
Ω

∫
Mm×n

(
a(|λ|)λ− a(|Du|)Du

)
: (λ−Du)dνx(λ)dx ≤ 0,

and by vertue of the monotonicity of the function a in Lemma 3.5, it follows that the above integral
is nonnegative, thus must vanish with respect to the product measure dνx(λ)⊗ dx. Hence(

a(|λ|)λ− a(|Du|)Du
)

: (λ−Du) = 0 on supp νx.

�

4. Proof of Theorem 1.1

Now, we have all ingredients to pass to the limit in the approximating equations by considering
both conditions (H0) and (H1). Start with the condition (H0). We show first that for almost every
x ∈ Ω, supp νx ⊂ Kx, where

Kx =
{
λ ∈Mm×n : b(λ) = b(Du) + a(|Du|)Du : (λ−Du)

}
.

If λ ∈ supp νx, then by Lemma 3.6

(1− τ)
(
a(|λ|)λ− a(|Du|)Du

)
: (λ−Du) = 0 for all τ ∈ [0, 1]. (4.1)

It follows by Lemma 3.5 that

0 ≤ (1− τ)
(
a(|λ|)λ− a(|Du+ τ(λ−Du)|)(Du+ τ(λ−Du))

)
: (λ−Du)

(4.1)
= (1− τ)

(
a(|Du|)Du− a(|Du+ τ(λ−Du)|)(Du+ τ(λ−Du))

)
: (λ−Du).

(4.2)

Remark that, by the monotonicity of the function a, we have(
a(|Du|)Du− a(|Du+ τ(λ−Du)|)(Du+ τ(λ−Du))

)
: τ(λ−Du) ≤ 0,

and since τ ∈ [0, 1](
a(|Du|)Du− a(|Du+ τ(λ−Du)|)(Du+ τ(λ−Du))

)
: (1− τ)(λ−Du) ≤ 0. (4.3)

From (4.2) and (4.3), we get for τ ∈ [0, 1] that(
a(|Du|)Du− a(|Du+ τ(λ−Du)|)(Du+ τ(λ−Du))

)
: (λ−Du) = 0,

i.e.,
a(|Du|)Du : (λ−Du) = a(|Du+ τ(λ−Du)|)(Du+ τ(λ−Du)) : (λ−Du).

By integrating the above equality over [0, 1] and using the fact that

a(|Du+ τ(λ−Du)|)(Du+ τ(λ−Du)) : (λ−Du) =
∂b

∂τ
(Du+ τ(λ−Du)) : (λ−Du),
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we obtain

b(λ) = b(Du) +

∫ 1

0

a(|Du|)Du : (λ−Du)dτ

= b(Du) + a(|Du|)Du : (λ−Du)

as desired, thus λ ∈ Kx, i.e., supp νx ⊂ Kx. Now, the convexity of the potential b implies that

b(λ) ≥ b(Du) + a(|Du|)Du : (λ−Du)︸ ︷︷ ︸
=:B(λ)

for all λ ∈Mm×n.

Since the mapping λ 7→ b(λ) is of class C1, for every ξ ∈Mm×n, τ ∈ R

b(λ+ τξ)− b(λ)

τ
≥ B(λ+ τξ)−B(λ)

τ
if τ > 0

b(λ+ τξ)− b(λ)

τ
≤ B(λ+ τξ)−B(λ)

τ
if τ < 0.

Hence Db = DB, i.e.,

a(|λ|)λ = a(|Du|)Du for all λ ∈ Kx ⊃ supp νx. (4.4)

The equiintegrability of a(|Duk|)Duk implies that its weak L1-limit is given by

a(x) :=

∫
Mm×n

a(|λ|)λdνx(λ)

(4.4)
=

∫
supp νx

a(|Du|)Dudνx(λ)

= a(|Du|)Du
∫

supp νx

dνx(λ)︸ ︷︷ ︸
=:1

= a(|Du|)Du.

(4.5)

Now, consider the continuous function

g(λ) =
∣∣a(|λ|)λ− a(x)

∣∣, λ ∈Mm×n.

Since a(|Duk|)Duk is equiintegrable, then gk(x) := g(Duk) is equiintegrable and its weak L1-limit is
given by

gk ⇀ g in L1(Ω) (4.6)

where

g(x) =

∫
Mm×n

∣∣a(|λ|)λ− a(x)
∣∣dνx(λ)

(4.5)
=

∫
supp νx

∣∣a(|Du|)Du− a(x)
∣∣dνx(λ) = 0.

As a matter of fact, the convergence in (4.6) is strong since gk ≥ 0. Therefore

lim
k→∞

∫
Ω

a(|Duk|)Duk : Dϕdx =

∫
Ω

a(|Du|)Du : Dϕdx ∀ϕ ∈ ∪
k≥1

Wk.
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Now, for the case (H1), we argue by contradiction and suppose that νx is not a Dirac measure
on a set x ∈ Ω′ of positive Lebesgue measure |Ω′| > 0. We have λ = 〈νx, id〉 = Du(x) for a.e. x ∈ Ω,
thus ∫

Mm×n

a(|λ|)λ : (λ− λ)dνx(λ) =

∫
Mm×n

(
a(|λ|)λ : λ− a(|λ|)λ : λ

)
dνx(λ)

= a(|λ|)λ :

∫
Mm×n

λdνx(λ)︸ ︷︷ ︸
=:λ

− a(|λ|)λ : λ

∫
Mm×n

dνx(λ)︸ ︷︷ ︸
=:1

= 0.

By vertue of the strict p(x)-quasimonotone in (H1), we obtain then∫
Mm×n

a(|λ|)λ : λdνx(λ) >

∫
Mm×n

a(|λ|) : λdνx(λ).

Integrating the above inequality over Ω and using Lemma 3.4, we get∫
Ω

∫
Mm×n

a(|λ|)λ : λdνx(λ)dx >

∫
Ω

∫
Mm×n

a(|λ|)λ : λdνx(λ)dx

≥
∫

Ω

∫
Mm×n

a(|λ|)λ : λdνx(λ)dx,

which is a contradiction. Therefore νx is a Dirac measure and we can write νx = δh(x). Then

h(x) =

∫
Mm×n

λdδh(x)(λ) =

∫
Mm×n

λdνx(λ) = Du(x).

Hence νx = δDu(x). By vertue of the Eq. (2.2), it follows that Duk → Du in measure and al-
most everywhere. The continuity of the function a implies that a(|Duk|)Duk → a(|Du|)Du almost
everywhere in Ω. Since a(|Duk|)Duk is equiintegrable, the Vitali Theorem gives∫

Ω

(
a(|Duk|)Duk − a(|Du|)Du

)
: Dϕdx→ 0 as k →∞.

The density of ∪
k≥1

Wk in W
1,p(x)
0 (Ω;Rm) implies that u is a weak solution of (1.1) and the proof of

Theorem 1.1 is finished.
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