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Abstract

In this article, we discuss the piecewise polynomial based Galerkin method to approximate the
solutions of second kind Volterra-Hammerstein integral equations. We discuss the convergence of
the approximate solutions to the exact solutions and obtain the orders of convergence O(hr) and
O(h2r), respectively, for Galerkin and its iterated Galerkin methods in uniform norm, where h, r
denotes the norm of the partition and smoothness of the kernel, respectively. We also obtain the
superconvergence results for multi-Galerkin and iterated multi-Galerkin methods. We show that
iterated multi-Galerkin method has the order of convergence O(h3r) in the uniform norm. Numerical
results are provided to demonstrate the theoretical results.
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1. Introduction

Nonlinear Volterra integral equation of the second kind often occur in Hammerstein form,

u(x)−
∫ x

0

`(x, ϑ)ψ(ϑ, u(ϑ)) dϑ = g(x), 0 ≤ x ≤ 1, (1.1)

where the functions `, g and ψ are known, u is the unknown function to be determined in the
Banach space X. Several problems in engineering, biology, and physics are modeled by these type of
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integral equations (1.1). For example, they are models of population dynamics, epidemic diffusion,
reaction-diffusion in small cells, and in general of evolutionary phenomena incorporating memory. In
general, finding the exact solution of the integral equations by analytical methods is very difficult,
and it is usually very useful to find a numerical approximation of the exact solution. There are
many projection methods for enhancing the accuracy of the numerical approximate solution. Several
authors have investigated on the approximate solution of these type of equations (1.1) (see [2], [3],
[4], [8], [15]). G. N. Elnagar et. al. [7] proposed the Chebyshev spectral method for obtaining the
approximate solution of integral equations of type (1.1) and they present a numerical experiment,
which verify the convergence, applicability and the accuracy of the Chebyshev spectral method.
K. Maleknejad et. al. [15] introduced a fixed point method to approximate the solution of integral
equations of type (1.1) and obtained error bounds for the corresponding approximation. F. Ghoreishi
et. al. [8] proposed a variation of Tau method for the numerical solution of the integral equations
of type (1.1) based on arbitrary polynomial basis functions and numerical results were provided
using proposed Tau algorithm based on the standard, Legendre and Chebyshev basis functions.
Authors proposed ([12], [13]) a new type of collocation method in certain piecewise-polynomial
spaces to establish superconvergence results for Fredholm-Hammerstein integral equations and in [2],
H. Brunner applied this method to integral equations of type (1.1) and showed that the convergence
rate of linear collocation solution is of order O(h2r) at the knots, where h, r are the norm of the
partition and smoothness of the kernel, respectively. M. Mandal et. al. ([17], [20]) proposed the
Galerkin and iterated Galerkin methods to find the approximate solution of the second kind linear
Volterra integral equations and obtained the superconvergence results in the infinity norm. In ([18],
[20]) these results were enhanced to second kind nonlinear Volterra integral equations for obtaining
the same superconvergence results.

In this article, the Galerkin method is applied to solve Volterra-Hammerstein integral equation
(1.1) with a smooth kernel in the piecewise polynomial space of degree at most (m− 1) and obtain
the superconvergence. We will prove that the Galerkin method and iterated Galerkin method has
order of convergence O(hm) and O(h2m), respectively in uniform norm, h is denoted as the norm of
the partition.

In ([6], [9], [11], [14], [16], [22]), multi-projection (multi-Galerkin and multi-collocation) methods
were discussed to solve linear and nonlinear Fredholm integral equations of second kind. In ([17], [18]),
multi-Galerkin and its iterated multi-Galerkin methods were proposed to solve second kind linear and
Volterra-Urysohn integral equations and found the superconvergence results. In this article, we also
discuss the multi-Galerkin method and its iterated multi-Galerkin for Volterra-Hammerstein integral
equations (1.1) to enhance the order of convergence further. We will show that the presented multi-
Galerkin and its iterated version i.e., the iterated multi-Galerkin methods have order of convergence
O(h2m) and O(h3m) in uniform norm, respectively, under appropriate assumptions on the right hand
side function g, the kernel l(., .) and the solution u,. We observe that the iterated Galerkin solutions
and multi-Galerkin solutions have the same order of convergence, but the iterated multi-Galerkin
solutions improve over the iterated Galerkin and multi-Galerkin solutions. Our theoretical results
are demonstrated by numerical results.

This paper is organized as follows. In Sec 2, the Galerkin method and iterated Galerkin method
are applied to the equation (1.1) and study the convergence analysis. In Sec 3, multi-Galerkin method
and iterated multi-Galerkin methods are discussed to obtain the improved convergence results. In
Sec 4, numerical results are provided to demonstrate the theoretical results. We assume that c is a
generic constant, throughout this paper.
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2. Convergence analysis by Galerkin method for Volterra-Hammerstein integral equa-
tions

Let X = L∞[0, 1]. Let us consider the Volterra-Hammerstein integral equation stated by the
equation (1.1).
Consider a transformation ϑ(., .) : ([0, 1]× [0, 1])→ [0, 1], by taking ϑ = xλ, (x, λ) ∈ ([0, 1]× [0, 1]),
the Volterra integral equation (1.1) transforms

u(x)−
∫ 1

0

˜̀(x, ϑ(x, λ))ψ(ϑ(x, λ), u(ϑ(x, λ))) dλ = g(x), x ∈ [0, 1], (2.1)

where ˜̀(x, ϑ(x, λ)) = x`(x, ϑ(x, λ)).
Define

(Lψ)(u)(x) =

∫ 1

0

˜̀(x, ϑ(x, λ))ψ(ϑ(x, λ), u(ϑ(x, λ))) dλ, u ∈ X.

Then we can write the above equation (2.1) in operator form as

u− (Lψ)(u) = g. (2.2)

The Fréchet derivative (Lψ)′(u) is stated by

((Lψ)′(u))v(x) =

∫ 1

0

˜̀(x, ϑ(x, λ))ψ(0,1)(ϑ(x, λ), u(ϑ(x, λ)))v(ϑ(x, λ)) dλ, v ∈ X,

where ψ(0,1)(ϑ(x, λ), u(ϑ(x, λ))) = ∂
∂u
ψ(ϑ(x, λ), u(ϑ(x, λ))), the partial derivative of ψ w.r.t. u.

For any v ∈ Cm[0, 1], denote

‖v‖m,∞ = max{‖v(i)‖∞ : 0 ≤ i ≤ m},

where v(i) is the i-th derivative of v.
In the rest of article, we consider the following assumptions on g, ˜̀(., .) and ψ(., u(.)):

(i) g ∈ Cm[0, 1], m ≥ 1.

(ii) ˜̀(x, ϑ(x, λ)) ∈ L∞([0, 1]× [0, 1]), M̃ = ‖˜̀‖L2 = [
∫ 1

0
|˜̀(x, ϑ(x, λ))|2] 12 <∞.

(iii) ˜̀(x, ϑ(x, λ)) ∈ Cm([0, 1]× [0, 1]), m ≥ 1.

(iv) The nonlinear function ψ(ϑ(x, λ), u(ϑ(x, λ))) and the partial derivative ψ(0,1)(ϑ(x, λ), u(ϑ(x, λ)))
of ψ w.r.t the second variable exists and both are Lipschitz continuous w.r.t. second variable, i.e.,

|ψ(ϑ(x, λ), u1(ϑ(x, λ)))− ψ(ϑ(x, λ), u2(ϑ(x, λ)))| ≤ c1|u1 − u2|,

|ψ(0,1)(ϑ(x, λ), u1(ϑ(x, λ)))− ψ(0,1)(ϑ(x, λ), u2(ϑ(x, λ)))| ≤ c2|u1 − u2|.

Let ψ(0,1)(ϑ(x, λ), u(ϑ(x, λ))) is Lipschitz continuous w.r.t the first and second variables i.e., ∀
ϑ1, ϑ2, u1, u2 ∈ R, ∃ q1, q2 > 0, it follows

|ψ(0,1)(ϑ1(x, λ), u1(ϑ(x, λ)))− ψ(0,1)(ϑ2(x, λ), u2(ϑ(x, λ)))| ≤ {q1|ϑ1 − ϑ2|+ q2|u1 − u2|}.
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(v) d = sup
ϑ(.,.)∈[0,1]

|ψ(0,1)(ϑ(., .), u(ϑ(., .)))| <∞.

(vi) We assume that M̃ and c1 satisfy the condition that M̃c1 < 1.

Now for any v ∈ B ⊆ L∞[0, 1], x ∈ [0, 1], where B is the closed unit ball in L∞[0, 1], consider

|(Lψ)′(u0)v(t)|

=

∣∣∣∣∫ 1

0

˜̀(x, ϑ(x, λ))ψ(0,1)(ϑ(x, λ), u0(ϑ(x, λ)))v(ϑ(x, λ)) dη

∣∣∣∣
≤ sup

ϑ(x,λ)∈[0,1]
|ψ(0,1)(ϑ(x, λ), u0(ϑ(x, λ)))|

[∫ 1

0

|˜̀(x, ϑ(x, λ))|2dη
] 1

2
[∫ 1

0

|v(ϑ(x, λ))|2dη
] 1

2

≤ d

[∫ 1

0

|˜̀(x, ϑ(x, λ))|2
] 1

2

‖v‖L2

≤Md.

This implies ‖(Lψ)′(u0)v‖∞ = sup
x∈[0,1]

|((Lψ)′(u0))v(t)| ≤ M̃d <∞.

Hence

‖(Lψ)′(u0)‖∞ = sup
v∈B
‖(Lψ)′(u0)v‖∞ ≤ M̃d <∞, (2.3)

The operator S on X be defined by

Sy := g + (Lψ)(y), y ∈ X,

then the equation (1.1) becomes
u = Su. (2.4)

From the analysis of Theorem 1 of [10], and using assumptions (ii), (iv) and (vi), it implies that the
equation (2.4), has a unique solution, say u0 ∈ X, i.e., u0 = Su0. Note that under the assumptions
(i) and (iii), the solution u0 ∈ Cm[0, 1].

Theorem 2.1. Let u0 ∈ X be the isolated solution and the kernel ˜̀(., .) ∈ L∞([0, 1] × [0, 1]). Then
the linear integral operator (Lψ)′(u0) : X→ X is a compact operator.

Proof . The proof follows similar way as in ([18], Theorem 1). �
Next, we discuss the Galerkin method to find the approximate solution of the equation (2.2).

Let Πn : 0 = t0 < t1 < ... < tn = 1, be a partition of [0, 1] and the norm of the partitions
h = maxi hi = {ti − ti−1 : 1 ≤ i ≤ n} → 0, as n→∞. Define Xn = Sνr,n(Πn), the space of all piece-
wise polynomials of degree ≤ r − 1 with ν (−1 ≤ ν ≤ r − 2) continuous derivatives and breakpoints
at t1, · · · , tn−1.

Orthogonal projection operator: Let the orthogonal projection Pn : L∞[0, 1]→ Xn, be given by

〈Pny1, y2〉 = 〈y1, y2〉 , y2 ∈ Xn, y1 ∈ X, (2.5)

where 〈y1, y2〉 =
∫ 1

0
y1(x)y2(x) dx.

Here we state a lemma from Chatelin ([5], Corollary 7.6, p. 328).
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Lemma 2.2. Let Pn : X→ Xn be the orthogonal projection given by (2.5). Then

i) ∃ a constant P > 0 such that
||Pn||∞ ≤ P <∞. (2.6)

ii)
‖Pnv − v‖∞ → 0, as n→∞, v ∈ X. (2.7)

iii) If v ∈ Cm[0, 1], then
‖(I− Pn)v‖∞ ≤ chm‖v‖m,∞, (2.8)

where c denotes a constant.

The Galerkin method for solving (2.2) is seeking an approximation un ∈ Xn such that

un − Pn(Lψ)(un) = Png. (2.9)

Let Sn be the operator defined by

Sn(v) := Pn(Lψ)(v) + Png. (2.10)

Then the equation (2.9) can be written as

un = Snun. (2.11)

The iterated approximate solution is defined as

ũn = g + (Lψ)(un). (2.12)

Using Pnũn = un, the equation (2.12) can be written as

ũn − (Lψ)(Pnũn) = g. (2.13)

Letting S̃n(v) := (Lψ)(Pnv) + g, v ∈ X, the equation (2.13) can be written as ũn = S̃nũn.

Now the existence and uniqueness of approximation xn be discussed. We quote a theorem from
[1] and the definition of ν-convergence. We will use the well known Theorem 2 of Vainikko [21].

Definition 2.3. (ν-convergence) Let S, {Sn} ∈ BL(X), then {Sn} is said to be ν convergent to
S if ‖Sn‖ ≤ C, ‖(Sn − S)S‖ → 0 and ‖(Sn − S)Sn‖ → 0, as n→∞.

Now we prove the following lemma which will help us to prove the existence and order of convergence
of approximate solution un in Galerkin method.

Lemma 2.4. Let ∀ v1, v2 ∈ X, the following estimates hold

‖(Lψ)(v1)− (Lψ)(v2)‖∞ ≤ M̃c1‖v1 − v2‖∞,

‖(Lψ)′(v1)− (Lψ)′(v2)‖∞ ≤ M̃c2‖v1 − v2‖∞.
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Proof . Using the assumption (iv) and for any v1, v2, v3 ∈ X, we obtain

‖((Lψ)(v1)− (Lψ)(v2))v3‖∞
= sup

x∈[0,1]
|((Lψ)(v1)− (Lψ)(v2))v3(x)|

= sup
x∈[0,1]

∣∣∣∣∫ 1

0

˜̀(x, ϑ(x, λ))[ψ(ϑ(x, λ), v1(ϑ(x, λ)))− ψ(ϑ(x, λ), v2(ϑ(x, λ)))]v3(ϑ(x, λ)) dλ

∣∣∣∣
≤ c1 sup

ϑ(x,η)∈[0,1]
|v3(ϑ(x, η))|‖˜̀‖L2‖v1 − v2‖L2

≤ M̃c1‖v1 − v2‖∞‖v3‖∞.

This implies
‖(Lψ)(v1)− (Lψ)(v2)‖∞ ≤ M̃c1‖v1 − v2‖∞.

Similarly using assumption (iv) for ψ(0,1)(., .), we have

‖(Lψ)′(v1)− (Lψ)′(v2)‖∞ ≤ M̃c2‖v1 − v2‖∞. (2.14)

This completes the proof. �

Theorem 2.5. Let u0 ∈ Cm[0, 1], m ≥ 1, be the unique solution of the equation (2.2) and 1 is not
an eigenvalue of the operator (Lψ)′(u0), which is the the Fréchet derivative of (Lψ)(u) at u0. Then
for some δ > 0, the equation (2.9) has an isolated solution un ∈ B(u0, δ) = {u : ‖u − u0‖∞ < δ}.
furthermore, ∃ a constant 0 < q < 1, ind. of n so that

αn
1 + q

≤ ‖un − u0‖∞ ≤
αn

1− q
,

where αn = ‖(I− S ′n(u0))
−1(Sn(u0)− S(u0))‖∞. Further, we obtain

‖un − u0‖∞ = O(hm).

Proof . Since S ′(u0) = (Lψ)′(u0) is compact, using Lemma 2.2, we have

‖(I− Pn)S ′(u0)‖∞ = ‖(I− Pn)(Lψ)′(u0)‖∞ → 0, as n→∞. (2.15)

Hence using estimate (2.15), we have

‖S ′n(u0)− S ′(u0)‖∞ = ‖Pn(Lψ)′(u0)− (Lψ)′(u0)‖∞ = ‖(I− Pn)(Lψ)′(u0)‖∞
= ‖(I− Pn)S ′(u0)‖∞ → 0 as n →∞.

Since 1 is not an eigenvalue of S ′(u0), then from [1], ∃ A1 > 0 so that ‖(I−S ′n(u0))
−1‖∞ ≤ A1 <∞.

From Lemma 2.4, for any u ∈ B(u0, δ),

‖S ′n(u0)− S ′n(u)‖∞ = ‖Pn(Lψ)′(u0)− Pn(Lψ)′(u)‖∞
≤ ‖Pn‖∞‖(Lψ)′(u0)− (Lψ)′(u)‖∞
≤ PM̃c2‖u0 − u‖∞ ≤ c2PM̃δ. (2.16)

Hence, we have

sup
‖u−u0‖≤δ

‖(I− S ′n(u0))
−1(S ′n(u0)− S ′n(u))‖∞ ≤ A1Pc2M̃δ ≤ q(say).
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Choose δ in such a way that 0 < q < 1. This proves the equation (4.4) of Theorem 2 of [21].
Taking use of estimate (2.7), we have

αn = ‖(I− S ′n(u0))
−1(Sn(u0)− S(u0))‖∞

≤ A1‖Sn(u0)− S(u0)‖∞
≤ A1‖Pn(g + (Lψ)(u0))− (g + (Lψ)(u0))‖∞
≤ A1‖(I− Pn)(g + (Lψ)(u0))‖∞
≤ A1‖(I− Pn)u0‖∞ → 0 as n→∞. (2.17)

By taking n sufficiently large such that αn ≤ δ(1 − q), the equation (4.6) of Theorem 2 of [21] is
satisfied, i.e.,

αn
1 + q

≤ ‖un − u0‖∞ ≤
αn

1− q
.

Now using the estimate (2.8), it follows that

‖un − u0‖∞ ≤
αn

1− q
≤ 1

1− q
A1‖(I− Pn)u0‖∞ ≤ cA1‖(I− Pn)u0‖∞ = O(hm).

Hence the proof follows. � Next, we discuss the existence and convergence of approximation ũn in
iterated Galerkin method.

Theorem 2.6. S̃ ′n(u0) is ν-convergent to S ′(u0) in uniform norm.

Proof . Since

S̃ ′n(u0) = (Lψ)′(Pnu0)Pn = (Lψ)′(Pnu0)Pn − (Lψ)′(u0)Pn
+ (Lψ)′(u0)Pn, (2.18)

we have

‖S̃ ′n(u0)‖∞ = ‖(Lψ)′(Pnu0)Pn‖∞ ≤ ‖(Lψ)′(Pnu0)Pn − (Lψ)′(u0)Pn‖∞
+ ‖(Lψ)′(u0)‖∞‖Pn‖∞. (2.19)

From estimate (2.7) and Lemma 2.4, we have

‖(Lψ)′(Pnu0)− (Lψ)′(u0)‖∞ ≤ M̃c2‖(I− Pn)u0‖∞
→ 0, as n→∞. (2.20)

Hence using estimates (2.3), (2.19) and (2.20), we have

‖S̃ ′n(u0)‖∞ ≤ M̃c2p‖(I− Pn)u0‖∞ + PM̃d <∞, (2.21)

i.e., ‖S̃ ′n(u0)‖∞ is uniformly bounded.
Next consider

‖[S̃ ′n(u0)− S ′(u0)]S̃ ′n(u0)‖∞
= ‖[(Lψ)′(Pnu0)Pn − (Lψ)′(u0)]S̃ ′n(u0)‖∞
= ‖[(Lψ)′(Pnu0)Pn − (Lψ)′(u0)Pn + (Lψ)′(u0)Pn − (Lψ)′(u0)]S̃ ′n(u0)‖∞
≤ ‖[(Lψ)′(Pnu0)− (Lψ)′(u0)]PnS̃ ′n(u0)‖∞ + ‖[(Lψ)′(u0)(Pn − I)S̃ ′n(u0)‖∞
≤ ‖Pn‖∞‖S̃ ′n(u0)‖∞‖(Lψ)′(Pnu0)− (Lψ)′(u0)‖∞ + ‖(Lψ)′(u0)‖∞‖(I− Pn)S̃ ′n(u0)‖∞. (2.22)
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For the second term of the estimate (2.22), using estimate (2.6), we obtain

‖(I− Pn)S̃ ′n(u0)‖∞
= ‖(I− Pn)(Lψ)′(Pnu0)Pn‖∞
≤ ‖Pn‖∞‖(I− Pn)(Lψ)′(Pnu0)‖∞
≤ P‖(I− Pn)[(Lψ)′(Pnu0)− (Lψ)′(u0) + (Lψ)′(u0)]‖∞
≤ P{‖(I− Pn)[(Lψ)′(Pnu0)− (Lψ)′(u0)]‖∞ + ‖(I− Pn)(Lψ)′(u0)‖∞}
≤ P{(1 + ‖Pn‖∞)‖(Lψ)′(Pnu0)− (Lψ)′(u0)‖∞ + ‖(I− Pn)(Lψ)′(u0)‖∞}
≤ P{(1 + P )‖(Lψ)′(Pnu0)− (Lψ)′(u0)‖∞ + ‖(I− Pn)(Lψ)′(u0)‖∞}. (2.23)

Combining the estimates (2.15), (2.20) and (2.23), we get

‖(I− Pn)S̃ ′n(u0)‖∞ → 0, n→∞. (2.24)

Hence using the uniform boundedness of ‖S̃ ′n(u0)‖∞, Lemma 2.2 and estimates (2.3), (2.20), (2.24),
we obtain

‖[S̃ ′n(u0)− S ′(u0)]S̃ ′n(u0)‖∞ ≤ M̃c2P‖S̃ ′n(u0)‖∞‖(I− Pn)u0‖∞
+ ‖(Lψ)′(u0)‖∞‖(I− Pn)S̃ ′n(u0)‖∞ → 0, as n→∞.

Similarly, it can be proved that

‖(S̃ ′n(u0)− S ′(u0))S ′(u0)‖∞ → 0, as n→∞.

This proves the ν-convergence of S̃ ′n(u0) to S ′(u0) in infinity norm.
Hence the proof follows. � Now by applying the Theorem 2.6, we prove the following theorem.

Theorem 2.7. Let u0 ∈ X be the unique solution of the equation (2.2) and 1 is not an eigenvalue

of the operator (Lψ)′(u0). Then for n large enough, the operator (I− S̃ ′n(u0)) is invertible on X and

there exists a constant L > 0 independent of n such that ‖(I− S̃ ′n(u0))
−1‖∞ ≤ L <∞.

Next we discuss the superconvergence result for the iterated Galerkin solution ũn to the exact solution
u0.

Theorem 2.8. Let u0 ∈ X be the unique solution of the equation (2.2) and 1 is not an eigenvalue
of the operator (Lψ)′(u0). Let the orthogonal projection Pn : X → Xn be given by (2.5). Then the
equation (2.13) has an isolated solution ũn ∈ B(u0, δ) = {u : ‖u− u0‖∞ < δ} for n large enough and
some δ > 0. Moreover, there ∃ 0 < q < 1, independent of n so that

βn
1 + q

≤ ‖ũn − u0‖∞ ≤
βn

1− q
,

where βn = ‖(I− S̃ ′n(u0))
−1(S̃n(u0)− S(u0))‖∞, and the following result holds

‖ũn − u0‖∞ = O(h2m). (2.25)
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Proof . From Theorem 2.7, we have ‖(I− S̃ ′n(u0))
−1‖∞ ≤ L <∞.

For any u ∈ B(u0, δ) and using estimate (2.6) and Lemma 2.4, we obtain

‖S̃ ′n(u)− S̃ ′n(u0)‖∞ = ‖(Lψ)′(Pnu)Pn − (Lψ)′(Pnu0)Pn‖∞
≤ ‖(Lψ)′(Pnu)− (Lψ)′(Pnu0)‖∞‖Pn‖∞
≤ M̃c2‖Pn(u− u0)‖∞‖Pn‖∞
≤ M̃P 2c2‖u− u0‖∞
≤ M̃P 2c2δ. (2.26)

Thus we have

sup
‖u−u0‖≤δ

‖(I− S̃ ′n(u0))
−1(S̃ ′n(u)− S̃ ′n(u0))‖∞ ≤ M̃LP 2c2δ ≤ q(say).

Here we take δ in such a way that 0 < q < 1. This proves the equation (4.4) of Theorem 2 of [21].
Now using the estimate (2.7) and Lemma 2.4, we have

‖S̃n(u0)− S(u0)‖∞ ≤ ‖(Lψ)(Pnu0)− (Lψ)(u0)‖∞ ≤ M̃c1‖(I− Pn)u0‖∞
→ 0, as n→∞. (2.27)

Hence

βn = ‖(I− S̃ ′n(u0))
−1(S̃n(u0)− S(u0))‖∞ ≤ L‖S̃n(u0)− S(u0)‖∞

→ 0, as n→∞. (2.28)

By choosing n large enough such that βn ≤ δ(1 − q), the equation (4.6) of Theorem 2 of [21] is
satisfied. Hence by applying Theorem 2 of [21], we obtain

βn
1 + q

≤ ‖ũn − u0‖∞ ≤
βn

1− q
,

where βn = ‖(I− S̃ ′n(x0))
−1(S̃n(u0)− S(x0))‖∞.

Now we consider

‖ũn − u0‖∞ ≤
βn

1− q
≤ 1

1− q
‖(I− S̃ ′n(u0))

−1(S̃n(u0)− S(u0))‖∞

≤ c‖(I− S̃ ′n(u0))
−1‖∞‖S̃n(u0)− S(u0)‖∞

≤ cL‖(Lψ)(Pnu0)− (Lψ)(u0)‖∞. (2.29)

Denote f(x, ϑ(x, λ), u0(ϑ(x, λ)), u(ϑ(x, λ)), θ1) = ˜̀(x, ϑ(x, λ))ψ(0,1)(ϑ(x, λ), u0(ϑ(x, λ))+θ1(u−u0)(ϑ(x, λ))), 0 <

θ1 < 1 and fx(ϑ(x, λ)) = ˜̀(x, ϑ(x, λ))ψ(0,1)(ϑ(x, λ), u0(ϑ(x, λ))).
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Using the mean-value theorem, we have

|[(Lψ)(Pnu0)− (Lψ)(u0)](x)|

=

∣∣∣∣∫ 1

0

˜̀(x, ϑ(x, λ))[ψ(ϑ(x, λ),Pnu0(ϑ(x, λ)))− ψ(ϑ(x, λ)), u0(ϑ(x, λ)))] dλ

∣∣∣∣
=

∣∣∣∣∫ 1

0

˜̀(x, ϑ(x, λ))ψ(0,1)(ϑ(x, λ), u0(ϑ(x, λ)) + θ1(Pnu0 − u0)(ϑ(x, λ)))(Pnu0 − u0)(ϑ(x, λ)) dλ

∣∣∣∣
=

∣∣∣∣∫ 1

0
f(x, ϑ(x, λ), u0(ϑ(x, λ)),Pnu0(ϑ(x, λ)), θ1)(Pnu0 − u0)(ϑ(x, λ)) dλ

∣∣∣∣
=

∣∣∣∣∫ 1

0
[f(x, ϑ(x, λ), u0(ϑ(x, λ)),Pnu0(ϑ(x, λ)), θ1)− fx(ϑ(x, λ)) + fx(ϑ(x, λ))](Pnu0 − u0)(ϑ(x, λ)) dλ

∣∣∣∣
≤
∣∣∣∣∫ 1

0
[f(x, ϑ(x, λ), u0(ϑ(x, λ)),Pnu0(ϑ(x, λ)), θ1)− fx(ϑ(x, λ))](Pnu0 − u0)(ϑ(x, λ)) dλ

∣∣∣∣
+

∣∣∣∣∫ 1

0
fx(ϑ(x, λ))(Pnu0 − u0)(ϑ(x, λ)) dλ

∣∣∣∣ , (2.30)

where 0 < θ1 < 1.
For the first term of the above estimate (2.30), we have∣∣∣∣∫ 1

0
[f(x, ϑ(x, λ), u0(ϑ(x, λ)),Pnu0(ϑ(x, λ)), θ1)− fx(ϑ(x, λ))](Pnu0 − u0)(ϑ(x, λ)) dλ

∣∣∣∣
= |

∫ 1

0

˜̀(x, ϑ(x, λ))[ψ(0,1)(ϑ(x, λ), u0(ϑ(x, λ)) + θ1(Pnu0 − u0)(ϑ(x, λ)))− ψ(0,1)(ϑ(x, λ), u0(ϑ(x, λ)))]

(Pnu0 − u0)(ϑ(x, λ)) dλ|

≤
∫ 1

0
|˜̀(x, ϑ(x, λ))||ψ(0,1)(ϑ(x, λ), u0(ϑ(x, λ)) + θ1(Pnu0 − u0)(ϑ(x, λ)))− ψ(0,1)(ϑ(x, λ), u0(ϑ(x, λ)))|

|(Pnu0 − u0)(ϑ(x, λ))| dλ

≤ c2
∫ 1

0
|˜̀(x, ϑ(x, λ))||(Pnu0 − u0)(ϑ(x, λ))|2 dλ

≤ c2‖˜̀‖L2

[∫ 1

0
|(Pnu0 − u0)(ϑ(x, λ))|4 dλ

] 1
2

≤ M̃c2‖Pnu0 − u0‖2L2

≤ M̃c2‖Pnu0 − u0‖2∞ = O(h2r). (2.31)

For the second term of (2.30), using the orthogonality of the projection Pn and estimate (2.8), we obtain∣∣∣∣∫ 1

0
fx(ϑ(x, λ))(Pnu0 − u0)(ϑ(x, λ)) dλ

∣∣∣∣ = |〈fx(ϑ(x, .)), (I− Pn)u0(ϑ(x, .))〉|

= |〈(I− Pn)fx(ϑ(x, .)), (I− Pn)u0(ϑ(x, .))〉|
≤ ‖(I− Pn)fx‖∞‖(I− Pn)u0‖∞
≤ ch2m‖f (m)

x ‖∞‖u(m)
0 ‖∞. (2.32)

Thus using estimates (2.30), (2.31) and (2.32), we get

‖(Lψ)(Pnu0)− (Lψ)(u0)‖∞ = O(h2m). (2.33)

Hence from estimates (2.29) and (2.33), it follows that

‖ũn − u0‖∞ = O(h2m). (2.34)
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This completes the proof. �
In this section, we discuss the multi-Galerkin and its iterated version to enhance the convergence

rates obtained in Galerkin method and iterated Galerkin method.

3. Superconvergence results by iterated multi Galerkin method

Here, for solving the equation (1.1), the multi-Galerkin (M-Galerkin) method and with its iterated
version (iterated M-Galerkin) are discussed (see [6], [9], [11], [14], [18]) and find the superconvergence
results. The multi-Galerkin operator (LMn ψ) be defined by

(LMn ψ)(u) := Pn(Lψ)(u) + (Lψ)(Pnu)− Pn(Lψ)(Pnu). (3.1)

The approximate solution uMn ∈ X for the equation (2.2) in M-Galerkin method can be found such
that

uMn − (LMn ψ)(uMn ) = g. (3.2)

Iterated M-Galerkin approximate solution is given by

ũMn = (Lψ)(uMn ) + g. (3.3)

To solve the equation (3.2), applying Pn and (I− Pn) to the equation, we have

PnuMn = Pn(Lψ)(uMn ) + Png. (3.4)

(I− Pn)uMn = (I− Pn)(Lψ)(PnuMn ) + (I− Pn)g. (3.5)

⇒ uMn = PnuMn + (I− Pn)(Lψ)(PnuMn ) + (I− Pn)g. (3.6)

Substituting (3.6) into (3.4),we get

PnuMn = Pn(Lψ)(PnuMn + (I− Pn)(Lψ)(PnuMn ) + (I− Pn)g) + Png.
(3.7)

Let
WM

n = PnuMn ,

then we can find WM
n ∈ Xn from the equation

WM
n = Pn(Lψ)(WM

n + (I− Pn)(Lψ)(WM
n ) + (I− Pn)g) + Png, (3.8)

and obtain

uMn = WM
n + (I− Pn)(Lψ)(WM

n ) + (I− Pn)g. (3.9)

Define

Fn(v) = v − Pn(Lψ)(v + (I− Pn)(Lψ)(v) + (I− Pn)g)− Png. (3.10)

The Fréchet derivative of Fn is given by

F′n(v)y = y − Pn(Lψ)′(v + (I− Pn)(Lψ)(v) + (I− Pn)g)(I + (I− Pn)(Lψ)′(v))y.

Equation (3.10) is equivalent to
Fn(WM

n ) = 0,
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and it is iteratively solved by applying the Newton-Kantorovich method.
Let LMn (v) = (LMn ψ)(v) + g, v ∈ X, then the equation (3.2) becomes

uMn = LMn (uMn ). (3.11)

The Fréchet derivative of LMn (u) at u0 is a linear operator and is defined as

LMn
′
(u0) = (LMn ψ)

′
(u0) = Pn(Lψ)′(u0) + (Lψ)′(Pnu0)Pn − Pn(Lψ)′(Pnu0)Pn

= Pn(Lψ)′(u0) + (I− Pn)(Lψ)′(Pnu0)Pn.

Now existence and convergence of the multi-Galerkin approximate solution uMn be discussed.

Theorem 3.1. Let u0 ∈ Cm[0, 1], m ≥ 1, be the unique solution of the equation (2.2) and ˜̀(., .) ∈
Cm([0, 1] × [0, 1]) and 1 is not an eigenvalue of the operator (Lψ)′(u0). Then for some δ > 0, the
equation (3.2) has an isolated solution uMn ∈ B(u0, δ) = {u : ‖u− u0‖∞ < δ}. Moreover, there exists
a constant 0 < q < 1, independent of n such that

αn
1 + q

≤ ‖uMn − u0‖∞ ≤
αn

1− q
,

where αn = ‖(I− SMn
′
(u0))

−1(SMn (u0)− S(u0))‖∞. Further, we obtain

‖uMn − u0‖∞ = O(h2m).

Proof . Consider

‖SMn
′
(u0)− S ′(u0)‖∞ = ‖Pn(Lψ)′(u0) + (I− Pn)(Lψ)′(Pnu0)Pn − (Lψ)′(u0)‖∞

= ‖(I− Pn)(Lψ)′(Pnu0)Pn + (Pn − I)(Lψ)′(u0)‖∞
≤ ‖(I− Pn)(Lψ)′(Pnu0)Pn‖∞ + ‖(I− Pn)(Lψ)′(u0)‖∞. (3.12)

Note that S̃ ′n(u0) = (Lψ)′(Pnu0)Pn, hence using estimates (2.15) and (2.24), we have

‖(I− Pn)(Lψ)′(Pnu0)Pn‖∞ = ‖(I− Pn)S̃ ′n(u0)‖∞ → 0, as n→∞,

and
‖(I− Pn)(Lψ)′(u0)‖∞ = ‖(I− Pn)S ′(u0)‖∞ → 0, as n→∞.

This implies that

‖SMn
′
(u0)− S ′(u0)‖∞ → 0, as n→∞. (3.13)

Since 1 is not an eigenvalue of S ′(u0), i.e., (I− S ′(u0)) is invertible on X. Then ∃ a constant L1 > 0
such that ‖(I− SMn

′
(u0))

−1‖∞ ≤ L1 <∞, for some sufficiently large n.
Using the Lemma 2.4 and estimate (2.6), for any u ∈ B(u0, δ), we obtain

‖SMn
′
(u0)− SnM

′
(u)‖∞

= ‖(LMn ψ)
′
(u0)− (LMn ψ)

′
(u)‖∞

= ‖Pn(Lψ)′(u0) + (I− Pn)(Lψ)′(Pnu0)Pn − Pn(Lψ)′(u)− (I− Pn)(Lψ)′(Pnu)Pn‖∞
= ‖Pn[(Lψ)′(u0)− (Lψ)′(u)] + (I− Pn)[(Lψ)′(Pnu0)Pn − (Lψ)′(Pnu)Pn]‖∞
≤ ‖Pn‖∞‖(Lψ)′(u0)− (Lψ)′(u)‖∞ + (1 + ‖Pn‖∞)‖[(Lψ)′(Pnu0)− (Lψ)′(Pnu)]Pn‖∞
≤ pMc2‖u− u0‖∞ + cMc2‖Pn(u0 − u)‖∞‖Pn‖∞
≤M(pc2 + cc2p

2)‖u0 − u‖∞
≤M(pc2 + cc2p

2)δ.
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Thus we obtain

sup
‖u−u0‖≤δ

‖(I− SnM
′
(u0))

−1(SnM
′
(u0)− SnM

′
(u))‖∞ ≤ L1M(pc2 + cc2p

2)δ ≤ q(say).

Here we choose δ in such a way that 0 < q < 1. This proves the estimate (4.4) of Theorem 2 of [21].
Hence using the Lemma 2.4 and estimate (2.7), we obtain

αn = ‖(I− SnM
′
(u0))

−1(SnM (u0)− S(u0))‖∞
≤ L1‖SnM (u0)− S(u0))‖∞
≤ L1‖(I− Pn)((Lψ)(Pnu0)− (Lψ)(u0))‖∞
≤ L1(1 + ‖Pn‖∞)‖(Lψ)(Pnu0)− (Lψ)(u0)‖∞
≤ cMc1L1‖(Pn − I)u0‖∞ → 0 as n →∞. (3.14)

By selecting n sufficiently large so that αn ≤ δ(1 − q), the estimate (4.6) of Theorem 2 of [21] is satisfied,
i.e.,

αn
1 + q

≤ ‖uMn − u0‖∞ ≤
αn

1− q
.

Hence from estimate (2.33), it follows

‖uMn − u0‖∞ ≤
αn

1− q
≤ 1

1− q
L1‖SnM (u0)− S(u0))‖∞ ≤ cL1‖(Lψ)(Pnu0)− (Lψ)(u0)‖∞

= O(h2m).

Hence the proof follows. �

Remark 3.2. We can see from Theorem 2.8 and 3.1, the iterated Galerkin method ũn and multi-
Galerkin method uMn converge with the same rate O(h2m). However, using the Theorem 3.1, we will
find the superconvergence result for the iterated multi-Galerkin method.

Next we discuss the superconvergence results for the iterated multi-Galerkin solution ũMn .

Theorem 3.3. Let u0 ∈ X be the unique solution of the equation (2.2) and let Pn : X → Xn be the
orthogonal projection stated by (2.5). Let the iterated multi-Galerkin approximation of u0 be denoted
by ũMn and defined by (3.3). Then the following holds

‖ũMn − u0‖∞ ≤ C1‖uMn − u0‖
2

∞

+ (1 +M1p)‖(Lψ)′(u0)(I− Pn)‖∞‖(Lψ)(Pnu0)− (Lψ)(u0)‖∞, (3.15)

where C1 = (c2 +M1M2). Further, we obtain

‖ũMn − u0‖∞ = O(h3m). (3.16)

Proof . The proof

‖ũMn − u0‖∞ ≤ C1‖uMn − u0‖
2

∞ + (1 +M1p)‖(Lψ)′(u0)(I− Pn)‖∞‖(Lψ)(Pnu0)− (Lψ)(u0)‖∞(3.17)

can be done easily following the same steps as in Lemma 5 of [18].
Now using orthogonality of Pn and the estimate (2.8), we have

|(Lψ)′(u0)(I− Pn)v(x)| =

∣∣∣∣∫ 1

0

˜̀(x, ϑ(x, η)))ψ(0,1)(ϑ(x, η), u0(ϑ(x, η)))(I− Pn)v(ϑ(x, η)) dη

∣∣∣∣
≤ |〈(I− Pn)fx(.), (I− Pn)v(.)〉|
≤ ‖(I− Pn)fx‖∞‖(I− Pn)v‖∞ ≤ chm‖f (m)

x ‖∞‖v‖∞,
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where fx(ϑ(x, η)) = ˜̀(x, ϑ(x, η)))ψ(0,1)(ϑ(x, η), u0(ϑ(x, η))).
This implies

‖(Lψ)′(u0)(I− Pn)‖∞ ≤ chm‖f (m)
x ‖∞. (3.18)

Again from estimate (2.33), we have

‖(Lψ)(Pnu0)− (Lψ)(u0)‖∞ = O(h2m). (3.19)

Combining the estimates (3.17), (3.18), (3.19) and Theorem 3.1, we obtain

‖ũMn − u0‖∞ = O(hmin{4m,3m}) = O(h3m). (3.20)

This completes the proof. �

Remark 3.4. From Theorems 2.5, 2.8 and 3.3, the iterated multi-Galerkin method converges with
the order O(h3m) and the Galerkin and iterated-Galerkin methods converge with the order O(hm)
and O(h2m), respectively. Hence we can show that iterated multi-Galerkin solutions improve over the
Galerkin and its iterated version.

4. Numerical results

In this sec., numerical results are presented. For that let Xn be the subspace of the piecewise
polynomials functions. We present the errors of the approximate and iterated approximate solutions
of Galerkin and M-Galerkin methods in uniform norm. In Tables 1 and 3, the errors and conver-
gence rates in Galerkin and iterated Galerkin methods are presented. The errors and convergence
rate in M-Galerkin and iterated M-Galerkin methods are given in Tables 2 and 4. We denote the
Galerkin, iterated Galerkin, multi-Galerkin and iterated multi-Galerkin solutions by un, ũn, uMn and
ũMn , respectively. Also we denote ‖u − un‖∞ = O(ha), ‖u − ũn‖∞ = O(hb), ‖u − uMn ‖∞ = O(hc),
‖u− ũMn ‖∞ = O(hd).
The uniform partition of [0, 1] be:

0 = x0 < x1 < x2 < ... < xn = 1

where xi = i
n
, i = 0, 1, 2, ..., n.

We select the approximating subspaces of dimension n, i.e., the space of piecewise constant functions
(m = 1), . Then for m = 1, the expected orders of convergence are a = 1, b = 2, c = 2 and d = 3,
which are deliberated in the Tables [1-4] of Example 1 and Example 2, given below.

Example 4.1. Consider the following Volterra integral equation of second kind

u(x)−
∫ x

0

`(x, ϑ)ψ(ϑ, u(ϑ)) dϑ = g(x), x ∈ [0, 1],

with the kernel function `(x, ϑ) = 1, nonlinear function ψ(ϑ, u(ϑ)) = [u(ϑ)]3 and the function g(x) =
ex − 1

3
e3x + 1

3
and the analytical solution is given by u(x) = ex.

The transformed equation is

u(x)−
∫ 1

0

˜̀(x, ϑ(x, λ))ψ(ϑ(x, λ), u(ϑ(x, λ))) dλ = g(x), x ∈ [0, 1],

where ˜̀(x, ϑ(x, λ)) = x and ψ(ϑ(x, λ), u(ϑ(x, λ))) = [u(xη)]3, x, λ ∈ [0, 1].
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Table 1: Galerkin and iterated Galerkin methods

n ‖u− un‖∞ a ‖u− ũn‖∞ b
2 1.76931256598 ×10−1 - 4.125966812 ×10−3

4 1.002369854125×10−1 0.83 1.158036954×10−3 2.14
8 5.254899664572×10−2 0.87 2.002548966×10−4 1.86
16 3.005693884114×10−2 0.98 6.256365481×10−5 1.98
32 1.158964785540×10−2 0.99 2.012584566×10−5 1.81
64 7.014586544012×10−3 1.01 5.482369401×10−6 1.84
128 1.125896654701×10−3 1.06 1.124582142×10−6 1.88

Table 2: multi-Galerkin and iterated multi-Galerkin methods

n ‖u− uMn ‖∞ c ‖u− ũMn ‖∞ d
2 2.102250124512×10−3 - 3.122003665401×10−4 -
4 4.947896522301×10−4 2.00 2.992589645541×10−5 3.26
8 1.112596874012×10−4 2.16 3.812025563341×10−6 2.85
16 3.001452635848×10−5 1.99 5.123365489564×10−7 3.04
32 7.035642187012×10−6 2.03 5.825698844544×10−8 3.00
64 2.023689544778×10−6 2.02 7.145589665044×10−9 3.05

Example 4.2. Consider the following Volterra integral equation of second kind

u(x)−
∫ x

0

`(x, ϑ)ψ(ϑ, u(ϑ)) dϑ = g(x), x ∈ [0, 1],

with the kernel function `(x, ϑ) = −ϑ, the nonlinear fuction ψ(ϑ, u(ϑ)) = [u(ϑ)]3, g(x) = x+ x5

5
; and

its analytical solution is given by u(x) = x.
The transformed equation is

u(x)−
∫ 1

0

˜̀(x, ϑ(x, λ))ψ(ϑ(x, λ), u(ϑ(x, λ))) dλ = g(x), x ∈ [0, 1],

where ˜̀(x, ϑ(x, λ)) = −x2λ and ψ(ϑ(x, λ), u(ϑ(x, λ))) = [u(xλ)]3, x, λ ∈ [0, 1].

From the tables, it is clear that the approximate solutions in iterated Galerkin method gives better
convergence rates than the approximate solutions in Galerkin method and also the iterated multi-
Galerkin method gives better convergence rates than Galerkin and iterated Galerkin methods. Note
that the size of the system of nonlinear equations need to be solved, remains the same as in Galerkin
method.
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