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Abstract

In this article, we are going to study the stability and bifurcation of a two-dimensional discrete
time vocal fold model. The existence and local stability of the unique fixed point of the model is
investigated. It is shown that a Neimark-Sacker bifurcation occurs and an invariant circle will appear.
We give sufficient conditions for this system to be chaotic in the sense of Marotto. Numerically it
is shown that our model has positive Lyapunov exponent and is sensitive dependence on initial
conditions. Some numerical simulations are presented to illustrate our theoretical results.
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1. Introduction

For any attempt to synthetic speech we need to know how sound is made. Physically, sound is
generated whenever there is a disturbance of the equilibrium of density (or pressure) of a gas, liquid
or solid (Fig. 1). Voice is the unique signal generated by the human vocal production system and is
considered as the sounds originated from a flow of air from the lungs, which causes the vocal folds to
vibrate, and that are subsequently modified by the vocal tract. In essence, the opposed membranes
at the base of the human vocal tract are the source of voiced sounds. Air flow induced instability
of this structure, which is known as the vocal folds. Indeed, voice is produced by movement of the
two lateral opposing vocal folds located in the larynx (see textbooks in Otolaryngology, such as [17])
caused by the air flow through the trachea and generated by lung. In briefly, voice is the result of
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Figure 1: vocal folds are housed by the larynx, an organ placed in the neck of mammals, and they are composed of
layered muscular and nonmuscular tissues (Titze, 1994, and references therein). The air space between the vocal folds
is called glottis. The glottis is an important landmark in speech anatomy: widely used terms are, e.g., supraglottal
(above the glottis) and subglottal (below the glottis)[22].

a balance between two forces: the force of the air leaving the lungs and the muscle strength of the
larynx, where the vocal folds are located. For more detail see [10, 20, 21].
For a long time, Speech synthesis and Artificial intelligence researchers attempts to simulate the
human voice production. Various mechanical and mathematical models are introduced for describing
of the human organs which are connected with voice production and also of the process of phonation
[4, 19, 21]. Most of these models are differential equations or compartmental models. But, sometimes
discrete models give better and more accurate results. For example, in population models discrete
models are better for small populations and for the discrete time prey-predator models the dynamics
can produce a more efficient set of patterns than those observed in continuous-time models [12, 1, 19].
Signal processing of speech can be represented in discrete time as a digital filter [14, 11]. It is very
important to be able to compare theoretical results with experimental records. In [11], the authors
consider a discrete model of vocal fold that can be used to obtain the parameters from a recording
of the vocal fold behaviour. This model enable us to identify the parameters of the model directly
from discrete measurements of the vocal fold signal and syntheses the speech signals. As we can
see in [19] the operation would be problematic for a general signal controller. In addition, the
oversaturation control time in the continuous model is longer than in the discrete model, indicating
that the discrete model is better than the continuous model. Also, the numerical simulations of
continuous-time models are obtained by discretizing the models. The present work aims to describe
the vibration properties of human vocal fold as a discrete-time dynamical model. Our study is focused
on discretizing of a continuous model for vocal fold oscillations which introduced by Jorge C. Lucero
[13]. Firstly, we briefly review the bi-dimensional oscillator, which is our case for discretization and
has been proposed as a simple continuous time model for the vocal fold motion at phonation [13].
Then, based on forward-Euler method, we obtain our related discrete dynamical model for vocal
fold. In the third section, the local stability is considered. In Section 4, we prove that our system
undergoes the Neimark-Sacker bifurcation. In Section 5, we investigate the existence of chaos in the
sense of Marroto’s definition. By numerical simulation we estimate that the systems has positive
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Figure 2: Mass-spring oscillator of vocal folds, Fx is the pressure of air flow from the lung[2, 6].

Lyapunov exponent and sensitive dependence on initial conditions, in Section 6. Finally, a brief
conclusion is given in the last section.

2. Preliminaries

The fundamental equation of a self-sustained mass-spring oscillator results:

mẍ+ r(1 + ηx2)ẋ+ kx =
2PLτ ẋ

x0 + x+ ẋ
, x0 + x+ ẋ > 0, (2.1)

where m is the mass (the inertial property of the mechanical system), k is the spring constant
which represents the effective stiffness (elasticity) of various tissue layers of the vocal cords, r is the
damping, η is a phenomenological nonlinear coefficient, PL is the lung pressure, τ is the (sufficiently
small) time delay related to the period of the oscillation and x0 is the half-width at the rest position
(Fig 2). It’s note that equation (2.1) includes a nonlinear damping term r(1 + ηx2) and introduced
by Lucero in [13]. As applied to the vocal folds, this element represents the viscosity of the tissue,
i.e., the energy absorber in the tissue [21].

Now, we can reduce the number of parameters by introducing dimensionless variable u = x
x0

,

s = t
√

k
m

and also dimensionless parameters

α =
r√
mk

, β = ηx20, δ = τ

√
k

m
, γ =

2τPL

x0
√
mk

,

which implies

ü+ α(1 + βu2)u̇+ u =
γu̇

1 + u+ δu̇
, 1 + u+ δu̇ > 0, (2.2)

where the dot means the derivatives with respect to s. Taking v = u̇ converts (2.2) to the following
equivalent bi-dimensional system:{

u̇ = v,
v̇ = −α(1 + βu2)v − u+ γv

1+u+δv
,

(2.3)

where, 1 + u+ δv > 0.
Fix α = 0.32, β = 100, δ = 0.97 and γ be the controller parameter. By varying γ a Hopf bifurcation
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u ' = v                                                   
v ' = - alpha (1 + beta u2) v - u + g v/(1 + u + delta v)

delta = 0.97
g = 0.87

alpha = 0.32
beta = 100
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Figure 3: A phase portrait with six trajectories for Eq. (2.3), and α = 0.32, β = 100, γ = 0.78, δ = 0.97.

occurs and when this parameter crosses its bifurcation value and increases, a stable limit cycle is
expelled from the origin, and grows in amplitude. Fig.2 shows a phase portrait with six trajectories
for the above parameters. Trajectory 1 started at (0.01, 0.1) and moves away from the origin and
approaches the limit cycle, this means (u, v) = (0, 0) is unstable. Trajectories 2, 3, 4 and 5 initiate
at (1.4, 1.5), (−0.4, 1.5), (−0.9, 1.5) and (0.6,−1.5) respectively. These trajectories are within basin
of attraction of the limit cycle. Trajectory 6 where initiates at (0.55,−1.5) is outside the basin of
attraction. This trajectory, as well as the whole region below trajectory 5, are outside the region of
validity of the model as a representation of the vocal fold oscillator, since they do not correspond to
licit vocal fold motion. More details on this equation can be found in [13].

Using the forward Euler method, we obtain the following discrete model{
un+1 = un + hvn,
vn+1 = vn − h[α(1 + βu2n)vn + un − γvn

1+un+δvn
],

(2.4)

where h > 0 is the step size.

3. Local Stability

In this section, we will study the existence and local stability of equilibria of system (2.4). For
this purpose we need the following lemma:

Lemma 3.1. [12] Assume F (λ) = λ2 + Bλ + C, where B and C are two real constants and let
F (1) > 0. Suppose λ1 and λ2 are two roots of F (λ) = 0. Then the following statements hold.
(i) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and C < 1;
(ii) |λ1| < 1 and |λ2| > 1 if and only if F (−1) < 0;
(iii) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and C > 1;
(iv) λ1 = −1 and λ2 6= −1 if and only if F (−1) = 0 and B 6= 0, 2;
(v) λ1 and λ2 are a pair of conjugate complex roots and, |λ1| = |λ2| = 1 if and only if −2 < B < 2
and C = 1;
(vi) λ1 = λ2 = 1 if and only if F (−1) = 0 and B = 2.

This model has one fixed point (u, v) = (0, 0).

Proposition 3.2. In system (2.4), the fixed point (0, 0) is

1. a sink if h < α− γ and
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(a) |γ − α| < 2, or

(b) |γ − α| > 2 and h < (γ − α)−
√

(γ − α)2 − 4, or h > (γ − α) +
√

(γ − α)2 − 4.

2. a source if h > α− γ and h < (γ − α)−
√

(γ − α)2 − 4, or h > (γ − α) +
√

(γ − α)2 − 4.

3. a saddle if (γ − α)−
√

(γ − α)2 − 4 < h < (γ − α) +
√

(γ − α)2 − 4.

4. non-hyperbolic if

(a) h = α− γ and h < 2, or
(b) h = (γ − α)±

√
(γ − α)2 − 4 and h 6= −2

γ−α ,
−4
γ−α , or

(c) α− γ = h = 2.

Proof . We can apply the Lemma 3.1 to model (2.4). The Jacobian matrix associated with (2.4) in
(0, 0) is given by

J|(0,0) =

(
1 h
−h 1 + (γ − α)h

)
. (3.1)

The characteristic polynomial of matrix (3.1) is obtain by

F (λ) = λ2 +Bλ+ C = λ2 −
(
2 + (γ − α)h

)
λ+ h2 + (γ − α)h+ 1. (3.2)

It is easy to see that F (1) = h2 > 0. By simple calculus we obtain

F (−1) = h2 + 2(γ − α)h+ 4. (3.3)

Therefore, F (−1) = 0 iff h = (γ − α)±
√

(γ − α)2 − 4. So, F (−1) > 0 if

1. ∆ = 4(γ − α)− 16 < 0 or |γ − α| < 2, or

2. ∆ > 0 or |γ − α| > 2 and (γ − α)−
√

(γ − α)2 − 4 < h < (γ − α) +
√

(γ − α)2 − 4.

We also have
C < 1⇐⇒ h(h+ (γ − α)) < 0 or h < α− γ.

It’s clear that F (−1) > 0 and C > 1 iff h > α− γ and h < (γ − α)−
√

(γ − α)2 − 4, or

h > (γ − α) +
√

(γ − α)2 − 4. Moreover, C = 1 iff h = α − γ and also B = 2 iff h = −4
γ−α . By

checking the conditions in the Lemma 3.1 the proof is complete. �

4. Neimark-Sacker bifurcation

In this section, based on the argument given in the previous section and choosing h as the
bifurcation parameter, we investigate the Neimark-Sacker bifurcation in system (2.4). The conditions
in 4(a) of Proposition 3.2 can be written as the following set

NS = {(α, γ, h) | h = α− γ, h < 2}.

We claim that when h∗ = α − γ and h∗ < 2 the system undergoes the Neimark-Sacker bifurcation.
We can rewrite system (2.4) as(

u

v

)
7→
(

1 h
−h 1 + (γ − α)h

)(
u

v

)
+

(
0

−γhuv − γδhv2 + (1− αβ)hu2v + 2γδhuv2 + γδ2hv3 +O(4)

)
. (4.1)
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By changing the variable h to h̃+ h∗ we have that:(
u

v

)
7→
(
a11 a12
a21 a22

)(
u

v

)
+

(
0

b11uv + b02v2 + b21u2v + b12uv2 + b03v3 +O(4)

)
, (4.2)

where, we have the coefficients as follows:

a11 = 1, a12 = h̃+ h∗, a21 = −(h̃+ h∗), a22 = 1 + (γ − α)(h̃+ h∗)

b11 = −γ(h̃+ h∗), b02 = −γδ(h̃+ h∗), b03 = −γδ2(h̃+ h∗),

b21 = (1− αβ)(h̃+ h∗), b12 = 2γδ(h̃+ h∗).

Since parameters belong to NS, then we have the complex eigenvalues λ1,2 = ζ ± iη when ζ =
2−h∗(h̃+h∗)

2
and η = ( h̃+h

∗

2
)
√

4− (h∗)2. We also have

|λ1,2| = 1 + h̃(h̃+ h∗),
d|λ|
dh̃
|h̃=0 = h∗ 6= 0. (4.3)

It is easy to see that for h∗ < 2
λk1,2 6=, k = 1, 2, 3, 4. (4.4)

Because λ1,2|h̃=0 = e±iω where ω = cos−1(2−h
∗2

2
). Using the translation

(
u
v

)
= J

(
ũ
ṽ

)
where

J =

(
a21 0

ζ − a11 −η

)
, (4.5)

or (
u

v

)
=

(
a21ũ

(ζ − a11)ũ− ηṽ

)
,

we can write system (4.2) in the normal Jordan form as(
ũ

ṽ

)
7→
(
ζ −η
η ζ

)(
ũ

ṽ

)
+

(
0

g(ũ, ṽ)

)
,

where

g(ũ, ṽ) =− ηb02ṽ2 −
b02(ζ − 1)2 + b11a12(ζ − 1)

η
ũ2

+ (2b02(ζ − 1) + b11a12)ũṽ + b03η
2ṽ3

− (3b03η(ζ − 1) + b12a12η)ũṽ2

+ (3b03(ζ − 1)2 + 2b12a12(ζ − 1) + b21a
2
12)ũ

2ṽ

− b03(ζ − 1)3 + b12a12(ζ − 1)2 + b21a
2
12(ζ − 1)

η
ũ3 +O(4).

For investigate the existence of Neimark-Sacker bifurcation, we use the following statement [7]:
Assuming that the bifurcating system (restricted to the center manifold) is in the form(

x

y

)
7→
(

cos(c) − sin(c)
sin(c) cos(c)

)(
x

y

)
+

(
f(x, y)

g(x, y)

)
, (4.6)
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with eigenvalues λ, λ = e±ic , one obtains

a = −Re{(1− 2λ)λ
2

1− λ
c11c20} −

1

2
|c11|2− | c02 |2 +Re(λc21),

where

c20 =
1

8
{(fxx − fyy + 2gxy) + i(gxx − gyy − 2fxy)},

c11 =
1

4
{(fxx − fyy) + i(gxx − gyy)},

c02 =
1

8
{(fxx − fyy − 2gxy) + i(gxx − gyy + 2fxy)}

and

c21 =
1

16
{(fxxx + fxyy + gxxy + gyyy) + i(gxxx + gxyy − fxxy − fyyy)}.

Since f(ũ, ṽ) = 0 after calculating, we get

c20 =
1

8
{2(2b02(ζ − 1) + b11a12)) + i(−2

b02(ζ − 1)2 + b11a12(ζ − 1)

η
+ ηb02)},

c11 =
1

4
{i(−2

b02(ζ − 1)2 + b11a12(ζ − 1)

η
− 2ηb02)},

c02 =
1

8
{(−2(2b02(ζ − 1) + b11a12)) + i(−2

b02(ζ − 1)2 + b11a12(ζ − 1)

η
− 2ηb02)}

and

c21 =
1

16
{(2(3b03(ζ − 1)2 + 2b12a12(ζ − 1) + b21a

2
12) + 6b03η

2)+

i(−6
b03(ζ − 1)3 + b12a12(ζ − 1)2 + b21a

2
12(ζ − 1)

η
− 2(3b03η(ζ − 1) + b12a12η))}.

From above analysis we write the theorem as follows:

Theorem 4.1. If (α, γ, h) ∈ NS and the condition (4.3) hold and a 6= 0, then the system (2.4)
passes through a Neimark- Sacker bifurcation at the origin. Moreover, if a < 0 (respectively a > 0),
then an attracting (respectively repelling) invariant closed curve bifurcates from the fixed point for
h > h∗ (respectively h < h∗).

5. Chaos in Marotto’s sense

In this section, we prove system (2.4) possesses chaotic behavior in the sense of Marotto’s defini-
tion. We first present some definitions and theorem. For a differentiable function f : Rn → Rn, let
Df(p) denote the Jacobian matrix of f evaluated at the point p ∈ Rn, and |Df(p)| its determiniant.

Definition 5.1. [15] Let f be differentiable in closed ball Br(z). The point z ∈ Rn is an expanding
fixed point of f in Br(z), if f(z) = z and all eigenvalues of Df(x) exceed 1 in norm for all x ∈ Br(z).

Definition 5.2. [15] Assume that z is an expanding fixed point of f in Br(z) for some r > 0. Then
z is said to be a snap-back repeller of f if there exists a point x0 ∈ Br(z) with x0 6= z; fk(x0) = z
and |Dfk(x0)| 6= 0 for some positive integer k
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Theorem 5.3. [15] If f possesses a snap-back repeller then the map f is chaotic.

Now we theoretically give the condition such that system (2.4) have a snap-back repeller point.
Consider the characteristic equation for System (2.4) at P = (a, b) is

H(λ) = λ2

+ (hα(1 + βa2)− hγ(1 + a)

(1 + a+ δb)2
− 2)λ

+ (−hα(1 + βa2) +
hγ(1 + a)

(1 + a+ δb)2
) + h2(2αβab+ 1 +

hγb

(1 + a+ δb)2
) + 1,

and put A(a, b) = hα(1 +βa2)− hγ(1+a)
(1+a+δb)2

− 2 and B(a, b) = (−hα(1 +βa2) + hγ(1+a)
(1+a+δb)2

) +h2(2αβab+

1 + hγb
(1+a+δb)2

) + 1.

If there exists a positive constant r , such that for all (x, y) ∈ R2 satisfying |x− a| < r, |y − b| < r ,
the following conditions are satisfied:

∆ = A2(x, y)− 4B(x, y) < 0, B(x, y) > 1. (5.1)

Then the characteristic Equation have a pair of conjugate complex eigenvalues satisfying |λ1,2| > 1,
and P = (a, b) is an expanding fixed point of System (2.4) in D(P ) = {(x, y) ∈ R2; |x − a| <
r, |y− b| < r}. Since P0 = (0, 0) is the only fixed point of System (2.4) and by ∆ < 0 and B(x, y) > 1
in (5.1), we have the following lemma that obtain necessary conditions of Marotto’s chaos.

Lemma 5.4. If (γ − α)2 = ε < 4 and h + (γ − α) = σ > 0 then there exists r = r(ε, σ) then
there exists a neighborhood D(P0) = {(x, y) ∈ R2; |x − a| < r, |y − b| < r}, such that the norm of
eigenvalues of point (x, y) ∈ D(P0) is greater than 1, and the fixed point P0 is an expanding point in
D(P0).

According to the above argument, we need to prove that, in the neighborhood Br(z) of the fixed
point z, a point z0 can be found such that the kth iteration of z0 under the map f comes back to z
and |Dfk(z0)| 6= 0. Now, we prove that there exists at least one snap-back repeller point after two
iterations.
Indeed, we have{

x0 = u+ hv,
y0 = v − h[α(1 + βu2)v + u− γv

1+u+δv
],

(5.2)

and {
0 = x0 + hy0,
0 = y0 − h[α(1 + βx20)y0 + x0 − γy0

1+x0+δy0
],

(5.3)

Now a f 2 map has been constructed to map the point P1 = (u, v) to the fixed point z = (0, 0) after
two iterations if there are nonzero solutions for equations (5.2) and (5.3). Here, we suppose δ = h.

By calculation, the nonzero solutions for (5.3) is x0 = ±
√

1
αβ

(γ + h+ 1
h
− α) and y0 = −x0

h
. Now,

we need to find a point P1 = (u, v) such that f(u, v) = P0. Thus, we obtain equation:

hαβu3 − hαβu2 + u(hα + γ
h(1+x0)

)− hαx0 + x0 − γx0
h(1+x0)

= 0. (5.4)
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Figure 4: The Phase portrait of model (2.4) for α = 0.78, β = 100, γ = 0.32, δ = 0.97, and (u0, v0) = (0.02, 0.002).
(a) h = 0.06, in this case h < α − γ, so the origin is a sink, (b) h = 0.19, in this case h = α − γ, so the origin is a
non-hyperbolic fixed point (c) h = 0.6, in this case h > α− γ, so the origin is a source.

This is clear that equation (5.4) has at least one real root. Next we prove that there is a real root
located in the neighborhood Br(z). It is notice that the constant item −hαx0 + x0 − γx0

h(1+x0)
in

(5.4) may change from negative to positive. This implies that there is a real nonzero root in the
small neighborhood of the origin or Br(z = 0). In the other hand, it is obvious that |Df 2(P1)| =
|Df(z)||Df(P1)| 6= 0. Because Df(x, y) = 0 implies that x2 = γ−α+h

3αβ
and this is different from the

solutions of equations (5.2) and (5.3). Thus, the following theorem is established.

Theorem 5.5. Assume that z = (0, 0) is an expanding fixed point in Br(z), if the solutions (u, v), (x0, y0)
of (5.2) and (5.3) satisfy (u, v) ∈ Br(z) and |Df 2(P1)| 6= 0.Then z is a snap-back repeller of system
(2.4), and hence system (2.4) is chaotic in the sense of Marotto.

6. Numerical Simulation

In this section we show some numerical simulations for the system (2.4) to support our theoretical
results. We choose α = 0.78, β = 100, γ = 0.32, δ = 0.97, and (u0, v0) = (0.02, 0.002). For different
values of parameter h we plot the phase portrait in Fig. 4. When h < α − γ, the origin is a sink,
for h = α − γ the origin becomes a non-hyperbolic and for h > α − γ it becomes an unstable fixed
point (or source). Moreover, for the last case, a stable limit cycle has been arisen. Hence, Fig. 4
verify Proposition 3.2 and Theorem 4.1. In [13], Lucero considered real data for typical adult as
α = 0.32, β = 100, γ = 0.78, δ = 0.97. For these real data the discrete model has always a limit cycle,
because α−γ < 0 and h is a positive parameters. Note that, the limit cycle in the discrete model is far
from the singular line 1 +u+ δv = 0. Therefore, our results is reliable. We also numerically compute
the bifurcation of system (2.4). The bifurcation diagram is shown in Fig. 5. In the previous section
we analytically proved that system (2.4) has chaotic behaviour by Marotto’s definition. Moreover,
we interest to investigate chaotic behaviours of the vocal fold model in other sense. In what follows,
we study some indication of chaos by numerical methods. The usual numerical test for the chaos
is calculation of the maximum Lyapunov exponent. A positive Lyapunov exponent indicates chaos
[18]. Therefore, we compute the maximum Lyapunov exponent of model (2.4) with respect to h.
Fig. 6 shows that system (2.4) has positive Lyapunov exponent for h ∈ [0.46, 0.6], so we expect the
chaotic behaviour in this interval. In the other hand, from Devaney’s point of view [5], one of the
components of chaotic systems is ”sensitive dependence to initial conditions”. In the next subsection,
we numerically obtain sensitive dependence to initial conditions for the model.
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Figure 5: The bifurcation diagrams of the model for α = 0.78, β = 100, γ = 0.32, δ = 0.97, and (u0, v0) = (0.02, 0.05).
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Figure 6: Maximum Lyapunov exponent of system (2.4) for α = 0.78, β = 100, γ = 0.32, δ = 0.97.

6.1. Sensitive dependence to initial conditions

To demonstrate the sensitivity to initial conditions of model (2.4), two orbits are considered. We
fix the parameters α = 0.78, β = 100, γ = 0.32, δ = 0.97 and h = 0.55. Consider the initial
points (x0, y0) = (−0.19,−0.1) and (x̃0, ỹ0) = (x0 + 0.01, y0). At the beginning, the two time series
are very close to each other; but after 20 iterations, the difference between them builds up rapidly.
For example (x20, y20) = (−0.070603,−0.002022) and (x̃20, ỹ20) = (−1.1714× 103176, 2.1974× 106353).
Fig. 6 demonstrates and confirms the above argument and shows a sensitive dependence on initial
conditions for the model.

7. Conclusion and discussion

In this paper, we investigated the stability, bifurcation and chaos in of a two-dimensional discrete
time vocal fold model. The discrete-time model exhibit more plentiful and complicated dynamical
behaviours than a continuous-time model of the same type. Indeed, for small step size the discrete-
time model is a good approximation of the continuous-time model, when the step size becomes large
the discrete models shows more complicated behaviours. As discussed in Section 6, the discrete-time
model have the chaotic behaviour for h ' 4.5 and more, (see figure 6). Many studies show that
disordered voices from laryngeal pathologies such as vocal polyps and vocal nodules might exhibit
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chaotic behaviors [8]. So, consider the chaotic conditions in vocal fold dynamical model is very
important. In this paper we obtained some conditions that the discrete time vocal fold model is
chaotic in the sense of Marotto.
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