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Abstract

In this paper, we suggested an optimal pricing policy for deteriorating items. To reduce the rate of
deterioration, we apply a preservation technology and calculate the optimal preservation technology
investment. The demand function is dependent on time, stock and selling price. Shortages are allowed
in our consideration, and two cases are studied, first complete back-ordering and the second one is
partially back-ordering. Our main objective is to find the optimal cycle length, ordering frequency
the optimal preservation technology investment and the optimal selling price that maximizes the total
profit. This model proves that the total profit is a concave function of the selling price, ordering
frequency, preservation technology investment and time cycle. Numerical examples are provided to
illustrate the features and advances of the model. A sensitivity analysis is performed in order to
assess the stability of the proposed model.

Keywords: Dynamic pricing, Time and stock dependent demand, Preservation technology
investment. Controllable deterioration rate, Optimization
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1. Introduction

In classical inventory models, it is assumed that the items can be preserved for an infinite time
without any change of their physical status. However, in reality, many items become partially or
totally unusable a certain time period. In real life, the deterioration phenomenon is observed for
inventory items such as fruits, vegetables, pharmaceuticals, volatile liquids, and others. In general, it
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is found that products always deteriorate continuously with respect to time, but deterioration can be
controlled by applying some preservation technology. So in this paper, an optimal pricing policy is
developed for deteriorating products by using the preservation technology that reduce the economic
losses and improve the customer service.

The fundamental result in the development of economic order quantity model with deterio-
ration is that of Ghare and Schrader [3] who considered an exponentially decaying inventory for
a constant demand. However, as evident by chemical and basic sciences, the rate of deterioration
especially with regard to perishable food items is seldom constant. Goyal and Giri [4] presented
several tendencies of the modeling of deteriorating inventory.

Zauberman et al. [21] presented a method for color retention of Litchi fruits with SO2 fumiga-
tion. In order to reduce the deterioration rate and to extend the expiration date of the product,
preservation technologies like procedural changes and specialized equipment acquisition have been
mathematically modeled by many researchers. In recent years, deteriorating inventory problems
have been widely studied by many researchers. As presented by Wee [16], deterioration was defined
as decay, damage, spoilage, evaporation, obsolescence, pilferage, loss of utility or loss of marginal
value of commodities that result in decreasing usefulness. Yang et al. [17] developed the trade off
between preservation technology investment and the optimal dynamic trade credit for a deteriorating
inventory model. Hsu et al. [5] designed a deteriorating inventory model considering constants dete-
rioration and demand rates, where in preservation technology also included. Moreover, that model
also considered the fixed cost of preservation technology which was independent of replenishment
cycle length.

Although most of the researchers visualized that deterioration begins as soon as the items are
produced or those are received by retailers, the reality reveals something different. In practice, most
of the items begin deteriorate after a certain time, which is termed as ‘non-instantaneous deterio-
ration’. For example, fresh fruits or vegetables do not deteriorate during the early stage of storage.
The time period after which deterioration would start plays an important role while setting opti-
mal strategies. Therefore, many enterprises have studied the causes of deterioration and developed
preservation technologies to control it and to increase the profit. However, the deterioration rate of
inventories mentioned above is viewed as an exogenous variable, which is not subject to control. In
practice, the deterioration rate of products can be controlled and reduced through various effects like
procedural changes and specialized equipment acquisition.

Nevertheless, The deterioration rate in the research papers mentioned previously is addressed
an exogenous variable, either constant or varying thro time, which is not under control. In fact,
several firms have recognized that it is not worthy to manage and control the items deterioration
rate and have implemented several activity. Furthermore, thro an effective investment in decreasing
the deterioration rate, the firms avoid unnecessary waste and reduce obviously economic losses and
hence improve their business competitiveness.

Optimization of the product portfolio has been recognized as a critical problem in industry, man-
agement, economy and so on. It aims at the selection of an optimal mix of the products to offer in the
target market. So while solving some problems a multi objective integer non-linear constraint model
was developed by Ahmadi and Nikabadi [1]. Having taken some realistic problem many researcher
as Nadjafikhah [12]; Ezzati et al. [2]; Kazemi and Asl [6] presented some special model. Wu
et al. [15] derived an optimal replenishment policy for items with non-instantaneous deterioration,
stock-dependent demand and partial backlogging. Zhang et al. [19] proposed a pricing policies for de-
teriorating items with preservation technology investment without shortage and stock. Pal et al. [13]
derived a deteriorating inventory model with stock and price-sensitive demand, where they assumed
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inflation and delay in payment. Shah and Shah [14] attempt the same problem. However, they could
not prove the existence of the optimal solution analytically. Moreover, they considered deterioration
to start from the very beginning of replenishment time. Mishra [11] developed an inventory model
with controllable deterioration rate under time-dependent demand and time-varying holding cost.
Liu et al. [9] provided joint dynamic pricing and investment strategy for foods perishing at a constant
rate with price and quality dependent demand. Zhang et al. [20] studied the integrated supply chain
model for deteriorating items, in this model both manufacturer and retailer cooperatively invest in
preservation technology in order to reduce their deterioration cost under different realistic scenarios.

Table 1: A comparison of the present article with the existing literature on perservation technology

Authors Demand pattern Shortage Deterioration Preservation
technology

Zhang et al. Price dependent No Constant Considered
(2014)
Pal et al. Price dependent Yes Constant Not considered
(2014)
Shah et al. Price and stock Yes Constant Considered
(2014) dependent
Mishra et al. Time-dependent Yes Non-insta Not considered
(2014) -ntanous
Liu et al. Price dependent No Constant Considered
(2015)
Zhang et al. Price dependent No Constant Considered
(2016)
Lu et al. Price and stock No Constant Not considered
(2016) dependent
Khedlekar et al. Price dependent No Constant Considered
(2016)
Mishra et al. Price and stock Yes Constant Considered
(2017) dependent
This work Price, stock and Yes Constant Considered

time dependent

Thereafter, Lu et al. [8] presented an inventory model, in which they suggested the joint
dynamic pricing and replenishment policy for a deteriorating item under limited capacity. Khedlekar
et al. [7] established an inventory model with declining demand under preservation technology
investment.

In this paper, we have considered the constant deterioration rate and allowed the retailer to invest
in preservation technology to reduce the deterioration. We have also considered the stock, time and
price dependent demand scenario with linear form of dependence. Shortages are allowed and two
cases are studied first is complete back-ordering and second is partial back-ordering as Mishra et al.
[10]. The contribution of the present work with respect to the existing literature is shown in Table
1. The rest of the paper is designed as follows. Section 2 provides the notation and assumption
used to formulate the model. The model is formulated and analyzed in section 3. Section 4 derives
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theoretical result and optimal solution. The proposed model is illustrated though some numerical in
section 5. Section 6 does a sensitivity analysis. Finally, conclusions are made and future research
direction is suggested in section 7.

2. Assumptions & Notations

We have designed the proposed model by using the following assumptions and notations.

Assumptions

1. This model is developed for a single item, a single supplier, a single manufacturer,

2. Shortage is allowed, and is mixture of partially backlogging and lost sales,

3. Lead time is zero,

4. The demand function B(p, t) is a function of instantaneous stock level I(t), time t and selling
price p, which is defined as

B(p, t) =

{
a+ b1t− bp+ βI(t), I(t) > 0

a+ b1t− bp, I(t) ≤ 0.

where 0 ≤ β ≤ 1 is stock dependent consumption rate parameter,
a, b > 0, b, is real and p > 0,

5. The original rate of deterioration is constant, and is θ, where 0 ≤ θ ≤ 1,

6. The deterioration rate is reduced through investment in preservation technology α. The pro-
portion of reduced deterioration rate is λ(α) = λ0e

−δα, where δ > 0, and α > 0 and λ(α)
is a continuous, convex, decreasing function, where λ(0) = λ0, limα→∞λ(α) = 0. Note that
λ

′
(α) < 0 and λ

′′
(α) > 0,

7. The preservation technology is used for controlling the deterioration rate,

8. The planning horizon is finite.

Notations

The following notation are used throughout the paper

Parameters

I(t) – On-hand inventory of product at time t,

t1 – The time at which the inventory level reaches zero,

λ(α) – Reduced deterioration rate due to use of preservation technology,

λ0 – Deterioration rate without preservation technology investment,

δ – Parameter of exponential distribution,

β – Stock dependent consumption rate parameter,

B(p, t) – Demand rate function is a function of stock level I(t), selling price p, and time t,

a – Demand scale parameter,

b – Price sensitive parameter,

b1 – Time sensitive parameter,

c – The purchase cost per unit,

d – Deterioration cost per unit,

h – The inventory holding cost per unit per time unit,

η – Backordering parameter,
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c1 – The cost of lost sales per unit,

s – Shortage cost unit per unit time,

A – The ordering cost per order,

S(T
n

) – Maximum shortage level for complete backordering,

B1(t) – Backorder level at any time t for partial partial backordering,

L(t) – Number of lost sales at any time t,

B1(
T
n

) – Maximum backorder level for partial backordering,

T̂P – Total profit of the selling season,

Q – Ordering quantity,

Dτ – Total deteriorated items in interval [0, t1].

Decision variables

n – Ordering frequency,

p – Unit selling price,

α – Preservation technology cost per unit time for reducing the deterioration rate,

T – Inventory cycle length.

3. Mathematical Formulation

Given the assumptions and notations mentioned before, this inventory model has two cases: (i)
with shortage and complete backordering and (ii) with shortages and partial backordering. The
detailed derivation of both cases are given below.

Case I: The Inventory Model with Complete Backordering

In this section, we mathematically model the proposed inventory control problem. The inventory
fluctuation over time is shown in figure 1. The figure also delineates the effect of preservation tech-
nology investment. The one curve indicates inventory level when preservation technology investment
has applied while other one curve is for without preservation technology investment. Here, I(t) rep-
resents the inventory level at any time in the interval 0 ≤ t ≤ T

n
. It is important to remark that the

inventory level depleted due to demand and deterioration of product within the interval 0 ≤ t ≤ t1.
At the time t1 inventory level reaches at zero. Subsequently, shortage start considered to happen
and total demand in the interval [t1,

T
n

] is entirely backordered. The variation of inventory with time
t thus be described by the following differential equation:

dI(t)
dt

=

{
−
(
a+ b1t− bp+ βI(t)

)
− λ(α)I(t), if 0 ≤ t ≤ t1.

−
(
a+ b1t− bp

)
, if t1 ≤ t ≤ T

n
.

(3.1)

Considering the boundary condition I(t) = 0 at t = t1. The solution of Eq.(3.1) is

I(t) =



1
β+λ(α)2

[(
(λ(α) + β)

(
a− bp+ b1t1

)
− b1

)
e(t1−t)(λ(α)+β)

+

(
b1 − (λ(α) + β)

(
a− bp+ b1t1

))
e(t−t1)(λ(α)+β)

]
, if 0 ≤ t ≤ t1

−
(
a+ b1

2
− bp

)(
t2 − t21

)
, if t1 ≤ t ≤ T

n
.

(3.2)



254 Tiwari, Khedlekar, Khedlekar

Figure 1: Logistic diagram of inventory system with complete backordering

The initial stock (S) for each cycle is calculated with

S = I(0) =
1

β + λ(α)2

[(
(λ(α) + β)

(
a− bp+ b1t1

)
− b1

)
et1(λ(α)+β)

+

(
b1 − (λ(α) + β)

(
a− bp+ b1t1

))
e−t1(λ(α)+β)

] (3.3)

Total number of items deteriorated during [0, t1]

Dτ = − t1
(
a− bp+

b1
2
t1
)

+
1

β + λ(α)2

[(
(λ(α) + β)

(
a− bp

)
+ b1

)
+

(
(λ(α) + β)

(
a− bp+ b1t1

)
+ b1

)
et1(λ(α)+β)

] (3.4)

The order quantity per cycle is determined with

Q =
T

n2

(
an− bpn+

b1
2
T
)

+
1

β + λ(α)2

[(
(λ(α) + β)

(
a− bp

)
+ b1

)
+

(
(λ(α) + β)

(
a− bp+ b1t1

)
+ b1

)
et1(λ(α)+β)

]
− t1

(
a− bp+

b1
2
t1
) (3.5)

Now, to calculate the profit function, we calculate the following terms:

Sales Revenue

ŜR = pT
(
a− bp+

b1
2n
T
)

(3.6)
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Purchase Cost

P̂C =ncQ =
cT

n

(
an− bpn+

b1
2
T
)

+
nh

β + λ(α)2

[(
(λ(α) + β)

(
a− bp

)
+ b1

)
+

(
(λ(α) + β)

(
a− bp+ b1t1

)
+ b1

)
et1(λ(α)+β)

]
− nct1

(
a− bp+

b1
2
t1
) (3.7)

Holding Cost

ĤC = nh

∫ t1

0

I(t)dt

ĤC =
nh

(λ(α) + β)2

[(
bp− a

){
1 + (λ(α) + β)t1

}
+ b1(t1 −

1

2
t21)

1

β + λ(α)

{(
(λ(α) + β)

(
a− bp+ b1t1

)
− b1

)
et1(λ(α)+β)

}] (3.8)

Shortage Cost

ŜC = ns

∫ T
n

t1

I(t)dt (3.9)

ŜC = − 1

6n2

[
s(T − nt1)

2

(
3n(a− bp) + b1(T + 2nt1)

)]
(3.10)

Deterioration Cost

D̂C =nd

[(T
n
− t1

)(
a− bp

)
+
b1
2

(T
n
− t1

)
+

1

β + λ(α)2

{(
b1 − (λ(α) + β)

(
a− bp

))
+

(
(λ(α) + β)

(
a− bp+ b1t1

)
− b1

)
et1(λ(α)+β)

}
+

1

β + λ(α)3

{
2β

((
λ(α) + β

)(
a− bp

)
− b1

)
et1(λ(α)+β)

+

(
2(a− bp) + b1t1

){
λ(α)t1

(
β2 + 2βλ(α) + λ(α)2

)}
+ 2β2(bp− a)

}]
(3.11)

Ordering Cost
ÔC = nA (3.12)

Preservation Technology Cost

P̂ TC = αT (3.13)

Therefore, the total profit of the inventory system is expressed by

T̂P = ŜR−
(
P̂C + ĤC + ŜC + D̂C + ÔC + P̂ TC

)
(3.14)

Using t1 = γT
n

, 0 < γ < 1, and for the small value of x, the Taylor series that the exponential function

has a approximation of ex ≈ 1 + x+ x2

2!
. Using this result and simplifying, we obtained the following
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profit function:

T̂P (n, α, p, T ) = − 1

6n2

[
6An3 + T

{
6n2α + 3bnp

(
2n(p− c) + T

(
s− 2sγ − (h− s+ cβ)γ2

))
+ 2an

(
2n(c− p) − sT + 2sTγ + T (h− s+ cβ)γ2

)}
+ b1T

{
3n(c− p) − sT + 3sTγ2 + T

(
3h− 2s+ 3cβ

)
γ3
}

+ 3d

{
T

(
− n(γ − 1)

(
2n(a− bp) + b1T (1 + γ)

))
+ Tγ2

(
n(a− bp) + b1Tγ

)
λ(α)

}
+ 3cT 2γ2

(
n(a− bp) + b1Tγ

)
λ(α)

]
(3.15)

Case II: The Inventory Model with Partial Backordering

In this case the differential equations which represent the inventory are expressed below;

Figure 2: Logistic diagram of inventory system with partial backordering

dI(t)
dt

=

{
−
(
a+ b1t− bp+ βI(t)

)
− λ(α)I(t), if 0 ≤ t ≤ t1(

a+ b1t− bp
)
e−η(

T
n
−t), if t1 ≤ t ≤ T

n
.

(3.16)

In this case the first differential equation representing inventory level during period [0, t1] is similar
to case I.
Now, we solve the second differential equation:

dI(t)

dt
=
(
a+ b1t− bp

)
e−η(

T
n
−t), t1 ≤ t ≤ T

n
. (3.17)
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with the boundary condition I(t1) = 0. Solving the differential equation, we get the inventory level
as follows:

I(t) =
1

η2

[(
b1 − η

(
a− bp+ b1t

))
e(t−

T
n
)η +

(
η
(
a− bp+ b1t1

)
− b1

)
e(t1−

T
n
)η

]
(3.18)

The number of lost sales at time t is given by

L(t) =

∫ t

t1

(
a+ b1t− bp

){
1 − e(t−

T
n
)η

}
dt (3.19)

L(t) =
1

η2

[(
η
(
bp− a− b1t

)
+ b1

)
e(t−

T
n
)η +

(
η
(
a− bp− b1t1

)
− b1

)
e(t1−

T
n
)η + b1

(
t2 − t21

)
η2
]
(3.20)

Putting t = T
n

into Eq. (3.24), the maximum backorder level per cycle is

I
(T
n

)
=

1

η2

[(
b1 − η

(
a− bp+ b1

T

n

))
+

(
η
(
a− bp+ b1t1

)
− b1

)
e(t1−

T
n
)η

]
(3.21)

Hence, the order quantity over the replenishment cycle is determined

Q = S + I

(
T

n

)
(3.22)

Q =
1

β + λ(α)2

[(
(λ(α) + β)

(
a− bp+ b1t1

)
− b1

)
et1(λ(α)+β)

+

(
b1 − (λ(α) + β)

(
a− bp+ b1t1

))
e−t1(λ(α)+β)

]
+

1

η2

[(
b1 − η

(
a− bp+ b1

T

n

))
+

(
η
(
a− bp+ b1t1

)
− b1

)
e(t1−

T
n
)η

] (3.23)

The shortage Cost

ŜC = ns

∫ T
n

t1

I(t)dt (3.24)

ŜC =
s

η3

[{
ηn
(
t21η + T − 2t1

)
+ 2n+ tη − nη

(
1 + T − t1η

)(
a− bp

)}
e(t1−

T
n
)η

+
(
a− bp

)
nη + b1

(
Tη − 2n

)] (3.25)

The Lost Sale Cost

L̂SC = nc1

∫ T
n

t1

(
a+ b1t− bp

){
1 − e(t−

T
n
)η

}
dt

L̂SC =
c1

2nη3

[{
2ηn2

(
a− bp

)
− b1

(
1 − t1η

)}
e(t1−

T
n
)η

2nη
(
a− bp

){
n− η(1 − n)

}
− b1

{
2n(Tη − n) − η2(T 2 − t21)

}] (3.26)
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Therefore, the total profit of the inventory system is expressed by

T̂P = ŜR−
(
P̂C + L̂SC + ĤC + ŜC + D̂C + ÔC + P̂ TC

)
(3.27)

Using t1 = γT
n

, 0 < γ < 1, and for the small value of x, the Taylor series establishes that the

exponential function has a approximation of ex ≈ 1 + x+ x2

2!
. Using this result and amplifying, it is

obtained the following profit function:

T̂P (n, α, p, T ) =
1

4n5η2

[
nη

{
− 4n4sT 2(a− bp)(γ − 1) − 2n3η

(
2An2 + T

(
2nα− 2(a− bp)

(2sT + np− cn) + 4sTγ(a− bp) + Tγ2(a− bp)(h+ cβ)
))

− 2n(a− bp)T 2

(4sT + c1n(γ − 1))(γ − 1)η2 − 4nsT 4(γ − 1)η2 − sT 5η4(a− bp)(γ − 1)

}
− b1T

{
4n4sTη(4 + (γ − 5)γ) − 8n5s(γ − 1) + 2n3T

(
c(n+ Tβγ3) + T (hγ3

+ 4s(2(γ − 3)γ))
)
η2 + 2n2T 2(γ − 1)2(4sT + c1nγ)η3 + 2nsT 4(1 + γ(2γ − 3))η4

+ sT 5(γ − 1)γη5
}
− 2n3η2

{
d

(
T
(
− n(γ − 1)(2an− 2bnp+ b1T (1 + γ)

)
+ Tγ2(an− bnp+ b1Tγ)λ(α)

)
+ cT 2γ2(an− bnp+ b1Tγ)λ(α)

}]
(3.28)

4. Theoretical Result and Optimal Solution

This section determines the optimal values of selling price p, preservation technology cost α,
ordering frequency n and inventory cycle length T which maximizes the total profit T̂P (n, α, p, T ).

We also established some theorems which shows the concavity of retailer’s total profit T̂P (n, α, p, T ).

4.1. The EOQ Inventory Model with Complete Backordering

Theorem 4.1. When preservation technology α, selling price p and inventory cycle length T are
fixed, then the profit function T̂P (n, α, p, T ) is concave with respect to ordering frequency n.

Theorem 4.2. There exists a unique value of selling price p that maximizes profit function T̂P (n, α, p, T )
for fixed values of preservation technology α, inventory cycle length T and ordering frequency n.

Proof. The first and second order partial derivatives of the total profit function T̂P (n, α, p, T ) given
by Eq. (3.15) with respect to p are given below:

∂(T̂P (n, α, p, T ))

∂p
=
T

2n

[
2an+ b1T + b(c+ d)Tγ2λ(α) + b

{
2n(c+ d− 2p) − sT − 2dnγ

+ 2sTγ + (T (h− s+ cβ)γ2
}] (4.1)
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Set ∂(T̂ P (n,α,p,T ))
∂p

= 0, and solve it for the optimal p∗

p∗ =
1

4bn

[
2an+ b1T + b(c+ d)Tγ2λ(α) + b

{
2n(c+ d) − sT − 2dnγ

+ 2sTγ + T (h− s+ cβ)γ2
}] (4.2)

∂2(T̂P (n, α, p, T ))

∂p2
= −2bT < 0 (4.3)

Hence, p∗ is global optimal that optimizes the profit function T̂P (n, α, p, T ) given by Eq. (3.15) for
fixed values of preservation technology α, inventory cycle length T and ordering frequency n.

This completes the proof of Th. (4.2).

Theorem 4.3. When ordering frequency n, selling price p and inventory cycle length T are fixed,
then the profit function T̂P (n, α, p, T ) is concave with respect to preservation technology α.

Proof. The second order partial derivative of the total profit function T̂P (n, α, p, T ) given by Eq.
(3.15) with respect to α, is given below:

∂2(T̂P (n, α, p, T ))

∂α2
= −

(c+ d)e−αδTγ2
(
an− bnp+ b1Tγ

)
δ2λ0

2n2
< 0 (4.4)

Set ∂(T̂ P (n,α,p,T ))
∂α

= 0 and solve it for the optimal α∗

clearly, from Eq. (4.5) it is concluded that the profit function given Eq. (3.15), is concave with
respect to α.

Theorem 4.4. When preservation technology α, selling price p and ordering frequency n are fixed,
then the profit function T̂P (n, α, p, T ) is concave with respect to inventory cycle length T .

Proof. The second order partial derivative of the total profit function T̂P (n, α, p, T ) given by Eq.
(3.15) with respect to T , is given below:

∂2(T̂P (n, α, p, T ))

∂T 2
=
e−αδ

n2

[
eαδ
{
n(a− bp)

(
s
(
(γ − 1)2 − (h+ cβ)γ2

)
+ b1

(
sT − n(c+ d− p) + (dn− 3sT )γ2

+ T (2s− 3h− 3cβ)γ3
)}

− (c+ d)γ2(an− bnp+ 3b1Tγ)λ0

] (4.5)

Now, we check with help of Mathematica for any n that,

∂2(T̂P (n, α, p, T ))

∂T 2
< 0 (4.6)

Therefore, it is concluded that the profit function given by Eq. (3.15), is concave function in T .
This completes the proof of Th. (4.4).

Theorem 4.5. When ordering frequency n is fixed, the profit function T̂P (n, α, p, T ) is concave if
the corresponding Hessian matrix H of expected profit function is negative definite. Where
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H=


∂2(T̂ P (n,α,p,T ))

∂p2
∂2(T̂ P (n,α,p,T ))

∂p∂α
∂2(T̂ P (n,α,p,T ))

∂p∂T
∂2(T̂ P (n,α,p,T ))

∂α∂p
∂2(T̂ P (n,α,p,T ))

∂α2

∂2(T̂ P (n,α,p,T ))
∂α∂T

∂2(T̂ P (n,α,p,T ))
∂T∂p

∂2(T̂ P (n,α,p,T ))
∂T∂α

∂2(T̂ P (n,α,p,T ))
∂T 2


Proof. Differentiating Eq. (3.15) with respect to p, α, T , we have

∂(T̂P (n, α, p, T ))

∂p
=
T

2n

[
2an+ b1T + b(c+ d)Tγ2λ(α) + b

{
2n(c+ d− 2p) − sT − 2dnγ

+ 2sTγ + (T (h− s+ cβ)γ2
}]

∂(T̂P (n, α, p, T ))

∂α
=
T

2n2

[
(c+ d)e−αδTγ2

(
an− bnp+ b1Tγ

)
δλ0 − 2n2

]
∂(T̂P (n, α, p, T ))

∂T
=
e−αδ

2n2

[
eαδ
{
− 2n2α + 2nbp

(
n(c+ d− p) − sT − dnγ + 2sTγ

+ T (h− s+ cβ)γ2
)

+ b1T

(
sT − 2n(c+ d− p) + (2nd− 3sT )γ2

+ T (2s− 3h− 3cβ)γ3
)

+ 2an

(
np+ dn(γ − 1) + T

(
s(γ − 1)2 − hγ2

)
− c
(
n+ Tβγ2

))}
− (c+ d)Tγ2(2an− 2bnp+ 3b1Tγ)λ0

]
Using the first-order condition of classical optimization, we solve p, α, and T from the equations
∂(T̂ P (n,α,p,T ))

∂p
= 0, ∂(T̂ P (n,α,p,T ))

∂α
= 0, and ∂(T̂ P (n,α,p,T ))

∂T
= 0

Now, ∂(T̂ P (n,α,p,T ))
∂p

= 0 gives

p∗ =
1

4bn

[
2an+ b1T + b(c+ d)Tγ2λ(α) + b

{
2n(c+ d) − sT − 2dnγ

+ 2sTγ + T (h− s+ cβ)γ2
}] (4.7)

substituting the value of p in the equations ∂(T̂ P (n,α,p,T ))
∂α

, and ∂(T̂ P (n,α,p,T ))
∂T

and then solving them, we
get the solution of decision variable p, α, T of the model.
The solutions will be optimal if the second-order condition of optimization method will be satisfied.
Now we find the second order derivatives and putting the value in Hessian matrix the solution will
be optimal if the corresponding Hessian matrix of profit function is negative definite, i.e. if all the
eigenvalues of the Hessian matrix, are negative then the profit function is concave.

We verified the above Th. (4.5) in Ex. (1).

4.2. The EOQ Inventory Model with Partial Backordering

Theorem 4.6. When preservation technology α, selling price p and inventory cycle length T are
fixed, then the profit function T̂P (n, α, p, T ) is concave with respect to ordering frequency n.

Theorem 4.7. There exists a unique value of selling price p that maximizes profit function T̂P (n, α, p, T )
for fixed values of preservation technology α, inventory cycle length T and ordering frequency n.
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Proof. The second order partial derivative of the total profit function T̂P (n, α, p, T ) given by Eq.

(3.28) with respect to p, is given below: Set ∂(T̂ P (n,α,p,T ))
∂p

= 0 and solve it for the optimal p∗

∂2(T̂P (n, α, p, T ))

∂p2
= −2bT < 0 (4.8)

Hence, p∗ is global optimal that optimizes the profit function T̂P (n, α, p, T ) given by Eq. (3.28) for
fixed values of preservation technology α, inventory cycle length T and ordering frequency n.

This completes the proof of Th. (4.2).

5. Illustrative Example

In this section, we presented some numerical examples to illustrate the mathematical formulation.
The numerical examples corresponds to complete and partial backordering considering a demand
function.

5.1. Illustrative Example for Completely Backordering

Example 1. We consider the values of the parameters in appropriate units as follows: A = 400
per order, a = 300 units, b = 5, c = 10 per unit, d = 5 per unit, h = 0.2 per unit/week, s = 2 per
unit/week, β = 0.5, γ = 0.9, λ0 = 0.001, δ = 0.8, b1 = 20. For different value of n, the optimal profit

is computed. Note that when n = 5, then the optimal results for the model are T̂P = 116451, Q∗ =
8351, α∗ = 2.39, p∗ = 50.53, T = 59.85 weeks. The above results are optimal as the eigenvalues of
the Hessian matrix are −644.79, −91.13, −47.84. So the profit

function is concave and unimodal function.
Example 2. Consider the following parameter values T = 80 weeks, A = 400 per order, a = 30 units,
b = 0.3 c = 15 per unit, d = 5 per unit, h = 0.2 per unit/week, s = 2 per unit/week, β = 0.5, γ = 0.9,
λ0 = 0.002, δ = 0.9, b1 = 5. For distinct value of 9, the optimal profit is computed. As it shown in
Table 2, the profit function is concave with respect to ordering frequency n. Note that when n = 8,
the profit function attains its maximum. Hence the maximum value for profit is T̂P = 58960.1.
Figure 3 schemes the total profit with respect to preservation cost α and selling price p. It is easy to
see that the profit function T̂P is jointly concave in preservation cost α and selling price p.

Table 2: The optimal solution is a global maximum at n = 9

n p∗ α∗ Q∗ T̂P
∗

6 134.04 2.52 32284 50313.50
7 123.14 2.25 11924 55743.30
8 114.97 1.97 5578 58131.20
9 108.61 1.75 3062 58960.10
10 103.53 1.56 1882 58951.54
11 99.37 1.38 1257 58481.60
12 95.90 1.32 894 57754.50
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Figure 3: The total profit function with respect to preservation cost α and selling price p

5.2. Illustrative Example for Partial Backordering

Example 3. Consider the the following parameter values T = 80 weeks, A = 400 per order, a = 70
units, b = 0.9 c = 10 per unit, d = 5 per unit, h = 0.02 per unit/week, s = 2 per unit/week, β = 0.5,
γ = 0.9, λ0 = 0.001, δ = 0.9, b1 = 20, η = 0.1, c1 = 25. For distinct value of n, the optimal profit is
computed. As it shown in Table 3, the profit function is concave with respect to ordering frequency
n. Notice that when n = 9, the profit function attains its maximum value. Hence the maximum
value for profit is T̂P = 66017.2. Figure 4 shows the total profit with respect to preservation cost
α and selling price p. It is easy to see that the profit function T̂P is jointly concave in preservation
cost α and selling price p.

6. Sensitive Analysis

The total profit function represents real solutions in which the system parameters are considered
as static values. We observed the sensitive of the key parameters which help to decision makers
to take the best decisions with respect to the situation at hand and how the objects change. For
this purpose, we studies the effects of changes in the inventory system parameters (a, b, c) having
changed each of the parameters by ±30% and ±15% taking one parameter at a time and keeping
the remaining parameters unchanged.

Based on the result of table 4, the following managerial insights are provided

(a) When the value of scaling parameter a increases and other parameters values are fixed, then it

can be observed that the optimal total profit per unit time T̂P
∗
, the optimal selling price p∗, the

optimal order quantity Q∗ and optimal the optimal preservation cost α∗ increase. This shows
that when the scaling factor a increase, then the market demand rate will increase, making
that the firms increases the lot size per replenishment cycle. Furthermore, the firm will place
the selling price higher to obtain more profit. The firm will also invest more capital into the
improvement of preservation technology to reduce the deterioration rate.

(b) When the price elasticity b increases, then it can be observed that the optimal total profit per

unit time T̂P
∗
, the optimal selling price p∗, the optimal order quantity Q∗ and optimal the

optimal preservation cost α∗ decreases. It suggests that as price elasticity b increases, the firm
will bring down the selling price to avoid the demand rate decreases dramatically. By reducing
the selling price, the order quantity will shrink and due to this, the total profit unit per time
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Table 3: Effect of changes of parameters on optimal solution for Ex. 2 for complete backloging

Parameters % Change p∗ α∗ Q∗ T̂P
∗

a –30 93.63 1.61 2575 17232
–15 101.11 1.68 2818 36745.9
+15 116.11 1.81 3305 83874.6
+30 123.61 1.88 3548 111489

b –30 145.91 1.81 3272 133526
–15 123.97 1.78 3167 89367.8
+15 97.26 1.72 2957 36922.2
+30 88.53 1.69 2852 20357

c –30 102.31 1.52 3269 91249.5
–15 105.46 1.64 3165 74865.9
+15 111.76 1.84 2959 43531.7
+30 114.91 1.92 2856 28580.37

will also decrease significantly. Further, the firm has an incentive to increase the preservation
technology investment.

(c) With the increment in the value of the buying cost c, then the preservation cost α∗, the optimal
selling price p∗ increases, while the optimal order quantity Q∗ and optimal profit per unit time

T̂P
∗
, decrease, and the preservation cost is also increasing. This implies that when the buying

cost and initial deterioration rate are large then the retailer must spend more in order to reduce
the deterioration cost.

7. Concluding Remarks and Future Research indications

This model presented an optimal pricing policy for non-instantaneously deteriorating item with
preservation technology investment with selling price, time and stock depend demand. Here, some
useful properties characterizing the optimal solution are formulated. The proposed model is illus-
trated through some numerical examples and the optimal cycle length, selling price and investment
for preservation are obtained. Our sensitivity analysis reveals that when the cost of preservation
technology increases then the profit of the system also increases accordingly. Furthermore, it has
been shown that if the deterioration rate increases, the amount of investment also increases. If the
deterioration is marginal or less in value at the initial level. The numerical result demonstrates that
spending in preservation technology substantially aids decision makers in developing a competitive
advantage and increases their total profit. The properties provide managerial insight towards deter-
mining optimal policies with a changed market scenario.

Two proposed economic order quantity inventory models help the manufacturer and retailers
in determining the optimal ordering frequency, pricing, preservation technology investment, cycle
length, order quantity and profit.

The present model may be extended in various ways. Regarding further research, we may take
care of multiple items instead of a single item under stochastic demand. For addressing a realistic
situation, one can design an extended model by introducing warehouse, storage facility, stochastic
inflation, quantity and price discounts. Also one can formulate the model by considering time-
dependent deterioration rate and uncertainty of demand.



264 Tiwari, Khedlekar, Khedlekar

Acknowledgements

Authors are thank full to review and editor for their fruitful suggestion to improve the quality of the
manuscript.

References

[1] N. D. Ahmadi, M. S. Nikabadi, A non-linear multi objective model for the product portfolio optimization: An
integer programming, Int. J. Nonlinear Anal. Appl. 8(2) (2019) 231–239.

[2] R. Ezzati, S. Abbasbandy and H. Behforooz, Interpolation of fuzzy data by using at end fuzzy splines, Int. J.
Nonlinear Anal. Appl. 8(2) (2017) 89–97.

[3] P. M. Ghare and G. H. Schrader, A model for exponentially decaying inventory system,J. Ind. Engrg. 14 (1963)
238–243.

[4] S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, Eur. J. Oper. Res. 134(10)
(2001) 1–16.

[5] P. H. Hsu, H. M. Wee and H. M. Teng, Preservation technology investment for deteriorating inventory, Int. J.
Prod. Econ. 124(2) (2010) 388–394.

[6] R. Kazemi and M. Q. V. Asl, Probabilistic analysis of the asymmetric digital search trees, Int. J. Non-linear
Anal. Appl. 6(2) (2015) 161–173.

[7] U. K. Khedlekar, D. Shukla and A. Namdeo Pricing policy for declining demand using item preservation tech-
nology, SpringerPlus 5(1) (2016) 19–57.

[8] L. Lu, J. Zhang and W. Tang, Optimal dynamic pricing and replenishment policy for perishable items with
inventory-level-dependent demand, Int. J. Sys. Sci. 47(6) (2016) 1480–1494.

[9] G. Liu, J. Zhang and W. Tang, Joint dynamic pricing and investment strategy for perishable foods with price-
quality dependent demand, Ann. of Oper. Res. 226(1) (2015) 397–416.

[10] U. Mishra, L. E. Barron, S. Tiwari, A. A. Shaikh and G. T. Garza,An inventory model under price and stock
dependent demand for controllable deterioration rate with shortage and preservation technology investment, Ann.
Oper. Res. 254(2) (2017) 165–190.

[11] V. K. Mishra, Deteriorating inventory model with controllable deterioration rate for time dependent demand and
time varying holding cost, Yugosl. J. Oper. Res. 24(1) (2014) 87-–98.

[12] M. Nadjafikhah and S. Shagholi, Mathematical modeling of optimized SIRS epidemic model and some dynamical
behaviors of the solution, Int. J. Nonlinear Anal. Appl. 8(2) (2017) 125–134.

[13] S. Pal, G. S. Mahapatra and G.P. Samanta, An inventory model of price and stock dependent demand rate with
deterioration under in nation and delay in payment, Int. J. Sys. Ass. Eng. Manag. 5(4) 2014 591–601.

[14] N. H. Shah and A. D. Shah, Optimal cycle time and preservation technology investment for deteriorating items
with price-sensitive stock-dependent demand under inflation, J. Phy.: Conf. Ser. 495(1) (2014) 1–10.

[15] K. S. Wu, L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non- instantaneous deteriorating
items with stock-dependent demand and partial backlogging, Int. J. Prod. Econ. 101(2) (2006) 369–384.

[16] H. M. Wee, A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,
Comp Oper. Res. 22(3) (1995) 345–356.

[17] C. T. Yang, C. Y. Dye and J. F. Ding, Optimal dynamic trade credit and preservation technology allocation for
a deteriorating inventory model,Comp. Ind. Eng. 87 (2015) 356–369.

[18] P. S. You, Inventory policy for products with price and time-dependent demands,J. Oper. Res. Soc. 56(7) (2005).
870–873.

[19] J. X. Zhang, Z. Y. Bai and W. S. Tang, Optimal pricing policy for deteriorating items with preservation technology
investment, J. Ind. Manag. Optim. 10(4) (2014) 1261–1277.

[20] J. Zhang, Q. Wei, Q. Zhang and W. Tang, Pricing, service and preservation technology investments policy for
deteriorating items under common resource constraints, Comp. Ind. Eng. 95 (2016) 1–9.

[21] G. Zauberman, R. Ronen, M. Akerman and Y. Fuchs, Low PH treatment protects litchi fruit color, Int. Soc.
Hort. Sci. 269, (1989) 309–314.


	Introduction
	Assumptions & Notations
	 Mathematical Formulation
	Theoretical Result and Optimal Solution
	The EOQ Inventory Model with Complete Backordering
	The EOQ Inventory Model with Partial Backordering

	Illustrative Example 
	Illustrative Example for Completely Backordering 
	Illustrative Example for Partial Backordering 

	Sensitive Analysis
	Concluding Remarks and Future Research indications 

